How to Cite:

Chowdhury, A., Choudhury, M. D., & Laskar, M. A. (2022). Computational approach confirming the therapeutic potential of selected mannose derivatives against fimH of Uropathogenic E. coli. *International Journal of Health Sciences*, *6*(S5), 1203–1219. https://doi.org/10.53730/ijhs.v6nS5.8850

Computational approach confirming the therapeutic potential of selected mannose derivatives against fimH of Uropathogenic E. coli

Abhishek Chowdhury

Department of Life Science & Bioinformatics, Assam University, Silchar, Assam-788011

Manabendra Dutta Choudhury

Department of Life Science & Bioinformatics, Assam University, Silchar, Assam-788011 & Bioinformatics and Computational Biology Centre, Assam University, Silchar, Assam-788011 Corresponding author email: drmdc@bioinfoaus.ac.in

Monjur Ahmed Laskar

Bioinformatics and Computational Biology Centre, Assam University, Silchar, Assam-788011

Abstract---Urinary tract infection (UTI), mainly caused bv uropathogenic Escherichia coli (UPEC), is a dreaded infectious disease globally. FimH is a key virulence factor in UTI pathogenesis and inhibition of FimH function can be an effective way to disarm the UPEC bacteria and can act as a vital target in the development of the non-antibiotic mediated approach to treat UTIs. The present study was undertaken to identify phytochemicals from the cranberry and bearberry plant parts and to evaluate their pharmacological properties. The pharmacological properties of those compounds were predicted using a computational approach. The compounds with similar pharmacophores with that of known fimH inhibitors were selected. After that, further studies were performed to determine their drug likeness, inhibitory potential, and IC₅₀ values. The results were promising, and few compounds were found to have high drug likeness and a potent inhibitor of fimH with good IC₅₀ value. Thus, the present study reports few novel fimH inhibitors from selected plant sources and is significant owing to their therapeutic implication as a nonantibiotic mediated therapy for UTI.

International Journal of Health Sciences ISSN 2550-6978 E-ISSN 2550-696X © 2022.

Manuscript submitted: 18 Feb 2022, Manuscript revised: 27 April 2022, Accepted for publication: 9 June 2022

Keywords---Urinary tract infections, *Escherichia coli*, fimH, Computational approach.

Introduction

Urinary tract infection (UTI), mainly caused by uropathogenic *Escherichia coli* (UPEC), is a dreaded infectious disease globally [1]. UTI is most prevalent in almost 50% of women occurring in their lifetime [2-4]. Although antibiotics are effective against sensitive strains of UPEC but recurrent infections with a higher rate of 25-35% challenge the treatment regimen [5-9]. On the other hand, the latency of new antibiotics development calls for new therapeutic approaches to eliminate the infection [10-11].

One effective therapeutic approach can be to target the virulence factors [12-14] involved in the adhesion of UPEC to the host urothelial surface without killing the bacteria using antibiotics. This will help to not only disarm the bacteria but also to avoid the antibiotics resistance mediated by the selection pressure of viability in the host cell [11,15].

The adhesion is supported by the binding of FimH lection to the mannosylated glycoproteins present in the bladder epithelium coating [16-18]. The mannose-specific FimH lectin is located at the distal tip of type 1 pili that are highly expressed on the surface of UPEC and other Gram-negative uropathogen. These long hair-like structures are comprised of long repeating FimA based pilus rods and a FimF, FimG containing fibrillum, and one FimH capped adhesin. The FimH adhesin is again formed of one C-terminal pilin domain connecting the pilus rod and one N-terminal lectin domain that possesses a mannose-binding pocket.

This pocket naturally binds to a specific sequence of branched oligomannose present on the highly mannosylated uroplakin Ia (UPIa) glycoproteins present on the surface of epithelial umbrella cells of the host urinary tract [19]. It helps in bacterial invasion thereby facilitating colonization, proliferation, and formation of biofilm-like intracellular bacterial communities (IBCs) within the host bladder. Hence, it could be identified that FimH is a key virulence factor in UTI pathogenesis and inhibition of FimH function can be an effective way to disarm the UPEC bacteria and can act as a vital target in the development of the nonantibiotic mediated approach to treat UTIs. Therefore, there is a need for rationally designed, potent, and orally bioavailable, small-molecule FimH mannoside antagonists for future therapeutic use.

The hypothesis

During the literature survey it was found that cranberry and bearberry juice helps in curing UTI by unarming the bacteria from host urothelium. Hence in this study we took the bioactive compounds present in those fruits and their derivatives to find inhibitory activity and mode of action against UPEC fimH.

Need for New Drugs

Chronic and recurrent urinary tract infections pose a serious medical problem because there are few effective treatment options. Patients with chronic urinary tract infections are commonly treated with long-term prophylactic antibiotics that promote the development of antibiotic resistant forms of uropathogenic Escherichia coli (UPEC), further complicating treatment [19-20].

UTIs are often a major problem throughout the life span of women, particularly when the infection becomes chronic, recurrent, or recalcitrant to treatment because of pathogenic mechanisms or antibiotic resistance. Multidrug-resistant uropathogen are becoming more prevalent and globally distributed, making UTI an increasingly pressing public health concern.

