
How to Cite:

Thakur, A., & Chandak, M. B. (2022). A review on opentelemetry and HTTP
implementation. International Journal of Health Sciences, 6(S2), 15013–15023.
https://doi.org/10.53730/ijhs.v6nS2.8972

International Journal of Health Sciences ISSN 2550-6978 E-ISSN 2550-696X © 2022.

Manuscript submitted: 27 March 2022, Manuscript revised: 18 May 2022, Accepted for publication: 9 June 2022

15013

A review on opentelemetry and HTTP

implementation

Aadi Thakur

Computer Science and Engineering Department, Shri Ramdeobaba College of

Engineering and Management Nagpur, India

M. B. Chandak

Computer Science and Engineering Department, Shri Ramdeobaba College of

Engineering and Management Nagpur, India

Abstract---Cloud-native is a strategy for developing and running

applications that take advantage of the benefits of the cloud

computing model. Companies building and operating applications by

using a cloud-native architecture bring fresh ideas to the market

faster and address customer demands more quickly. In the face of

failures and extremely unpredictable demand, today's cloud-native
application ecosystem is becoming highly dispersed, diversified, and

complicated, making it impossible to forecast its behaviour.

Observability is growing rapidly as a critical skill for monitoring and

managing cloud-native applications in order to assure client

satisfaction. Cloud-native Computing Foundation (CNCF) has
introduced OpenTelemetry as its incubating project, which is an

observability framework for cloud-native software. OpenTelemetry,

which is an open-source framework for distributed tracing, has

emerged as the industry's leading standard for distributed tracing.

This paper focuses on providing a systematic literature review of

various services provided by OpenTelemetry.

Keywords---observability, open telemetry, distributed systems, cloud-

native technology, telemetry data.

Introduction

Data collection is inexpensive, but not having it when you need it can be costly.

Amazon was down for 20 minutes in March 2016, resulting in a $3.75 million

revenue loss. In January 2017, Delta Airlines experienced a system outage, which

led to the cancellation of more than 170 flights and an $8.5 million loss. In both
cases, if we had the correct amount of data, we could have predicted or recovered

from such incidents as soon as they occurred by finding the fundamental cause.

https://doi.org/10.53730/ijhs.v6nS2.8972

15014

We can make improved decisions if we have more data [10]. A distributed system

is the solution of a problem that has been divided into a number of parts, also

known as subproblems; these subproblems are solved individually, typically by

separate computers/processors. The outcomes of these solved subproblems are
correctly reassembled to form the final alternative to the initial larger problem.

Distributed and multilingual architectures are the norm in cloud-native

technology. Distributed architectures introduce a series of operational challenges,

including how to quickly resolve availability and performance issues. These

complexities have resulted in the emergence of observability. Popular web,
consumer software systems, and services (for example Amazon, Google, Netflix,

and Twitter) are microservices that are designed and run on common

infrastructures. In today's world, users expect more interactive enrichment as

well as an evolving user experience across a wide range of client devices [11].

Developers and organizations want to be able to update their services on a regular
basis. As a result, dependence on monolithic applications is no longer practical.

Microservices are a type of distributed architecture in which large and complex

application programs are made up of one or more multiple programs. It is

proposed as a solution to the problems associated with traditional monolithic

applications. Flexibility, scalability, decentralized management, and independence
are key characteristics of microservice architecture. As there are numerous

benefits to implementing microservices, it is now being used by many tech

companies, including Amazon, Netflix, and Twitter. Because microservices can

now solve many business challenges and are still growing, it is reasonable to

believe that microservices are the future of distributed systems.

Observability is the capability to measure a system's present state based on data

it produces, such as logs, metrics, and traces. The goal of observability is to figure

out what's going on across all of these environments and systems so that you can

identify and resolve these issues to keep your systems efficient and reliable [1].

The concept of observability, borrowed from control theory, telemetry acquired
from the system at run time improves visibility into analyzing the complicated

behaviour of software. Observability extends past conventional black-box tracking

to give more background information about a system's accuracy and execution.

Its purpose is to shorten the time it takes to gain insight into what's happening in

the network and why it's happening.

