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Abstract---The population dynamics of a system of two competing 

species have been investigated in the mean-field and lattice 

approximation. The two species are denoted by A and B. Each site of 
the square lattice is either occupied by an individual or vacant. The 

two species complete for vacant sites to reproduce. There is a 

reproduction only to the nearest neighbours. We consider the invasion 
of a rare species into a population composed of a resident species 

based on a pair – approximation method in which the dynamics of 

both average densities and nearest neighbour correlations are 
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considered. The results are then compared with those obtained by the 

mean-field approximation. Whenspecies B contain intraspecific 

interaction term, invasion of the rare species A into resident species B 

becomes easier in lattice structured populations. But the rare species 
B invading species A is difficult in lattice models in comparison to 

mean-field approximation. The overall coexistence of species is 

enhanced in lattice models. These results were verified by simulation 
on a square lattice although the range of the enhancement of the 

species coexistence is reduced. This calls for the attention that pair-

approximation is an oversimplification of the real situation. However, 
with the presence of commensalism (when A helps B), the range of 

species coexistence is reduced in lattice habitat in comparison to the 

mixed population case. 
 

Keywords---lattice models, the coexistence of species, Species 

biodiversity, Conservation, mean-field model, Spatial pattern, Global 

change. 

 

Introduction  
 

An individual organism usually interacts with a higher probability with the 

neighbouring organisms than the distant ones. Spatial structure can influencethe 

population dynamics when the organisms have a limited dispersal range. As the 
gametes of sessile organisms like plants usually disperse to neighbouring sites, 

the effect of the spatial structure becomes important. These spatial influences can 

also lead to increased coexistence between two or more competing species. For 
two populations having the same overall density, the growth rates can be different 

depending on whether their distributions are random or have a spatial pattern. 

The spatial distributions can also be spontaneously formed by certain ecological 
processes. Spatial dynamics are known to have important effects on competitive 

coexistence in model systems (Levins and Culver, 1971; Levin, 1974; Hastings, 

1980; Hanski, 1983; Levin et al., 1984; Chesson, 1985; Pacala, 1986; Adler and 
Nuernberger, 1994; Tilman, 1994; Gandhi et al., 1998). The spatial models are 

usually investigated via simulation. Traditionally, most ecological models have 

assumed that all individuals of all species experience a well-mixed homogeneous 

habitat in which similar compositions can be found in all the neighbourhoods. 
This conceptually simple description is called the mean-field model. It assumes 

that the global averages are good substitutes for the local population 

distributions. Durrett & Levin (1994) have shown that this mean-field description 
sometimes fails to correctly describe the dynamics of the system. There are a 

variety of models that try to overcome the drawbacks of the mean field models. In 

patch models, individuals comprising a population are divided among patches; 
there is complete mixing within a patch and limited dispersal among patches. 

Models such as interacting particle systems (Durrett and Levin, 1994) and 

probabilistic cellular automata (Rand et al., 1995) consider the effect of 

stochasticity and spatial extension of natural populations. Metapopulation models 
are known to increase the persistence of species through spatial dynamics (Gilpin 

and Hanski, 1991). Cellular automata models have been investigated to model 

spatially explicit population dynamics (Hassel et al., 1991; De Roos et al., 1991; 
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Sato and Iwasa, 1993). Sometimes spatial structure has been neglected (Caswell 

and Etter, 1992), but the predictions become qualitatively different from the 
lattice simulation (Harada and Iwasa, 1996; Durrett and Levin, 1997). It is 

difficult to examine parameter dependence clearly from direct simulation on a 

lattice. In the lattice model, pair-approximation is a method to construct a closed 
dynamical system of global densities and local densities. The method has been 

applied successfully to various dynamical models with lattice structures, such as 

predator-prey dynamics (Matsuda et al., 1992), host-pathogen systems (Sato et 
al., 1994) and the evolution of altruism (Matsuda et al., 1987; Nakamura et al., 
1997). 

 

In this paper, we discuss the competition between two species living in a spatially 
structured habitat. They compete for vacant sites to reproduce. The basic purpose 

of our analysis is to examine whether a spatially explicit model has a species-

coexistence range different from a perfectly mixed system. We aim to show under 
what situation spatial structure can increase the coexistence of species. We 

provide one example of where it happens. We also give another model where the 

reverse situation occurs. The two different models are- i) one species has 

intraspecific interactions and ii) one species helps another through 
commensalism. To analyze the population dynamics, we have considered the 

dynamical system of overall population density and local density, the latter 

representing the nearest neighbour correlation (Harada and Iwasa, 1994; Harada 
and Iwasa, 1996). We have used pair-approximation (Matsuda et al., 1992) which 

isa valuable tool to analyze lattice models (Sato et al., 1994; Harada et al., 1995 

Nakamura et al., 1997). We have also conducted computer simulations on a 

lattice to compare with the analytical result based on pair approximation. In 
section 2, the model is formulated; the results are presented in section 3 followed 

by concluding remarks in section 4. 