Selection of ligands

Mannosides that specifically inhibit the FimH type 1 pilus lectin of UPEC, which mediates bacterial colonization, invasion, and formation of recalcitrant intracellular bacterial communities in the bladder epithelium. Here, we optimized these compounds for oral bioavailability and demonstrated their fast-acting efficacy in treating chronic urinary tract infections [20-22]

Methodology

Prediction of toxicity and bioavailability

Prediction of toxicity and bioavailability is a must for any novel compound to pass drug-likeliness criteria. Physicochemical properties of the compounds including octanol/water partition coefficient (LogP) were determined using MolSoft server (http:// molsoft.com/mprop/). Absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) profiles of the compounds were analyzed using ADME/Tox server at Mobyle@RPBS (https://mobyle.rpbs.univ-parisdiderot.fr/)

Protein Quality Checking

The three-dimensional structure of UPEC FimH (PDB id: 5AAP) was obtained from RCSB Protein Databank (https://www.rcsb.org/structure/5AAP). Stereochemical quality of the structure was assessed using PROCHECK module available at PDBSum server (https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/), by generating Ramachandran plot. The plot revealed that 93.2% and 6.8% of the amino acid residues fall in the most favoured and additional allowed regions, respectively, with no residues falling in the disallowed regions (Attached in Results), indicating a good quality protein for molecular docking analysis.

Molecular docking analysis

The molecular docking was performed using BioSolveIT (LeadIT) FlexX 2.1.3 software to predict the binding pattern and binding energy of the novel compound against fimH. The structure of fimH was uploaded into LeadIT software followed by correction of amino acid residues having abnormal rotation and water molecules were removed from the workspace. As D-mannose was already bound to the enzyme as co-crystallized ligand, its binding site was selected as the docking site. For the validation of the docking results of selected compounds, few known fimH inhibitors were also included in the docking analysis. The three-dimensional structures of these compounds were retrieved from ChEMBL database (https://www.ebi.ac.uk/chembl/). The best docking poses of 1000 iterations for each compound were used for the analysis of binding pattern similarities.

Quantitative structure-activity relationship (QSAR) analysis

QSAR is one of the most vital tools in drug discovery research and is used to determine the IC_{50} value for any novel compound comparing its physicochemical properties with that of compounds having experimental IC_{50} values. For predicting IC_{50} values of the selected compounds, all selected fimH inhibitors were used in the QSAR analysis (Table 1). Multiple linear regression analysis was performed using EasyQSAR, a freeware. The QSAR equation was generated and the validity of the QSAR model was determined by plotting the predicted IC_{50} against the experimental IC_{50} values of the known inhibitors (Graph 1).

Molecular dynamic simulation

Initial simulation was run using Gromacs 5.0 to check the stability and residual bonding status for the best docked ligands. This was carried out to check the docking quality. Basic protein-ligand simulation procedure was followed during the study.

Result & Discussion

1000 mannose derivatives were prepared using side-chain modification by Ilib Diverse 2.0 for the docking study. Out of these, 124 ligands successfully cleared the ADMET filter with good oral bioavailability. No ligand was found with abnormal ADMET properties hence selected for further screening. The list of 124 selected ligands is given with their selected ADMET properties in Table1.

ID	SMILES	MW	logP	tPSA	R B	FB	HB D	HB A	SOL (mg/l)	Oral Bio- availabi lity
M1	OC1OC(COC2CCC3 C(CCC4C5CCC5C CC34)C2)C(0)C(0)C 10	410.54	2.96	99.38	3	26	4	6	7137.12	Good
M2	OC1OC(COC2CCC3 C2CCC2C3CCc3ccc cc23)C(0)C(0)C10	404.50	1.72	99.38	3	26	4	6	14825.93	Good
МЗ	OCc1ccccc1OCC10 C(0)C(0)C(0)C10	286.28	- 1.22	119.61	4	12	5	7	142280.17	Good
М4	OC1OC(CONc2nc3[nH]cnc3c(=O)[nH]2) C(O)C(O)C1O	329.27	- 3.31	185.84	4	17	7	12	441180.13	Good
М5	CCC(0)CCOCC1OC (0)C(0)C(0)C10	266.29	- 1.97	119.61	6	6	5	7	308182.58	Good
M6	CC(=0)CC(=0)COC C1OC(0)C(0)C(0)C 10	278.26	- 3.00	133.52	6	8	4	8	572123.47	Good
М7	CC(=0)C(=0)COCC 1OC(0)C(0)C(0)C1	264.23	- 3.21	133.52	5	8	4	8	633269.3	Good

Table1: ADMET Properties of selected mannose derivatives showed high oral bioavailability