Observability is the process of instrumenting systems in order to collect valuable

information that tells you when and why systems behave in a certain way. When

a system fails, you should first examine the telemetry data to determine why the

error occurred. The following telemetry data, known as the pillars of observability,

are critical to achieving observability in distributed systems: Logs, Metrics, and
Traces [2].

LOGS

A log is a timestamped text record with metadata that can be structured
(recommended) or unstructured. While logs are a stand-alone data source, they

can also, be linked to spans. A log is any data that is not part of a distributed

15015

trace or metric in OpenTelemetry. Events, for example, are a subset of logs. Logs

are widely used to determine the root cause of an issue and typically include data

about who changed what and the outcome of the change.

Figure 1: Logs from windows application

Failure Definition

System Failure A software or hardware failure is the most common cause of a system failure. A
system failure always tends to result in the loss of the primary memory's contents,

while the secondary storage is safe. In case of a system failure, the processor does

not complete the execution and the system may reboot.

Communication

medium Failure

The malfunction of the communication link is the most common cause of a

communication medium failure. A possible scenario is a website within one
network attempting to communicate with some other operational website inside the

network but being unable to do so.

Secondary

Storage Failure

A secondary storage failure occurs when the data that resides on the storage

medium is inaccessible. Secondary storage failure can occur for a variety of

reasons. Some of the most common reasons are as follows:Parity error, Node crash

and Medium dirt.

Method Failure A method failure frequently brings the distributed system to a halt. Furthermore, it

causes the system to execute incorrectly or fail to execute at all. During a method

failure, a system could go into a deadlock state or commit protection violations.

Table 1. Metrics

A metric is an evaluation of a service that is recorded at runtime. Methodically,

the instant one of these measured data is recorded is known as a metric event,
which includes not only the assessment itself but also the time it was captured

and any related metadata. Metrics have been applied in the following ways: (i) to

create alerts whenever an unexpected system state occurs, and (ii) for quantitative

and real-time reporting queries. Small concerns on the most recent statistics are

used to generate alerts. Fig. 2 gives the metrics as we can see in our windows

system for the application running.

Figure 2 : Metrics

15016

Traces

Traces follow the progress of a single request, known as a trace, as it is managed
by the services that represent an application. A user or an application may

initiate the request. Tracing that navigates process, network, and security borders

is known as distributed tracing. A span is a sequence of tasks in a trace and

therefore a trace is also a tree of many spans. Spans are entities that reflect the

job completed by specific services or components as a request tends to flow

through a framework. Fig. 3 demonstrates the HTTP traces when collected using
tracing techniques.

Figure 3 : Http traces

To strengthen observability products, telemetry data is required. Telemetry data

has typically been provided by either open-source projects or commercial vendors.

A lack of clear standard rules has led to a lack of data portability and it places the

burden on the user to maintain the instrumentation. Fig. 4 explains the pillars of

observability using logs, metrics and traces [7].

OpenTelemetry (also known as OTel) is an open-source observability framework

that comprises a set of tools, APIs, and SDKs. IT teams can use OTel to

instrument, generate, collect, and export telemetry data for analysis and

understanding of software performance and behaviour. OpenTelemetry plays a

significant role in providing a standard format for collecting and transmitting
observability data. OTel, a Cloud Native Computing Foundation (CNCF)

incubating project, aims to provide fully integrated sets of vendor-independent

libraries and APIs — mainly for data collection and data transfer. OpenTelemetry

is a merger of OpenCensus and OpenTracing, both of which were previously

hosted by CNCF itself [6]. Many vendors, like Dynatrace, Lightstep, etc, have

joined the project since its inception to help make a rich collection of data easier
and more useable.

15017

Figure 4: The three pillars of observability

The OpenTelemetry project addresses these issues by providing a single, vendor-

independent solution. The project has widespread industry support and adoption,

with cloud providers, distributors, and end users all on board [6]. This paper

presents a literature review of OpenTelemetry and its related issues.The main
objective of this paper is to review the different papers and literature available on

the internet to see what are the different areas where OpenTelemetry was

implemented and how it has changed the way observability frameworks work.

