Prediction novelty implements breast cancer disease detection using machine learning techniques

Muatz Humida Alzubier Mohmed
PhD Research Scholar, Department of Computer Science, CMS College of Science & Commerce, Coimbatore, Tamilnadu

Dr. A. Nithya Rani
Assistant Professor, Department of Information Technology, CMS College of Science & Commerce, Coimbatore, Tamil Nadu

Abstract—Cancer is one of the crucial causes of death for both men and women. All over the world, breast cancer is one of the leading causes of cancer deaths in women. The most effective way to reduce cancer death is to detect it earlier, but the detection of cancer in its early stages is not an easy process. As a result, many researchers focus on developing different breast cancer detection systems. In this paper, we have discussed various data mining approaches that have been utilized for breast cancer diagnosis and prognosis. We have proposed a breast cancer prediction framework consisting of four main modules: Data Collection, Data Preprocessing, Feature Selection, and Classification. Evaluation results are provided as well. The goal is to find the best combination of feature extraction algorithm and classification algorithm, which will improve the accuracy of the mammograms classification process. Cancer is one of the crucial causes of death for both men and women. All over the world, breast cancer is one of the leading causes of cancer deaths in women. The most effective way to reduce cancer death is to detect it earlier, but the detection of cancer in its early stages is not an easy process. As a result, many researchers focus on developing different breast cancer detection systems. In this paper, we have discussed various data mining approaches that have been utilized for breast cancer diagnosis and prognosis. We have proposed a breast cancer prediction framework consisting of four main modules: Data Collection, Data Preprocessing, Feature Selection, and Classification. Evaluation results are provided as well. The goal is to find the best combination of feature extraction algorithm and classification algorithm, which will improve the accuracy of the mammograms classification process. Cancer is one of the crucial causes of death for both men and women.
All over the world, breast cancer is one of the leading causes of cancer deaths in women. The most effective way to reduce cancer death is to detect it earlier, but the detection of cancer in its early stages is not an easy process. As a result, many researchers focus on developing different breast cancer detection systems. In this paper, we have discussed various data mining approaches that have been utilized for breast cancer diagnosis and prognosis. We have proposed a breast cancer prediction framework consisting of four main modules: Data Collection, Data Preprocessing, Feature Selection, and Classification. Evaluation results are provided as well. The goal is to find the best combination of feature extraction algorithm and classification algorithm, which will improve the accuracy of the mammograms classification process. Cancer is one of the crucial causes of death for both men and women. All over the world, breast cancer is one of the leading causes of cancer deaths in women. The most effective way to reduce cancer death is to detect it earlier, but the detection of cancer in its early stages is not an easy process. As a result, many researchers focus on developing different breast cancer detection systems. In this paper, we have discussed various data mining approaches that have been utilized for breast cancer diagnosis and prognosis. We have proposed a breast cancer prediction framework consisting of four main modules: Data Collection, Data Preprocessing, Feature Selection, and Classification. Evaluation results are provided as well. The goal is to find the best combination of feature extraction algorithm and classification algorithm, which will improve the accuracy of the mammograms classification process. Breast cancer is an exceptionally heterogeneous sickness. Bosom Cancer Diagnosis and Prognosis are two clinical difficulties the specialists in the field of clinical exploration. Bosom self-test and mammography can assist with discovering early findings of bosom disease. This is conceivable when in some circumstance or stage, the treatment is conceivable. Therapy might comprise radiation, lumpectomy, mastectomy, and chemical treatment. The essential dataset of bosom disease is done from the UCI dataset store with the end goal of exploratory work. These exploratory works legitimize the issue definition of the clinical examination utilizing distinctive order methods. Bosom Cancer Diagnosis and Prognosis are two clinical applications that represent an extraordinary test for specialists. In this paper, we have described the prediction of breast cancer disease using the proposed algorithm using the weka, and the Jupiter anaconda navigator simulates the tool and generates accuracy with efficiency.

Keywords---breast cancer, classification rules, machine learning, diagnosis, risk factor, prediction, feature selection.

Introduction

Chest undermining advancement has become the key wellspring of death in ladies in made nations. The best strategy for reducing chest disease passing is
remembering it prior. The proposed method is used to determine the accuracy of the proposed algorithm for disease prediction using the Wisconsin data set of breast cancer disease. Cancer disease detection and prediction are determined using various other algorithms in data mining and clustering with non-clustering classification algorithms. The proposed Classification algorithms use the method with testing and training data set. [4].