	0									
	Nc1ncnc2n(OCC3O		_							
M8	C(O)C(O)C(O)C3O)c	313.27	2 57	169.00	3	16	6	11	270941.08	Good
	nc12		2.01							
M9	CC(C)COCC10C(0)	236.26	-	99.38	4	6	4	6	279699.71	Good
			1.92							
M10	=0)NC2=0)C(0)C(0)	292.24	-	148 79	3	14	5	10	655488 03	Good
)C10		3.59	110.15	Ŭ		Ũ	10	000100100	aooa
	OC1OC(COc2cc3cc									
M11	ccc3oc2=O)C(O)C(O	324.28		129.59	3	18	4	8	74516.4	Good
)C1O		0.39							
	OC1OC(CON2CNc3		-		-		_			~
M12	cccc3S2(=0)=0)C(362.36	1.71	157.17	3	19	5	10	144836.71	Good
M13		196.16	- 3 74	119.61	2	6	5	7	821345.5	Good
	$\frac{(0)010}{000000000000000000000000000000000$		5.77							
M14	Cc4ccccc4Cc3c2)C(374.38	0.68	108.61	3	23	4	7	28573.37	Good
	0)C(0)C10				-			_		
	OC1OC(CONc2ncn									
M16	c3[nH]cnc23)C(O)C(313.27	- 2 21	165.87	4	16	6	11	230696.12	Good
	O)C1O		2.21							
	OC1OC(CON2C3CC	010.00	-	101 50	2	1 -	_	0		A 1
M18	CCC3NC2=0)C(0)C	318.32	1.97	131.72	3	17	5	9	218888.85	Good
м19	c(=0)ccc3c2)C(0)C(324.28	-	129 59	3	18	4	8	85056.8	Good
	0)C10	021.20	0.80	129.09	Ŭ	10		Ŭ	00000.0	aoou
	OC1OC(COC2=CC(
M20	=O)C=CC2=O)C(O)C	286.23	-	133.52	3	14	4	8	329065.49	Good
	(O)C1O		2.77							
	OC1OC(CON2c3ccc		1.05	100.00	-			_	10050.0	a 1
M21	cc3CCc3cccc23)C(373.40	1.26	102.62	3	23	4	1	19968.8	Good
M22	C(=0)N3C=C2)C(0)	310 33	-	144 99	З	16	4	8	295265 91	Good
	C(0)C10	019.00	2.45	111.99	Ŭ	10		0	290200.91	auuu
	CC(Cc1cccc1)NOC									
M25	C1OC(O)C(O)C(O)C	313.35	- 0.45	111.41	6	12	5	7	94197.67	Good
	10		0.43							
	OC1OC(COC2Oc3c				_					
M26	cccc3Cc3ccccc23)C(374.38	0.69	108.61	3	23	4	7	28393.92	Good
M27	O(C(0)C(0)C(1))	234.25	- 2.38	99.38	4	7	4	6	375195.05	Good
	OC1OC(CONc2conc)		2.00							
M28	(=0)[nH]2)C(0)C(0)	289.24	-	157.16	4	13	6	10	471352.47	Good
	C10		3.15			_		_		

M29	CC(C)(C)COCC1OC(O)C(O)C(0)C1O	250.29	- 1.53	99.38	4	6	4	6	212453.88	Good
M31	OC1OC(CON2c3ccc cc3Sc3ccccc23)C(O) C(O)C1O	377.41	1.11	127.92	3	22	4	7	21215.91	Good
М32	OC1OC(CON2CCC3 4CCCCC3C2Cc2ccc cc42)C(0)C(0)C10	405.48	0.83	102.62	3	26	4	7	25846.58	Good
М33	OC1OC(CON2c3ccc cc3C=Cc3ccccc23)C (0)C(0)C10	371.38	1.46	102.62	3	23	4	7	17599.25	Good
M34	OC1OC(CON2c3ccc cc3Sc3cccnc23)C(O)C(O)C1O	378.40	0.38	140.81	3	22	4	8	33336.57	Good
M35	OC1OC(CON2CCN= Cc3ccccc23)C(O)C(O)C1O	324.33	- 1.44	114.98	3	18	4	8	138776.19	Good
M38	CC1CN(OCC2OC(O) C(O)C(O)C2O)C(=O) NC1=O	306.27	- 3.02	148.79	3	14	5	10	439745.15	Good
M39	Cn1c2cccc2n(OCC 2OC(0)C(0)C(0)C2 0)c(=0)c2ccccc12	402.40	0.06	126.31	3	24	4	9	36786.37	Good
M40	OC1OC(COC23CCC C2C2CCc4cccc4C 2CC3)C(0)C(0)C10	404.50	1.45	99.38	3	26	4	6	17575	Good
M41	CC(C)OCC1OC(O)C(O)C(O)C1O	222.24	- 2.46	99.38	3	6	4	6	377540.3	Good
M42	CC(=0)0CC10C(0) C(0)C(0)C10	222.19	- 3.22	116.45	3	7	4	7	609446.11	Good
M43	OCCCCCOCC1OC(0)C(0)C(0)C10	266.29	- 2.87	119.61	7	6	5	7	580385.41	Good
M44	OC1OC(CON2c3ccc cc3C=NCC2=O)C(O) C(O)C1O	338.31	2.01	132.05	3	19	4	9	189619.2	Good
M46	CCOCC1OC(O)C(O) C(O)C1O	208.21	- 2.89	99.38	3	6	4	6	505903.8	Good
M47	NOCC1OC(0)C(0)C(0)C10	195.17	- 4.00	125.40	2	6	6	7	968565.79	Good
M49	OC1OC(COCC(=0)C =C)C(0)C(0)C10	248.23	- 2.26	116.45	5	8	4	7	361091.03	Good
M51	OC1OC(COC=C2c3 ccccc3CCc3cccc23)C(O)C(O)C1O	384.42	1.18	99.38	3	24	4	6	20331.15	Good
M52	CC(=O)C(OCC1OC(O)C(O)C(O)C1O)C(C)=O	278.26	- 2.90	133.52	5	8	4	8	502881.63	Good
M53	OCCCCOCC1OC(O) C(O)C(O)C1O	252.26	- 3.22	119.61	6	6	5	7	699975.07	Good