 

Model 

 

We consider two types of species, denoted by A and B. The habitat is a two-

dimensional lattice. Each site has neighbours, where Z =4 (we have adopted the 

Neuman neighbourhood). Each site is either occupied by type A, occupied by type 

B, or vacant, which we call an A-site, a B-site and an E-site, respectively. The 

average fractions of the sites of states A, B and E are designated A, B and E. 

These are called global densities (21, 24). For example, qA/B is the fraction of A 

among the neighbours of a randomly chosen B-site. In general, qi/j is the local 

density of i in the nearest neighbours of j-site (i, j = A, B or E). The states of the 
neighbours become positively correlated as reproduction occurs only to 

neighbours. Let dA be the rate of transition from site A to E, and dB be that from B 

to E, which are the mortalities of species A and species B, respectively. An 
individual of species A can produce offspring only if it is adjacent to a vacant site, 

and the reproduction rate per vacant neighbouring site is bA/z, where bAis is the 

maximum reproductive rate achieved when all the neighbours are vacant. The 
rate of successful reproduction of A is proportional to the number of vacant sites 

E in the neighbourhood of the A-site. Hence the reproductive rate of a randomly 

chosen A-site is bA qE/A, which is the product of the maximum birth rate and the 
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fraction of E- sites in the neighbourhood of the A-site. Similarly, the rate of 

successful reproduction of an average B-site is bB qE/B. 

(a) Intraspecies interaction 
We shall investigate a model where species B have intraspecific interaction in 
addition to competition for vacant sites between species A and species B. We have 

considered intraspecies interaction in one species only because it is easier to 

manage the mathematical equations. 

The rate of change in global densities A and B are given by 

 

 

 

In the above equations, qE/A and qE/B are local densities and c is a coefficient 

which measures the strength of intraspecific interaction. 
 

Mean- field approximation: 

Mean-field approximation is to neglect the correlation between sites. The 
dynamics based on mean-field approximation can be regarded as those for the 

population 

mixed completely by additional external forces. Under mean-field approximation, 
local density is replaced by global density, for example qE/A and qB/B are replaced 

by E and B 

respectively. Equations (1a) and (1b) are then rewritten as 

 

 

and 

 

 
Which is a special case of Lotka-Volterra competition model with intraspecific 

interaction? After doing phase plane analysis of A and B isoclines, the following 

conditions can be obtained. 
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B can invade if 

 

 

Lattice model with pair approximation: 

 
To make a closed dynamical system of global and local densities, the pair- 

approximation postulates: qA/EA  qA/E. In general, quantity qi/jk is the conditional 

probability for a site to be i given that it is a neighbour of a j-site whose another 

neighbour is k (i, j, and k are in {A, B, E}). Pair-approximation is qi/j qi/jk (Sato et 
al., 1994). 

The dynamics of two global densities in Eq. (1) can be rewritten as: 

 
 

and 

 

(See Appendix A). 

 
Invasion condition: 

 (i)A invades B: 

Here we consider the conditions for invasion by a rare type, say A, to the 
population dominated by the other type B. We shall examine whether a rare 

invader A can increase in frequency in the equilibrium population dominated by 

type B. Equation (1a) shows that the Malthusian parameter of a rare invader 

depends only on qE/A, the availability of vacant sites adjacent to invader individual 
A. 

A can invade if qE/A> dA/ bA, where the local density should be estimated at the 

equilibrium composed only of resident species B. The procedures to calculate 

invasibility are: (1) the equilibrium of the dynamics of B and qB/B are obtained 

with A= 0; (2) using these three variables we construct the dynamics of two local 

densities qA/A and qB/A, and calculate the stable equilibrium of these two local 

densities; and finally (3) the inequality qE/A> dA/ bA  is examined (Matsuda et al., 
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1992). By means of these procedures, the condition for species A to invade 

species B can be calculated (see appendix B). The condition turns out to be 

 
If the reverse inequality holds, species A must decrease in population dominated 

by species B, and hence invasion is not possible. The birth rate of species B must 

satisfy the following constraints. It is found that   bB > 4/3 dB + 1/3 c by using 0 

<B <1 and equation (B.2). Similarly, bB> dB is obtained from equation (B.1) and 0 
< qB/B<1. 