The remaining work in this paper is as follows. First, we discuss the research
method that was used, the sources, and the criteria. Then we move on to discuss

how the different papers were sorted. The main part of the paper is to see the

contribution of each paper or literature towards understanding OpenTelemetry.

Research Method

The systematic review helped to perform a thorough balanced literature review,

summing up the technical value of its findings. The main objective of a

methodical literature review is to introduce a concise valuation concerning the

research topic we choose as a result of the presentation of a dependable,

accurate, and reviewed approach. The review begins with a summary of the
processes that will guide the research's progress, such as research issues and

techniques. According to the custom, the mandatory steps are as follows

The key issues that the paper will attempt to answer:

1. Approach that was used to search for the other authors’ papers like search
keywords and sources to find the papers, documents, and seminars.

2. Insertion and elimination criteria for the searched paper got over the

internet.

3. Approach for information withdrawal and following procedure of obtained

information.

Objective

One of the really important aspects that must be incorporated into the

microservices design is observability. There are numerous observability

frameworks for keeping the system in good health. Splunk, Dynatrace, and
Lightstep are a few examples.

15018

In today's scenario, everyone has their own observability pieces, big cloud services

have a lot of tools that allow them to look at the data, for example, there is

Splunk where the logs are structured where we can see the fancy dashboard, and

their performance. But here everyone is on their own in terms of looking at the
data and seeing what went wrong but as a system, we don’t have a standard way

to collect that data.

The main aim of OpenTelemetry is not to have a platform for observability, but

instead to provide us with a conventional substrate for collecting and transmitting

operational data that can be used in open-source or commercial monitoring and
observational platforms. In this context, the objective of this research is to deal

with the question: What is the reason that OpenTelemetry was introduced when

we already had OpenCensus and OpenTracing for traces, metrics, and logs?

OpenTelemetry is a reasonably followed platform for distributed tracing, it

nevertheless has room for enhancements and we need to find out what are those
areas.

Research Questions

1. When we already had OpenCensus and OpenTracing for observability, what

was the need for OpenTelemetry?
2. In terms of observability, is there something OpenTelemetry does not

provide us with?

Search approaches

After the study questions had been determined, the search approaches and the

search string were demarcated. The scope of the research and the digital archives

consulted were also defined. Investigation Keywords: We identify keywords based

on research matters. Synonyms for the keywords did not have to be taken into

account, as the names were predefined on the basis of the terms defined by the

development creators. "Observability" and "OpenTelemetry" were identified as
search terms.

Sources

The criteria for selecting the sources of the studies were searched on the web
mechanism; Search mechanisms should enable personalized examinations by

title and summary; the complete articles must be accessible for transfer via the

digital library; Significance and applicability of the sources. With the search

approaches defined, the following digital collections as sources: ACM Digital

Library. IEEEXplore ScienceDirect, Google Scholar relevance of the sources.

Study assortment criteria

In order to exclude irrelevant studies, research work outside the scope, the

subsequent elimination criteria were applied:

1. Articles that do not contain a description of the OTel framework or
an application that uses observability.

15019

2. Article without reference to a field of computer science.
3. Articles are written in a language other than English
4. Training article
5. Articles that do not (or partially discuss) OpenTelemetry or

Observability

Results of the Methodical Literature Review

The conclusion of the literature review is presented in this section. The findings

are focused on pre-defined replies to questions that were identified as the final

outcome of our methodical literature analysis. Each part includes details that

answers these questions about the study's goal. The outcomes of this review are

shown in certain tables.

RQ 1. When we already had OpenCensus and OpenTracing for observability, what
was the need for OpenTelemetry??

OpenCensus is a collection of libraries for different languages that enable users to

gather application metrics and distributed traces and then send them in real-time
to a backend of your preference. Developers and administrators can use this data

to assess the safety of the application and troubleshoot issues [15]. OpenTracing

is a CNCF open-source project that offers vendor-neutral APIs and

instrumentation for distributed tracing. It is a vendor-independent API that allows

developers to easily incorporate tracing into their codebase. It is open because it

is not owned by a single company. In fact, many tracing tooling vendors are
supporting OpenTracing as a standardized way to instrument distributed tracing

[16].