M57	COCC1OC(0)C(0)C(0)C10	194.18	- 3.25	99.38	2	6	4	6	604479.03	Good
M58	CCCOCC1OC(O)C(0)C(0)C10	222.24	- 2.36	99.38	4	6	4	6	378674.62	Good
M59	OC1OC(COC2CCC C3CCC4C5CCCC5 CCC4C23)C(O)C(O) C1O	410.54	3.15	99.38	3	26	4	6	6331.96	Good
M61	OC1OC(COc2ccc3c cc(=O)oc3c2)C(O)C(O)C1O	324.28	- 0.72	129.59	3	18	4	8	80876.17	Good
M62	OC1OC(COC2Sc3cc ccc3Cc3ccccc23)C(O)C(0)C10	390.45	1.23	124.68	3	23	4	6	19075.13	Good
M64	OC1OC(COC2CCC3 CCC4C5CCC5CC C4C3C2)C(0)C(0)C 10	410.54	2.96	99.38	3	26	4	6	7137.12	Good
M67	CCCCCCOCC1OC(0)C(0)C(0)C10	264.32	- 0.92	99.38	7	6	4	6	170713.67	Good
M70	CCC(CCO)OCC1OC (0)C(0)C(0)C10	266.29	- 1.97	119.61	6	6	5	7	308182.58	Good
M71	CCCCOCC1OC(O)C (O)C(O)C1O	236.26	- 2.00	99.38	5	6	4	6	314227.29	Good
M73	OC1OC(CON2C(=O) CC(=O)NC2=O)C(O) C(O)C1O	306.23	- 3.62	165.86	3	15	5	11	641828.88	Good
M75	OC1OC(CON2CNS(=O)(=O)c3ccccc23)C (O)C(O)C1O	362.36	- 1.75	157.17	3	19	5	10	148532.97	Good
M76	OC1OC(COC#N)C(O)C(0)C1O	205.17	- 2.95	123.17	2	7	4	7	493879.26	Good
M77	OC1OC(COC(=O)c2 ccccc2)C(O)C(O)C1 O	284.26	- 0.91	116.45	4	13	4	7	116914.02	Good
M80	CC(0)CCOCC1OC(0)C(0)C(0)C10	252.26	- 3.15	119.61	5	6	5	7	626998.86	Good
M83	OC1OC(CON2C3NC NC3C(=O)NC2=O)C(O)C(O)C1O	334.28	- 4.29	172.85	3	18	7	12	897968.11	Good
M89	OC1OC(COCC=C)C(0)C(0)C10	220.22	- 2.61	99.38	4	7	4	6	444772.75	Good
M91	CCC(C)CCCOCC10 C(0)C(0)C(0)C10	278.34	- 0.02	99.38	7	6	4	6	93478.39	Good
M96	OC1OC(COC2C3SC CN3C2=O)C(O)C(O) C1O	307.32	- 2.68	144.99	3	15	4	8	353861.3	Good
M98	CC(0)COCC1OC(0) C(0)C(0)C10	238.24	- 3.51	119.61	4	6	5	7	758619.66	Good