The breast cancer disease survival rate is increase4 rapid now with the help of detection methods also introduced by various researchers. Breast cancer is the most common disease in women. The death rate of breast cancer is not much higher in India and the world. 29% of women have died from the causes of last-stage breast cancer. So many issues generate due to feeding children and scissors problems, and critical medicine also generates this disease in women.

Breast cancer is two types defined by medical terms: benign tumors and malignant tumors. The first one, benign tumors, do not generate cancer cells in the human body. So it is not much more dangerous for women. The survival rate is very high in women. On the other hand, malignant tumors generate cancer cells in vessels, blood, also in tissues. [5] So malignant tumors are very harmful to women. If it is not diagnosed in the first stage, it will be very harmful and dangerous for women, especially those more than 50 years above women. The patient's record data includes doctors' prescription reports, medical tests, nurse notes, DRA regulations, pharma co vigilance reports, and critical view reports. Moreover, this data set is collated from a computer-aided system and generally cross-checks all parameters of breast cancer suffering patients. The machine learning approach is learning all data without any instruction by the programmer and learning automatically and setting as training and testing data for generating and improving algorithms' accuracy and efficiency. [6]

Breast cancer overview

Breast cancer is related to women's disease for damaging body parts and generates penus in the body. After that, some body part of women is damaged very rapidly. The result of this disease is going to the death rate is very high in the case of cancer. [9] These categories are two main: benign tumor and the second one is malignant tumor. In both cases, if the cell is cancerous, that means no chance4 of a woman's life surviving. The cells of the body will damage shortly due to tumors. The blood vessels also suffer from this cancer disease. In India, every two minutes, one woman is diagnosed with breast cancer, and every nine-minute one women die due to breast cancer. Early detection and early prediction of disease of cancer patient's life save otherwise no option at all. [10]

Various symptoms are followed for breast cancer disease in women

- High pulse rate increased.
- Blood pressure increases rapidly.
- Tumors detect in the body.
- Fever and another nervous disorder also.
- Hormone disbalance.
- Serous bacterial infection.
Issues and challenges

The main issue of this breast cancer disease is not early diagnosis properly in women due to the last stage detect of the disease in the human body. The challenge is properly diagnosing the disease stage for a better outcome. The only way is machine learning approaches to determine the proper learning data set based on patient record, medical reports, and who have suffered cancer. [11] The challenge of this study is to simulate disease prediction at an early stage. Data processing is mail Problems for using data set re sampling and mis values removed.

Data mining

Breast cancer is an invasive cancer disease and the second layer of death cause of women. The main object-time of this research paper is to compare the data mining algorithms used to predict breast cancer disease in women with the help of the data mining algorithm result of prediction and detection. The c4.5 algorithms are used to better predict breast cancer disease prediction for women suffering very harmful and death aspect level chances increased. This research work is cross-section under the study period of 2018-2020. The Wisconsin breast cancer disease data set predicts and detects better results.

KDD is the process of discovering useful information of data from data sets. Data-mining is the application of a specific algorithm for gathering data sets. [12] Problem definition: breast cancer is the prediction by using machine learning approaches.
Data exploration: it will be a simulation weka tool for converting in CSV file format and updating with proper coding and results.
Data preparation: data set is a must, with a testing and training set of 66% and 34%.

Related work

Various authors determine the systematic literature review represents the data mining and machine learning techniques for breast cancer disease prediction and detection using algorithm accuracy and efficiency representation. B. Nithya, V. Ilango, [1] Portrayal and batching are the most used techniques in data mining. Clustering strategies intend to eliminate information from an instructive file to discover social affairs or gatherings and portray the educational assortment. Abdelghani Bellaachia and Erhan Gauvin [2] state that the various c4.56 algorithms, the Naive Bayes algorithm, also worked for Breast cancer disease detection. The level of accuracy is 89 % using the data set from Kaggle .com. In [3], M. Lundin et al. have applied ANN to breast cancer disease detection using machine learning techniques. The data set is used as the sampling method. The ANN algorithm determines the accuracy rate is 89% for disease detection based on previous patients' records and set parameters values.In [4] Delen et al., the author states that the regression model is also used for comparison and analysis of previous ML-based algorithms for disease detection and prediction model representation.
AmitBhola. et al. [5] utilize the SEER information to think about three expectation models for identifying breast malignancy. They have announced that the C4.5 calculation measured the percentile ratio is 87% of the accuracy of disease prediction of disease detection of breast cancer patients. Endo et al. completed the comparison of various data mining algorithms like k-means, random forest, and decision tree accuracy rate is 87% for detection of breast cancer disease. Kotsiantis et al. [7] the diagnosis and prognosis of breast cancer disease using WEKA tool with file CSV format. Machine learning is used only for specific data sets, not for generalizations. According to Rajesh et al. [8], the author state that the training and testing methods also worked for disease detection using ML-based algorithms with Jupiter navigator simulate tool.