 
(ii) B invades A: 

Here we consider the conditions for invasion by a rare type B to the resident 

The population of type A. Equation (1b) shows that B can invade if 

 
 

where the local density should be estimated at the equilibrium composed only 
of resident species A. The condition for invasibility is calculated by following 

the procedure of the previous section (see appendix C). The condition for 

Species B to invade Species A is given by (from equation C.5) 
 

 

 

qB/B = x1 can be determined numerically by solving the two coupled equations 

(C.3a) and (C.3b) at equilibrium. bA must satisfy the following constraints: qA/A> 0 

and equation (C.1) imply that bA> dA   and  A> 0 with equation (C.2) give bA> 4/3 

dA. 

 

Commensalism: 
We have also analyzed a two-species competition model with one way helping 

interaction where species A helps species B. The rate of change in global 

densities are 
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and 

 

In Eq.(10b), c/ represents the strength of one-way helping interaction. By 

following the same procedure as before one can find the invasion conditions in the 
mean-field approximation. A can invade B if 

 

B can invade A if 

 

In the lattice formulation with pair approximation, by following the previous 
procedure, it can be found that A can invade B if 

 
This invasion condition is the same as in the mean-field case (see Eq. 11). In a 

similar manner the condition can be calculated when species B invades species A 

(see appendix D). 

 
Lattice simulation: 

 

We have also investigated the invasibility of a rare species in a population 
dominated by the resident species using computer simulation on a square lattice. 

The chief purpose was to check the range of validity of the pair approximation. A 

25 by 25 grid (625 cells) was modelled. In the computer program, an empty lattice 
cell was assigned 0 while those occupied by species A and B were designated as 1 

and 2 respectively. The rare species was chosen with a low probability pi(= 0.01) 

initially. A lattice cell was chosen at random, and its birth process to neighbours 
and death with certain probabilities were conducted. Then another cell was 
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rare species was examined. If it was more than the initial frequency, then we had 

concluded that the rare species was able to invade a population of resident 

species. Since it was a random process, the result was taken as the average of 12 
samples. Let pf be the final probability of the rare species ‘A,’ after some time 

steps and bA its birth rate. After one-time step pi andpf were nearly equal for 

different birth rates bA but pf changed as the number of time steps increased. 
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intermediate value of bA and attained a value greater than pi for a higher value of 

bA. A was able to invade successfully when its birth rate was beyond a certain 

critical value. The critical value of bA was slightly increased with the increase of 

the number of time steps but it gradually attained an asymptotic value. The 
number of time steps was limited to 6 (which was good enough for theoretical 

investigation) to save computational time. 

Results 

 

The primary concern of our analysis was to compare the results of invasibility 

between mean field and lattice models. Figure 1 shows that species A can invade 
species B easily in the lattice model. Invasion becomes still easier when the 

intraspecies interaction strength of species B increases.  

 
Fig. 1:  The invasion of species A as a function of intraspecies interaction strength 

inspecies B. The solid lines represent the mean field case, and the dashed line 
shows the lattice results. A can invade B in the region above the solid and dashed 

lines. bB = 0.6 

 
However, the invasion becomes more difficult with a higher birth rate of species B 

(data not shown). Figure 2A illustrates the change of the birth rate of species A as 

a function of the birth rate of species B. Species A can easily invade species B in 
spatial models in comparison to the mean field case. The invasion is easy when 

the intraspecies interaction is strong. The invasion of the rare species B into 

resident species A is difficult in lattice habitat when compared with the 
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continuum approximation (Fig. 2B). Figure 3 shows that the species coexistence 

region is enhanced in the lattice model with pair approximation. However, the 
range of the coexistence region is reduced in the case of lattice simulation. Figure 

4 depicts the coexistence region of the two species when commensalism is present 

(species A helps species B). It shows that the coexistence region is reduced in the 
lattice habitat. 

 
Fig. 2A:  The invasion of species A with the birth rate of species B. The allowed 

birthrate of species B is more for the higher value of the intraspecies interaction 
strength. The solid line represents the mean field case and the dashed line shows 

the lattice results. 

Fig. 2B: The invasion of species B into a resident species A. The solid and dashed 
lines are for mean field and lattice cases, respectively. c = 0.2. 