1	2	1	0
-	_	-	~

M99	CCC(C)OCC1OC(O) C(O)C(O)C1O	236.26	- 1.93	99.38	4	6	4	6	281467.38	Good
M101	OC1OC(COC2=CN3 C(CC3=O)C2)C(O)C(O)C1O	287.27	- 3.03	119.69	3	15	4	8	466967.54	Good
M102	CCCC(CC)COCC10 C(0)C(0)C(0)C10	278.34	- 0.02	99.38	7	6	4	6	93478.39	Good
M103	NC1NC2NCNC2C(= O)N1OCC1OC(O)C(O)C(O)C1O	335.31	- 5.01	181.80	3	17	9	12	1408698.4 1	Good
M104	OC1OC(COC2C=CN 3C2CC3=O)C(O)C(O)C1O	287.27	- 3.30	119.69	3	15	4	8	553554.24	Good
M108	Cn1c2ncn(OCC3OC (O)C(O)C(O)C3O)c2 c(=O)n(C)c1=O	358.30	- 2.35	161.20	3	18	4	12	209246.55	Good
M109	CC(CCCO)OCC1OC (0)C(0)C(0)C10	266.29	- 2.14	119.61	6	6	5	7	343021.25	Good
M111	CC(=O)CCOCC1OC(O)C(O)C(O)C1O	250.25	- 3.60	116.45	5	7	4	7	836243.51	Good
M113	OC1OC(COCC(=O)C c2cccc2)C(O)C(O)C 10	312.32	- 1.26	116.45	6	13	4	7	156294.92	Good
M120	OC1OC(COc2ccc3C Cc4ccccc4C(=C)c3c 2)C(0)C(0)C10	384.42	1.53	99.38	3	24	4	6	16307.97	Good
M131	CC1CNC(=O)N(OCC 2OC(O)C(O)C(O)C2 0)C1=O	306.27	- 3.02	152.36	3	14	5	10	439745.15	Good
M133	CCCC(C)OCC1OC(0)C(0)C(0)C10	250.29	- 1.57	99.38	5	6	4	6	232740.69	Good
M145	C\C=C(/C)OCC10 C(0)C(0)C(0)C10	234.25	- 1.90	99.38	3	7	4	6	259575.09	Good
M146	CCC(OCC1OC(O)C(O)C(O)C1O)C(C)=O	264.27	- 1.92	116.45	5	7	4	7	280926.13	Good
M149	CC(CC(C)=O)OCC1 OC(O)C(O)C(O)C1O	264.27	- 2.52	116.45	5	7	4	7	409973.18	Good
M152	CC(0)CCC0CC10C (0)C(0)C(0)C10	266.29	- 2.79	119.61	6	6	5	7	516612.14	Good
M154	OC1OC(COC2C3SC C=CN3C2=O)C(O)C(O)C1O	319.33	- 2.45	144.99	3	16	4	8	295265.91	Good
M155	C\C=C\C(\OCC10 C(0)C(0)C(0)C10)= C/C	260.28	- 0.61	99.38	4	8	4	6	116316.33	Good
M158	CC(CO)OCC1OC(O) C(O)C(O)C1O	238.24	- 3.51	119.61	4	6	5	7	758619.66	Good
M160	OC1OC(COc2ccc(cc 2)C(=O)c2ccccc2)C(360.36	1.01	116.45	5	19	4	7	27482.11	Good

	O)C(O)C1O									
M164	OCCOCC1OC(O)C(0)C(0)C10	224.21	- 3.94	119.61	4	6	5	7	1021149.0 9	Good
M179	NC1NC2C(NCN2OC C2OC(O)C(O)C(O)C 2O)C(=O)N1	335.31	- 4.72	181.80	3	17	9	12	1173471.1 6	Good
M203	Nc1ccn(OCC2OC(O) C(O)C(O)C2O)c(=O) n1	289.24	- 3.75	160.29	3	13	6	10	643940.39	Good
M215	CCCC(CC)OCC1OC (0)C(0)C(0)C10	264.32	- 0.39	99.38	6	6	4	6	114444.24	Good
M233	CCCC(CO)OCC1OC (O)C(O)C(O)C1O	266.29	- 1.97	119.61	6	6	5	7	308182.58	Good
M242	CCC(C)CCOCC1OC (0)C(0)C(0)C10	264.32	- 0.37	99.38	6	6	4	6	113011.29	Good
M247	CC(=0)COCC1OC(0)C(0)C(0)C10	236.22	- 3.50	116.45	4	7	4	7	756877.39	Good
M250	CCCCC(C)COCC10 C(0)C(0)C(0)C10	278.34	0.17	99.38	7	6	4	6	82932.77	Good
M252	C\C=C\C=C\COCC 10C(0)C(0)C(0)C1 0	260.28	- 1.74	99.38	5	8	4	6	253208.56	Good
M254	CCCCCOCC1OC(O) C(O)C(O)C1O	250.29	- 1.46	99.38	6	6	4	6	231973.92	Good
M262	N\C=N\OCC1OC(O)C(0)C(0)C10	222.20	- 3.60	137.76	3	7	6	8	774288.79	Good
M263	OC1OC(COC2CC3C CC4C(CCc5cccc45)C3C2)C(0)C(0)C10	404.50	1.90	99.38	3	26	4	6	13236.49	Good
M284	CCC(CO)OCC1OC(0)C(0)C(0)C10	252.26	- 2.33	119.61	5	6	5	7	374033.26	Good
M291	CC(C)CC(C)COCC1 OC(0)C(0)C(0)C10	278.34	- 0.77	99.38	6	6	4	6	140362.78	Good
M314	CC(C)CCCOCC1OC (0)C(0)C(0)C10	264.32	- 1.21	99.38	6	6	4	6	191844.99	Good
M315	CC(C)CCCCOCC10 C(0)C(0)C(0)C10	278.34	- 0.67	99.38	7	6	4	6	140784.5	Good
M319	CC(=0)CCCOCC10 C(0)C(0)C(0)C10	264.27	- 3.24	116.45	6	7	4	7	689310.45	Good
M332	OC1OC(COC2C3CC =CN3C2=O)C(O)C(O)C1O	287.27	- 2.74	119.69	3	15	4	8	388992.38	Good
M333	CO\N=C\OCC1OC(0)C(0)C(0)C10	237.21	- 2.62	120.97	4	7	4	8	433915.31	Good
M336	CC(CCO)OCC1OC(O)C(O)C(O)C1O	252.26	- 2.50	119.61	5	6	5	7	416316.06	Good
M337	OC1OC(COC=C)C(O)C(0)C10	206.19	- 2.51	99.38	3	7	4	6	399301.12	Good