Arrangement techniques

Building precise and productive classifiers for huge information bases is one of the fundamental assignments of information mining and A.I. research. Building successful arrangement frameworks is one of the focal assignments of information mining. Various sorts of order procedures have been proposed in writing that incorporate Decision Trees, Naive-Bayesian strategies, Neural Networks, Logistic Regression, SVM and KNN, and so on.

Breast Cancer

The wild division of one specific cell, which prompts mass development, is considered growth that prompts disease. When the phones in the bosom start to develop strangely, which goes to growth, it is called bosom malignancy. Bosom malignant growth can begin from various pieces of the bosom. The bosom disease spreads to different body pieces when the malignancy cells get into the blood or the lymph hubs. Masses and miniature calcifications are early manifestations of bosom malignant growth [8].

Some of the risk factors of breast cancer are

1. Age
2. Genetics
3. Dense breast tissue
5. Body weight.
6. X-ray report.
7. High pulse rate.
8. Alcohol consumption etc.

Component determination

This procedure can be applied to informational collections when there are simply two classes to be characterized. It orders information by isolating the information focuses starting with one class and then onto the next by building a hyper-plane. The chosen subset of provisions is controlled by learning and assessing a classifier utilizing just the factors remembered for the proposed Subset [21].
Filter: The effectiveness of chosen subset of provisions is controlled by utilizing just characteristic properties of the information [25] [21]. Classification:

Research methodology

Raw Dataset - Data sets are collected from patient's data, medical records, DRA paper, pharma reports, nurses' reports, and medical test reports.

Dataset Collection -. The various patient records are considered breast cancer disease with reports and used as defined parameters.

Choice of Tools – Information Pre-preparing - WEKA apparatus can pre-measure the information in the numeric and ostensible (single) types. The comma isolated worth (.csv) is valuable for information examination yet needed to transform it to credit connection document design (.arff) for the WEKA instrument.

Testing and train method is used to determine the basic performance of paper design and level of accuracy determine along with Jupiter anaconda navigator simulate tool.

Accuracy is measured by defining parameters based on data set values.

Sensitivity performance measure value is determined by simulating tool

Specificity is calculated by measured define values of patients record-based data set.

Proposed algorithm

Algorithm of M_tree classifier

Technique MY_MTree (x1, x2, \ldots, xN; K; F)

\(/K \) – the quantity of groups an clusters.

\(/F \) – 1,f,1,2,3,\ldots,\text{nfiling factor}

for (\(i=1, i<N \))

\{

\(Ci=\text{FindCentroid (centroids, x1,x2,x3,x4,x5--xn)}; \)

in the event that (\#Leaf [Ci] has F occasions)

in the event that (#we have k groups)

#put xi in Leaf [f.Ci]

else

#split Leaf [f.Ci]

else

#put xi in Leaf [f.Ci]

RecomputedCentroids (Leaf[f.Ci])

} //end for.
Simulation analysis & result

Fig 1: Implementation In Weka Simulate Tool

Fig 2: uploaded the data set in the simulation tool

Fig 3 data set attributes in modified approaches
Fig 4: Date set in WEKA tool for counting attributes.

Fig 5: Real data set implemented in PYCHARM simulation tool.

Fig 6: Pycharm simulation tool represents the data set.

Figure 7: Output Result.
Result analysis

Show the outcomes for order procedures applied on the Wisconsin Breast Cancer dataset in WEKA separately. Based on correlation over exactness and mistake rates, the arrangement strategies with the most noteworthy precision are given distinctive A.I. devices for this dataset. The figure examines the best characterization strategies applied to this dataset.