 

Discussion 
 

Determining how regional dynamics of competition and mobility significantly 

affect species coexistence is an important challenge in ecology. Clusters are 
spatial formations that arise. To ensure constant coexistence for two species, 

population models in a patch structured habitat must include specific extra 

mechanisms favoring rare species, such as niche differentiation (Chesson, 1981; 
Chesson, 1991). The parameters for a rare species' successful invasion into a 

population dominated by resident species were investigated (Takenaka et al., 

1997). Studies have concluded that there is no possibility for the stable 
coexistence of two distinct types in the lattice model. Ithas also shown that there 

is no equilibrium in which both types coexist stably in the mean field 
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approximation. We have shown that the addition of intraspecies interaction can 

not only make a stable coexistence possible but can improve the range of species 

coexistence in lattice structured habitat in comparison to a completely mixed 

population model. The spatial effects are important when intraspecific interaction 
is present. The clustering effect becomes important due to reproduction to the 

nearest neighbours. However, the coexistence region is somewhat reduced when 

the result is computed through simulation (Fig. 3). This shows that pair-
approximation is not a particularly good approximation. The result of computer 

simulation should lie between continuum approximation and lattice model with 

pair approximation. This should be the general feature of any system. As 
intraspecies interaction in species B increases, A invading B becomes easier in 

the mean-field model in comparison to the lattice case. When this is combined 

with the fact that species B invading species A is independent of the intraspecies 
interaction term in the mean-field model, the following picture emerges. When the 

intraspecies interaction in species B is increased, the coexistence region in the 

mean-field model becomes greater while in the lattice model it is relatively 

reduced. Consequently, the advantage in the lattice model in terms of species 
coexistence is reduced. 

 
Fig. 3: The coexistence region for both the species. The different lines showthe 
following cases: solid (mean field), dashed (lattice model with pair approximation) 

and long dashed (lattice model with simulation). Species A can invade species B 

abovethe three lower lines and species B can invade species A below the upper 
three lines.c = 0.2. 

 

When species A helps species B, clusters of A’s are formed surrounding A as 

reproduction occurs to nearest neighbours in the lattice habitat. As a result, 
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species B invading species A becomes more difficult in the lattice model than in 

the mean-field case. So, when species A helps one another, the range of 
coexistence is reduced in spatial models (Fig. 4). The same result will be true 

when both the species survive by helping each other through mutualistic 

interaction We have simulated a lattice size of 25 by 25. In a lattice size of 50 by 
50 (with fixed birth rate bA), the final frequency of the rare invading species at 

successive time steps is slightly lower in comparison to the case with a lattice size 

of 25 by 25. So, the critical birth rate beyond which value the rare species can 

invade is a little higher. We have also shown by simulation that mutualism can 
evolve through spatial effects (in preparation).  

 

Fig. 4: The coexistence region when species A helps species B. The conditionfor 
rare species A invading the resident species B is the same for both the mean 

fieldand lattice models. The upper solid line represents both cases. Species A can 

invadespecies B below the upper solid line. Species B can invade species A above 
the dashedline (lattice model) and above the lower solid line (mean field model). c` 

= 0.4. 

 
In a two species system, when each survives by helping the other, mutualism 

cannot evolve in the mean-field approximation. But mutualism can evolve due to 

spatial effects when the benefit of helping each other is high and the associated 

cost is low. This happens due to cluster formation around mutualistic pairs of 
species as reproduction occurs to the nearest neighbours. The incorporation of 

spatially explicit dynamics provides an important insight to understand the 

coexistence of competing species. We conjecture that our present conclusion will 
also hold good when n-species interact through competition with intraspecies 

interaction. Spatial effects can improve the coexistence of species. 
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Environmental impact: 

We study how ecological variations, or the lack thereof, may impact other patterns 

of species living together and population dynamics since not all species cohabit. 

With investigate the changes from species invasions to range modifications; we 
exhibit how massive change is influencing species coexistence at both rare and 

dominant levels. Finally, we consider how adaptive progression and morphological 

flexibility could influence species' responses to climate change and coexistence. 
We may never know if coexistence approaches can maintain the planet's vast 

diversity of life. Nonetheless, we suggest that conservationists worried about the 

consequences of global transformation on species diversity should focus on 
increasing their knowledge. 
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Appendix A: 

There are three global densities (A, B and E) and nine local densities (qA/A, qB/A, 

…., qE/E) but not all of them are independent of each other. We have the following 

seven constraints: 

A + B + E =1, (A.1a) 

and 

 

Hence there are only five independent variables. We can choose A, B, A/A, B/A, 

B/B, as independent variables and express all the others in terms of these five. 