M338	CC(C)CCOCC1OC(0)C(0)C(0)C10	250.29	- 1.57	99.38	5	6	4	6	232740.69	Good
M345	OC1OC(COc2cccc(c 2)C(=O)c2cccc2)C(0)C(0)C10	360.36	0.55	116.45	5	19	4	7	36720.5	Good
M364	OCCCOCC1OC(0)C (0)C(0)C10	238.24	- 3.58	119.61	5	6	5	7	846915.17	Good
M369	OC1OC(COc2cccc3 oc(=O)ccc23)C(O)C(O)C1O	324.28	- 0.80	129.59	3	18	4	8	85056.8	Good
M385	CCC(C)(Ć)OCC1OC(O)C(O)C(0)C1O	250.29	- 1.74	99.38	4	6	4	6	242505.63	Good
M403	OCc1cccc(OCC2OC (0)C(0)C(0)C2O)c1	286.28	- 1.22	119.61	4	12	5	7	142280.17	Good
M408	OC1OC(COc2ccc3C Cc4ccccc4Cc3c2)C(O)C(0)C10	372.41	1.43	99.38	3	23	4	6	18065.97	Good
M419	CC(=O)C(OCC1OC(O)C(O)C(O)C1O)c1c cccc1	312.32	- 1.16	116.45	5	13	4	7	137379.16	Good
M423	CCC(C)COCC1OC(0)C(0)C(0)C10	250.29	- 1.57	99.38	5	6	4	6	232740.69	Good
M424	CC(C)CCC(C)OCC1 OC(0)C(0)C(0)C10	278.34	- 0.13	99.38	6	6	4	6	93787.38	Good
M427	OC1OC(COc2cccc3 COc4ccccc4Cc23)C(O)C(O)C1O	374.38	0.68	108.61	3	23	4	7	28573.37	Good
M428	OC1OC(COC2CN3C (CC3=0)S2)C(0)C(0)C10	307.32	- 2.65	144.99	3	15	4	8	347236.12	Good
M431	CCC(OCC1OC(O)C(O)C(O)C1O)C(C)O	266.29	- 1.89	119.61	5	6	5	7	274319.2	Good
M432	OC1OC(COc2cc(=O) oc3ccccc23)C(O)C(O)C1O	324.28	- 1.08	129.59	3	18	4	8	101465.54	Good
M437	OC1OC(COc2ccc3C c4ccccc4CCc3c2)C(O)C(0)C10	372.41	1.43	99.38	3	23	4	6	18065.97	Good
M439	CC(C)C(OCC1OC(O) C(O)C(O)C1O)C(C)C	278.34	- 0.53	99.38	5	6	4	6	112959.61	Good
M448	OC1OC(COC2Cc3c cccc3Cc3ccccc23)C(O)C(O)C1O	372.41	0.88	99.38	3	23	4	6	25547.26	Good
M453	C\C=C\OCC1OC(O)C(0)C(0)C10	220.22	- 2.28	99.38	3	7	4	6	338208.81	Good
M462	OC1OC(CON2C(=O) CCNC2=O)C(O)C(O) C1O	292.24	- 3.59	152.36	3	14	5	10	655488.03	Good
M464	OCc1ccc(OCC2OC(286.28	-	119.61	4	12	5	7	142280.17	Good

	O)C(O)C(O)C2O)cc1		1.22							
M487	OC1OC(COc2cccc3 Cc4ccccc4COc23)C(0)C(0)C10	374.38	0.68	108.61	3	23	4	7	28573.37	Good

The protein 5AAP was retrieved from Protein Databank. The structure was determined using X-ray diffraction at resolution of 1.30 Å, has 1 chain and 158 amino acid residues. The active site residues were found to be Asp, Tyr, Arg, etc. The protein was bound to mannoside in its wild type hence the ligand bounding site was selected as the active site for initial screening.

Docking with known drugs and mannosides had some similar amino acid residues in their bonding pattern.

Fig1: Docking Poses of Mannoside M4 (left) and Ertapenem antibiotic (right) showing similar bonding patterns

The above docking pattern shows that the mannoside and known drugs have common bonding residues Phe1, Asp 37, and Asp140. The docking score of mannoside is much better than that of ertapenem. The numbers of H-bonds were also more in the case of mannoside M4 suggesting that M17 has better efficacy towards fimH. The docking scores of the selected ligands were given in Table2.