<table>
<thead>
<tr>
<th>proposed model for breast cancer disease prediction model</th>
<th>sum of errors</th>
<th>accuracy</th>
<th>time of execution</th>
<th>iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_tree proposed model</td>
<td>8.12</td>
<td>91.125</td>
<td>1.19</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 1.1 Analysis report of M-tree model for breast cancer data set

![Fig 8 M-tree graph representation of analysis report](image)

<table>
<thead>
<tr>
<th>Factors</th>
<th>Sum of errors/ In corrected instances</th>
<th>Percentage of errors</th>
<th>% (accuracy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-tree classifier</td>
<td>69</td>
<td>8.999</td>
<td>92.125</td>
</tr>
</tbody>
</table>

Table 1.2 Assignment value using M-tree classifier
Figure 9 Comparison of Time Execution, the sum of errors, accuracy, and iteration in M-tree through graph representation

<table>
<thead>
<tr>
<th>test negative</th>
<th>1 test positive</th>
<th>Model does the test</th>
</tr>
</thead>
<tbody>
<tr>
<td>454</td>
<td>46</td>
<td>Negative – WELL DEFINED</td>
</tr>
<tr>
<td>23</td>
<td>245</td>
<td>Positive test- ILL DEFINED</td>
</tr>
</tbody>
</table>

Table 1.3 M-tree classifier for test determine

<table>
<thead>
<tr>
<th>Division of cluster</th>
<th>Cluster 1</th>
<th>Cluster 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objects</td>
<td>477</td>
<td>291</td>
</tr>
<tr>
<td>Percentage</td>
<td>62%</td>
<td>38%</td>
</tr>
</tbody>
</table>

Table 1.4 Cluster Assignment using M-tree classifier

The accompanying tables show the examination of the negative and positive trials of the bosom malignancy illness patients, the unpredicted worth of the examples, and the precision of the M-tree classifier calculation on medical clinic-based genuine informational collection. Further, we will talk about of choice tree classifier approach of bosom malignant growth informational collection for the expectation of positive and negative record set of patients, the unpredicted worth of the occurrences, and exactness of the M-tree calculation on In these tables, 0 represents a negative test for predicting breast cancer.

One represents a positive test for predicting breast cancer

Tables show-tree model detect for the unpredicted value of instances and accuracy

This table shows the final result of our analysis. It shows some errors/In corrected instances, Percentage of errors and accuracy.
Fig 10 proposed algorithm generates accuracy graph on disease prediction concerning time execution.

Fig 11 M-Tree graph representation of disease prediction.
Fig 12 proposed algorithm generates time execution of accuracy determined

X Experimental Outcomes

The following table shows the assignment of clusters using the M-tree. The dataset contains 768 attributes divided into two clusters shown in the table. The experimental outcome of the proposed M-tree based breast cancer prediction model is as follows:

1. The proposed algorithm determines the prediction of disease based on patient records data set as parameters values of record like medical record set.
2. M-Tree algorithm used training and testing methods to determine the accuracy of ML-based breast cancer disease detection techniques.

Figure 13 Snapshot of WEKA simulation tool by using M-tree.
The outcome of the M-tree classifier is the outcome of clustering algorithms like another algorithm. The result has been compared in terms of the Sum of Squared Errors, Number of Iterations, Execution Time, and Goodness of Fit (accuracy).

Conclusion

we will configure the proposed tree classifier and initially execute it in the weka recreation device. We will get the positive outcome and exactness worth of this calculation for discovery of bosom malignant growth illness patients credits. After that, we will go for the A.I. examination dependent on the PYCHARM reenactment instrument and weka code. We will perform the same proposed M_tree calculation in weka and perform 92.125 not settled and produced diagram portrayal of given qualities.

This paper concludes that the accuracy of the M-tree algorithm for the prediction level of breast cancer disease is 92.125%, percentage errors 8.999%, and unpredicted value is 91.25% of cancer disease prediction using weka simulate tool with the help of patients records based data set as define various parameters values. The accuracy levels are approx. Is 92% of breast cancer disease prediction. This proposed algorithm performed the training and testing method for disease prediction based on parameters valued from the pre-define data set. The accuracy rate of this algorithm for breast cancer disease detection and prediction is higher than other ML algorithms.

References

17. A. Marcano-Cedeno et al. 2011, "WBCD breast cancer database classification applying artificial metaplasticity neural network.",