Logs, Metrics, and Traces are the pillars of observability but individually they

don’t provide the value observability is supposed to deliver. To better understand
this, a good analogy is to compare tyres, gasoline, and motor oil by saying that

they all contribute to what we call f1 tracing. Technically, this is not incorrect,

but they all work together to achieve the goal [4]. Similarly, OpenTelemetry

replaced previous technologies such as OpenTracing and OpenCensus.

Individually, those technologies used to cover a portion of observability, such as

OpenTracing for distributed tracing and OpenCensus, will be more focused on
metrics, but as we have seen before, they do not provide the value that we are

attempting to achieve with observability. OpenTelemetry incorporates all of the

learning experiences and even some pieces of code that have been built up over

the years, and it has now grown into a new project that is supported and

managed by CNCF and is free and open source.

RQ 2. 2. In terms of observability, is there something OpenTelemetry does not
provide us with?

Microservices, or independent services that perform a specific core function, are

used in modern cloud-native applications. A particular requirement in an use can
bring up a large number of micro-services that interact with one another. In fact,

it is becoming increasingly difficult to track and separate a problem, such as a

15020

service slowdown. This is why OpenTelemetry, which is based on distributed

tracing, is beneficial. It enables the observation and comprehension of a complete

series of actions in a complicated interface among microservices. When the

problem is network-related rather than application-related, however, OTel
appears to be ineffective [7].

Assume that an HTTPS request is being monitored. Based on application traces,

OpenTelemetry provides useful information at the application level. Consider the

case where an unusually long execution time is noticed. It is impossible to

pinpoint why this occurs. Worse, if the issue isn't with the programme, but with
the link or alternate hops (for example, due to high traffic), one may question why

and how the request is taking so long when everything on the application side

appears to be fine [12]. A better explanation would be to demonstrate how the call

continues to progress through the network hop by hop in order to identify

(potential) bottlenecks [11].

To address such a problem, [Towards Cross-Layer Telemetry] introduced Cross-

Layer Telemetry (Clt), which combines device, flow, packet, and application

telemetry. Clt combines OpenTelemetry and network telemetry from In-Situ

Operations, Administration, and Maintenance (IOAM). Fig 5 gives the architecture

of Cross-Layer Telemetry. The authors have chosen Jaeger as the tracing tool for
this implementation, although CLT is generic enough to accommodate any other

tracing tool. The matching is accomplished by extending the IOAM headers.

Lastly, a telemetry driver is responsible for retrieving data from traces and

transmitting it to a collector for subsequent analysis [12].

Figure 5: CLT Architecture

Implementation

OpenTelemetry is a set of tools for instrumenting, creating, gathering, and

transferring telemetry data in order to manage applications and infrastructure.

Metrics, logs, and traces are all part of this. Using diverse programming interfaces

is encouraged by the microservices strategy. Many firms still utilize C++ to build
high-performance systems instead of Java, Go or Node.js.

15021

We have deployed an application made up of two microservices that interact

through HTTP. To start, we used C++ to create two HTTP services, server and

client. Both make the ping endpoints available. In addition, when server's
endpoint is called, it automatically sends a ping to client .

To enable tracing, first we installed the OpenTelemetry C++ client (github).We

cloned its repository into our project's common folder. Then we generate

CMakeLists.txt to include both the OpenTelemetry C++ client and the

OpenTelemetry C++ library.

Our cmake files contain the curl command, the executables- Client and Server

and the ostream to output the logs to the console.The output from the build can

be seen the figures.

Conclusion and Discussion

Failure is never predicted, and pinpointing the specific reason of post-

deployed sophisticated programme issues is extremely challenging. Even for the

most experienced teams it is difficult to anticipate all possible circumstances that
could cause their programmes to crash or expose sensitive data. As a result, the

capacity to recognise issues in real time and respond fast is critical. That's where

observability and monitoring play a role, and architects who work carefully on

these two tasks will enjoy the profits of a more resilient software design. The

purpose of OpenTelemetry is not to have an observability platform, but instead to

provide a standard platform for collecting and transmitting operational data that
may be utilised in monitoring and observatory systems, both open source and

commercial. We have successfully implemented tracing with the help of

OpenTelemetry API. The traces gave the information about the spans, parent

spans, trace-ids etc. As discussed earlier, the traces we received with

Figure 6: Https Server Tracing

Figure 7: Https Client Tracing

15022

OpenTelemetry are application based and nothing on network information. Hence

we cannot rely only on OpenTelemetry for analytics.