Compounds	Total	Hydrogen Bond Properties				
	Score	Hydrogen Bonds	Bond Energy	Bond		
	(Kcal/mol)		(Kcal/mol)	Length (A)		
M4	-30.0785	OASN23A - H34	-4.7	2.14		
		OVAL35A - H30	-4.7	2.20		
		OASP37A - H32	-4.7	2.13		
		HASP37A - O4	-4.4	1.92		
		HE22GLN41A - O12	-4.7	1.97		
M25	-28.5698	OASN23A - H34	-4.3	1.97		
		OLEU24A - H18	-3.9	2.08		
		OVAL35A - H30	-4.7	2.04		
		HASP37A - O4	-4.4	2.20		
		OASP37A - H32	-4.2	1.99		
		HE22GLN41A - O12	-4.6	1.88		
M338	-28.5689	OASN23A - H34	-4.3	1.97		
		OLEU24A - H18	-3.9	2.08		
		OVAL35A - H30	-4.7	2.04		
		HASP37A - O4	-4.4	2.20		
		OASP37A - H32	-4.2	1.99		
		HE22GLN41A - O12	-4.6	1.88		
M73	-27.0363	OASN23A - H32	-4.7	2.08		
		OVAL35A - H28	-4.7	1.81		
		HASP37A - O4	-4.4	2.10		
		OASP37A - H30	-4.7	2.19		
		HE22GLN41A - O12	-4.7	2.18		
M111	-26.4970	OASN23A - H30	-3.9	2.26		
		OVAL35A - H26	-4.6	1.85		
		HVAL35A - 017	-4.1	1.77		
		OASP37A - H28	-4.6	2.20		
		HASP37A - O4	-4.4	2.12		
		HE22GLN41A - O12	-4.7	2.12		
M358	-25.8892	OASN23A - H36	-4.7	2.09		
		OVAL35A - H32	-4.7	2.08		
		HASP37A - O4	-4.4	2.05		
		OASP37A - H34	-4.7	2.14		
		OASP37A - H38	-3.4	1.83		
		HE22GLN41A - 012	-4.7	2.01		
M345	-25.6424	OASN23A - H35	-4.7	2.17		
		OVAL35A - H31	-4.5	1.94		

Table2: Top 10 docking scores showed by the selected ligands with bonding properties

		HASP37A - O4	-4.4	2.16
		OASP37A - H33	-4.7	2.18
		HE22GLN41A - O12	-4.7	1.99
M314	-25.4987	OASN23A - H33	-4.7	2.18
		OVAL35A - H29	-4.6	2.20
		HVAL35A - O24	-3.4	2.27
		OASP37A - H31	-4.3	2.02
		HASP37A - O4	-3.3	2.30
		HE22GLN41A - O12	-4.7	1.90
M309	-25.1242	OASN23A - H36	-3.2	2.32
		OVAL35A - H32	-4.3	2.05
		OASP37A - H38	-4.4	1.73
		OASP37A - H34	-4.7	2.19
		HASP37A - O4	-3.9	1.97
		HE22GLN41A - O12	-4.7	1.88
M385	-25.1083	OASN23A - H35	-4.7	2.07
		OVAL35A - H31	-4.4	1.92
		OASP37A - H37	-3.6	1.92
		OASP37A - H33	-4.7	2.14
		HE22GLN41A - O12	-4.7	1.99

The simulation result suggested that after 1ns of run, the protein-ligand complex of M4-FimH became stable and there was not much fluctuation in the radius of gyration and radius of fluctuation studies. The minimization state was attained at 128 steps with energy -2.4x10-8KJ/mol. This indicates that after binding to M4, the system remained stable, indicating the stable binding of M4.

The numbers of H-bonds were found less in number (only 2) after simulation indicating that few of the bonds were weak and hence got eliminated during the 10ns run. However, the remaining bonds were high energy bonds which need more energy to break and hence, the bonding can be treated as strong.

QSAR study was performed to predict the probable bioactivity of selected ligands. 21 known inhibitors were taken from the bindingdb database and used to generate the QSAR model based on the descriptors viz. molecular weight (MW), Molar Refractivity, Molar Volume, Parachor, Index of Refraction, Surface Tension, Density, LogP and Polarizability (Pol) against their bioactivities (Log(IC50)⁻¹). From the analysis, the following QSAR equation has been generated. The analysis shows the descriptor Surface Tension contributes 49% to the activity with descriptor activity correlation 0.71.

Activity = -13.26+0.16*(Surface Tension)

In the multiple linear regression analysis the R^2 was found to be 49.87% and adjusted R^2 was found to be 47.23%. The F Statistics was 18.90 with a critical F value of 4.35, indicating the high significance of the QSAR equation. From the above QSAR equation, the bioactivities of the 21 known inhibitors were predicted and compared with the experimental bioactivities and plotted in a scattered plot (Fig.2). It was clearly seen in the scattered plot that most of the points fall on or close to the trend line indicating a good QSAR equation. From the equation, the bioactivity $[Log(IC50)^{-1})]$ of the selected compound M4 with Surface Tension 113.4 dyne/cm was found to be 4.82 which is equal to $IC50 = 1.514 \times 10^{-5}$ nM. Thus, the inhibitory concentration of M4 was predicted to be lower than all 21 known fimH inhibitors.

Fig2: QSAR multiple regression plot showing good correlation

Fig3: High drug-likeness was shown by the best docked ligand M4 (Molsoft Score: 0.76)

Conclusion

From the above work, it was found that the selected mannosides could bind more effectively to the adhesin fimH than other molecules. Hence, the utilization of such ligands as non-antibiotic based inhibitors can be of immense use for treatment against UTIs. The increased binding score, good oral bioavailability, and lower IC_{50} confirms the credibility of the ligand M4 i.e 2-(((3,4,5,6-tetrahydroxytetrahydro-2H-pyran-2-yl)methoxy)amino)-1H-purin-6(9H)-one as the probable drug candidate to treat UTI.

Authors' contribution

All the authors contributed equally to the hypothesis preparation and design of the experiments. AC and MAL did all the experiments and compilation of data. MDC did final checking and overall proof checking before it was submitted for publication.