Let the density of AA-sites be AA, i.e., a randomly chosen pair of nearest 

neighbours are both A. This is called “doublet density” (22). From its definition as 

a conditional probability, we can express local density as qA/A = AA/ A, the ratio 

of doublet density to (singlet) global density. In general, we denote the density of 

“ij”- pairs as ij (i or j =A, B or E). Using this notation, we can express the local 

density as simply the ratio of doublet density to singlet density: qi/j = ij /j.To 

calculate the dynamics of local density, for example qA/A, we first calculate the 

dynamics of doublet density AA. They are: 

 

Where the first term of the right-hand side indicates the rate at which an AA-pair is 

lost by the death of either one of the two A’s, each occurring at rate dA. The second 

term is the formation of new AA bonds from AE, which is possible by two ways: 
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first by the reproduction of the A-site of the pair to the E-site, or second by the 

reproduction of an A existing in one of the other Z-1 neighbours of the E other than 

the A-site of the pair. The rate of reproduction is defined as bA/Z per AE bond. As 

shown by Eq (A.2), calculating the dynamics of the number of AA-pairs requires a 

higher order local conditional probability qA/EA, which is the probability for a 

randomly chosen nearest neighbour of an E-site to be A, given one of the other 

neighbours of the E-site is an A, 

We can choose A, B, qA/A, qB/A, and qB/B as independent variables and express all 

the others in terms of these five: 

 

E = 1 - A - B, (A.3a) 
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and 

 

 

 

(a) Interspecific interaction: 

The rate of change of doublet densities and local densities are calculated as 

follows by using pair approximation. 
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(b) Commensalism: 

The rate of change of doublet densities and local densities can be calculated in a equivalent manner 

when there is one way helping interaction (see Eq. 10) 

 

Appendix B: 

The condition for species A to invade species B in lattice model can be calculated 

as follows. 

(1) Global and local densities of the resident species: 

We put A=0 in dpB/ dt = 0 in Eq.(6b) and get 
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it is found that 

 

 

 

(2) Local densities for the rare invades: 

 

With A= 0, Eq. (B.1) and Eq. (B.2) the dynamics of local densities qA/A and qB/A 

become as follows: (if we abbreviate x = qA/A and y = qB/A): 

 

 

and 

 

 

where 
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is a constant. An autonomous dynamical system given by Eq. (B.3a and B.3b) has 

single positive equilibrium (0<x<1, 0<y<1) that is stable and obtained as follows. 

Using w = 1-x-y, we can express the equilibrium values of x and y as: 

 

 

 

 

Then 1= w + x + y becomes 

 

 

The equilibrium of Eqs. (B.3a) is calculated from Eqs. (B.4) with w obtained from 

Eq. (B.5) and 0<w<1. 

(3) Examine the sign of the Malthusian parameter for rare invaders: 

The solution w of Eq. (B.5) corresponds to the fraction of vacant sites among the 

neighbours of the random rare invader, w = qE/A. If we regard the right-hand side of 

Eq. (B.5) as a function of w, denoted by f(w), it satisfiesf (0) = 0 and f (1) > 1 

and   df(w)/dw > 0 under certain conditions. 

Hence there is the unique solution of Eq. (B.5) satisfying 0<w<1. The 

inequality 

qE/A> dA/ bA implies that the invasion is possible if and only if w is larger than dA/ 

bA, which is equivalent to f (dA/ bA) < 1. This can be rewritten by using Eq. (B.5) as 
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Appendix C: 

The condition for species B to invade species A in the lattice model can be found 

by following the procedure of the previous section. 

After putting B = 0 in dA/dt of Eq.(6a), it is found that 

 

Then we put  B = 0 in dqA/A/dt = 0 to find 

 

With B = 0 in dqB/B / dt and dqA/B /dt (after abbreviating qB/B = x1 and qA/B = 

y1), 

 

and 
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is a constant. 
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Using w = 1- x1 –y1, the equilibrium values of x1 and y1 can be expressed as: 

 

 

 

and 

 

 

Using f(w) = w + x + y and following the same procedure as in previous section the 

invasion condition becomes 

 

 

 

 

Appendix D: 

We shall consider a situation where there is commensalism (A helps B). By following the previous 

procedure, the following condition can be found for species B to invade species A in the lattice 

model, 

B can invade A if 
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and 

 

qA/Bshould be determined from the two coupled equations at equilibrium given 

below. 
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