References

[1] Karumuri, Suman & Solleza, Franco & Zdonik, Stan & Tatbul, Nesime.

(2021). Towards Observability Data Management at Scale. ACM SIGMOD

Record. 49. 18-23. 10.1145/3456859.3456863.

[2] T. Salah, M. Jamal Zemerly, Chan Yeob Yeun, M. Al-Qutayri and Y. Al-

Hammadi, "The evolution of distributed systems towards microservices
architecture," 2016 11th International Conference for Internet Technology and
Secured Transactions (ICITST), 2016, pp. 318-325, doi:

10.1109/ICITST.2016.7856721.

[3] Kasun Indrasiri and Prabath Siriwardena. 2018. Microservices for the
Enterprise: Designing, Developing, and Deploying (1st. ed.). Apress, USA.

[4] Reichelt, D.G., Kühne, S. and Hasselbring, W., 2021. Overhead Comparison
of OpenTelemetry, inspectIT and Kieker.

[5] Ellis, A., 2022. Emplacing New Tracing: Adding OpenTelemetry to Envoy

(Doctoral dissertation, Tufts University).
[6] Fong-Jones, L. and Parker, A., 2020. Observing and Understanding

Distributed Systems with OpenTelemetry.

[7] Castanheira, L., Benson, T.A. and Schaeffer-Filho, A., 2020, December. The
Case for More Flexible Distributed Tracing. In Proceedings of the Student

Workshop (pp. 27-28).

[8] F. Boldrin, C. Taddia and G. Mazzini, "Distributed Computing Through Web
Browser," 2007 IEEE 66th Vehicular Technology Conference, 2007, pp. 2020-

2024, doi: 10.1109/VETECF.2007.424.
[9] N. Marie-Magdelaine, T. Ahmed and G. Astruc-Amato, "Demonstration of an

Observability Framework for Cloud Native Microservices," 2019 IFIP/IEEE

Symposium on Integrated Network and Service Management (IM), 2019, pp.

722-724.

[10] Chumpolsathien, Nakhun. (2019). Microservices: the Future of Distributed
System. 10.13140/RG.2.2.10322.61128/1.

[11] Gatev, R., 2021. Introducing Distributed Application Runtime (Dapr). Apress.

[12] Justin Iurman, Frank Brockners, and Benoit Donnet. 2021. Towards cross-
layer telemetry. In Proceedings of the Applied Networking Research Workshop
(ANRW '21). Association for Computing Machinery, New York, NY, USA, 15–

21. https://doi.org/10.1145/3472305.3472313

[13] H. Zhao and J. Bi. 2013. Characterizing and Analysis of the Flattening
Internet Topology. In Proc. International Symposium on Computers and

Communications (ISCC).

[14] OpenTelemetry. Effective Observability Requires High-Quality Telemetry. See
https://opentelemetry.io/

[15] OpenCensus. Introduction, Tracing . See

https://opencensus.io/introduction/

[16] Opentracing. Extended tracing with open-tracing. See

https://www.dynatrace.com/support/help/extend-dynatrace/extend-

tracing/opentracing/
[17] Lozano-Nieto, A., 2003. Telemetry. In Electrical Measurement, Signal

Processing, and Displays (pp. 27-1). CRC Press.

15023

[18] Rinartha, K., & Suryasa, W. (2017). Comparative study for better result on

query suggestion of article searching with MySQL pattern matching and

Jaccard similarity. In 2017 5th International Conference on Cyber and IT
Service Management (CITSM) (pp. 1-4). IEEE.

[19] Rinartha, K., Suryasa, W., & Kartika, L. G. S. (2018). Comparative Analysis of

String Similarity on Dynamic Query Suggestions. In 2018 Electrical Power,
Electronics, Communications, Controls and Informatics Seminar (EECCIS) (pp.

399-404). IEEE.