Conflict of interest: The authors report no conflict of interest arising out of this article. The work does not involve human or animals for its experiments hence ethical constrain does not arise.

Acknowledgement:

The authors are grateful to Bioinformatics and Computational Biology Centre, Assam University, Silchar for lab facility to carry out the work. Authors are also thankful to DeLCON for the literature search facilities.

Reference

- Ronald AR, Nicolle LE, Stamm E, et al. Urinary tract infection in adults: research priorities and strategies. Int J Antimicrob Agents. 2001; 17(4):343– 8. [PubMed: 11295419]
- 2. Foxman B. Recurring urinary tract infection: incidence and risk factors. American Journal of Public Health. 1990; 80(3):331–33. [PubMed: 2305919]
- Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infectious Disease Clinics of North America. 2014; 28(1):1–13. [PubMed: 24484571]
- 4. Griebling, TL. Urinary tract infection in women. In: Litwin, MS., Saigal, CS., editors. Urologic Diseases in Amerca. US Government Printing Office; Washington, DC: 2007. p. 587-620.
- 5. Sanchez GV, Master RN, Bordon J. Trimethoprim-sulfamethoxazole may no longer be acceptable for the treatment of acute uncomplicated cystitis in the the United States. Clinical Infectious Diseases. 2011; 53(3):316–17. [PubMed: 21765092]
- 6. Karlowsky JA, Hoban DJ, Decorby MR, et al. Fluoroquinolone-resistant urinary isolates of Escherichia coli from outpatients are frequently multidrug resistant: results from the North American Urinary Tract Infection Collaborative Alliance-Quinolone Resistance study. Antimicrob Agents Chemother. 2006; 50(6):2251–4. [PubMed: 16723598]
- Zhanel G, Hisanaga T, Laing N, et al. Antibiotic resistance in Escherichia coli outpatient urinary isolates: final results from the North American Urinary Tract Infection Collaborative Alliance (NAUTICA). Int J Antimicrob Ag. 2006; 27(6):468–75.
- 8. Schaeffer A. The expanding role of fluoroquinolones. Disease-a-Month. 2003; 49(2):129–47. [PubMed: 12601342]
- 9. Dielubanza E, Schaeffer A. Urinary Tract innfections in women. Medical Clinics of North America. 2011; 95(1):27-41. [PubMed: 21095409]
- Cole ST. Who will develop new antibacterial agents? Philosophical Transactions of the Royal Society, B: Biological Sciences. 2014; 369(1645):20130430.
- 11. Nathan C. Fresh approaches to anti-infective therapies. Sci Transl Med. 2012; 4(140):140sr2. [PubMed: 22745440]
- 12. Lee YM, Almqvist F, Hultgren SJ. Targeting virulence for antimicrobial chemotherapy. Curr Opin Pharmacol. 2003; 3(5):513-9. [PubMed: 14559097]
- 13. Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteriamediated disease. Nat Rev Drug Discov. 2010; 9(2):117–28. [PubMed: 20081869]
- 14. Garland M, Loscher S, Bogyo M. Chemical strategies to target bacterial virulence. Chem Rev. 2017; 117(5):4422–61. Excellent recent review on anti-virulence approaches, other than FimH and adhesins. [PubMed: 28234447]
- Cozens D, Read RC. Anti-adhesion methods as novel therapeutics for bacterial infections. Expert Rev Anti Infect Ther. 2012; 10(12):1457–68. [PubMed: 23253323]
- 16. Snyder J, Lloyd A, Lockatell C, et al. Role of phase variation of type 1 fimbriae in a uropathogenic Escherichia coli cystitis isolate during urinary tract infection. Infect Immun. 2006; 74(2):1387–93. [PubMed: 16428790]

- 17. Wu XR, Sun TT, Medina JJ. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc Natl Acad Sci USA. 1996; 93(18):9630–35. [PubMed: 8790381]
- Anderson GG, Palermo JJ, Schilling JD, et al. Intracellular bacterial biofilmlike pods in urinary tract infections. Science. 2003; 301(5629):105–7. [PubMed: 12843396]
- 19. Zhou G, Mo WJ, Sebbel P, et al. Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci. 2001; 114(Pt 22):4095–103. [PubMed: 11739641]
- 20. Corinne K. Cusumano, Jerome S. Pinkner, Zhenfu Han, Sarah E. Greene, Bradley A. Ford, Jan R. Crowley, Jeffrey P. Henderson, James W. Janetka and Scott J. Hultgren. Treatment and Prevention of Urinary Tract Infection with Orally Active FimH Inhibitors 2011. 3(109): 109-115
- 21. Mydock-McGrane LK, Cusumano ZT, Janetka JW. Mannose-derived FimH antagonists: a promising anti-virulence therapeutic strategy for urinary tract infections and Crohn's disease. Expert Opin Ther Pat. 2016; 26(2):175–97. Recent patent literature review on FiimH antagonists. [PubMed: 26651364]
- 22. Klein T, Abgottspon D, Wittwer M, et al. FimH antagonists for the oral treatment of urinary tract infections: from design and synthesis to in vitro and in vivo evaluation. J Med Chem. 2010; 53(24):8627-41. [PubMed: 21105658]