How to Cite:

Thakur, A., & Chandak, M. B. (2022). A review on opentelemetry and HTTP
implementation. International Journal of Health Sciences, 6(S2), 15013-15023.
https://doi.org/10.53730/ijhs.vbnS2.8972

A review on opentelemetry and HTTP
implementation

Aadi Thakur
Computer Science and Engineering Department, Shri Ramdeobaba College of
Engineering and Management Nagpur, India

M. B. Chandak
Computer Science and Engineering Department, Shri Ramdeobaba College of
Engineering and Management Nagpur, India

Abstract---Cloud-native is a strategy for developing and running
applications that take advantage of the benefits of the cloud
computing model. Companies building and operating applications by
using a cloud-native architecture bring fresh ideas to the market
faster and address customer demands more quickly. In the face of
failures and extremely unpredictable demand, today's cloud-native
application ecosystem is becoming highly dispersed, diversified, and
complicated, making it impossible to forecast its behaviour.
Observability is growing rapidly as a critical skill for monitoring and
managing cloud-native applications in order to assure client
satisfaction. Cloud-native Computing Foundation (CNCF) has
introduced OpenTelemetry as its incubating project, which is an
observability framework for cloud-native software. OpenTelemetry,
which is an open-source framework for distributed tracing, has
emerged as the industry's leading standard for distributed tracing.
This paper focuses on providing a systematic literature review of
various services provided by OpenTelemetry.

Keywords---observability, open telemetry, distributed systems, cloud-
native technology, telemetry data.

Introduction

Data collection is inexpensive, but not having it when you need it can be costly.
Amazon was down for 20 minutes in March 2016, resulting in a $3.75 million
revenue loss. In January 2017, Delta Airlines experienced a system outage, which
led to the cancellation of more than 170 flights and an $8.5 million loss. In both
cases, if we had the correct amount of data, we could have predicted or recovered
from such incidents as soon as they occurred by finding the fundamental cause.

International Journal of Health Sciences ISSN 2550-6978 E-ISSN 2550-696X © 2022.
Manuscript submitted: 27 March 2022, Manuscript revised: 18 May 2022, Accepted for publication: 9 June 2022

15013

https://doi.org/10.53730/ijhs.v6nS2.8972

15014

We can make improved decisions if we have more data [10]. A distributed system
is the solution of a problem that has been divided into a number of parts, also
known as subproblems; these subproblems are solved individually, typically by
separate computers/processors. The outcomes of these solved subproblems are
correctly reassembled to form the final alternative to the initial larger problem.

Distributed and multilingual architectures are the norm in cloud-native
technology. Distributed architectures introduce a series of operational challenges,
including how to quickly resolve availability and performance issues. These
complexities have resulted in the emergence of observability. Popular web,
consumer software systems, and services (for example Amazon, Google, Netflix,
and Twitter) are microservices that are designed and run on common
infrastructures. In today's world, users expect more interactive enrichment as
well as an evolving user experience across a wide range of client devices [11].
Developers and organizations want to be able to update their services on a regular
basis. As a result, dependence on monolithic applications is no longer practical.

Microservices are a type of distributed architecture in which large and complex
application programs are made up of one or more multiple programs. It is
proposed as a solution to the problems associated with traditional monolithic
applications. Flexibility, scalability, decentralized management, and independence
are key characteristics of microservice architecture. As there are numerous
benefits to implementing microservices, it is now being used by many tech
companies, including Amazon, Netflix, and Twitter. Because microservices can
now solve many business challenges and are still growing, it is reasonable to
believe that microservices are the future of distributed systems.

Observability is the capability to measure a system's present state based on data
it produces, such as logs, metrics, and traces. The goal of observability is to figure
out what's going on across all of these environments and systems so that you can
identify and resolve these issues to keep your systems efficient and reliable [1].
The concept of observability, borrowed from control theory, telemetry acquired
from the system at run time improves visibility into analyzing the complicated
behaviour of software. Observability extends past conventional black-box tracking
to give more background information about a system's accuracy and execution.
Its purpose is to shorten the time it takes to gain insight into what's happening in
the network and why it's happening.

Observability is the process of instrumenting systems in order to collect valuable
information that tells you when and why systems behave in a certain way. When
a system fails, you should first examine the telemetry data to determine why the
error occurred. The following telemetry data, known as the pillars of observability,
are critical to achieving observability in distributed systems: Logs, Metrics, and
Traces [2].

LOGS
A log is a timestamped text record with metadata that can be structured

(recommended) or unstructured. While logs are a stand-alone data source, they
can also, be linked to spans. A log is any data that is not part of a distributed

15015

trace or metric in OpenTelemetry. Events, for example, are a subset of logs. Logs
are widely used to determine the root cause of an issue and typically include data
about who changed what and the outcome of the change.

Failure

System Failure

Communication
medium Failure

Secondary
Storage Failure

Method Failure

Application: Ghovd_O.exe
Framework Version: v4.0.30319
Description: The process was terminated due to an unhandled exception,
Exception Info: System.AccessViolationException

at igfxDHLib.DataHandlerClass.get_SystemVersionlnfe(igfx DHLIib.
_CUI_SYSTEM_INFO_VERSIONS ByRef)

at GfxUl.DataHandler.Clnformation. GetSystemVersionlnfo)

Figure 1: Logs from windows application

Definition

A software or hardware failure is the most common cause of a system failure. A
system failure always tends to result in the loss of the primary memory's contents,
while the secondary storage is safe. In case of a system failure, the processor does
not complete the execution and the system may reboot.

The malfunction of the communication link is the most common cause of a
communication medium failure. A possible scenario is a website within one
network attempting to communicate with some other operational website inside the
network but being unable to do so.

A secondary storage failure occurs when the data that resides on the storage
medium is inaccessible. Secondary storage failure can occur for a variety of
reasons. Some of the most common reasons are as follows:Parity error, Node crash
and Medium dirt.

A method failure frequently brings the distributed system to a halt. Furthermore, it
causes the system to execute incorrectly or fail to execute at all. During a method
failure, a system could go into a deadlock state or commit protection violations.

Table 1. Metrics

A metric is an evaluation of a service that is recorded at runtime. Methodically,
the instant one of these measured data is recorded is known as a metric event,
which includes not only the assessment itself but also the time it was captured
and any related metadata. Metrics have been applied in the following ways: (i) to
create alerts whenever an unexpected system state occurs, and (ii) for quantitative
and real-time reporting queries. Small concerns on the most recent statistics are
used to generate alerts. Fig. 2 gives the metrics as we can see in our windows
system for the application running.

4% ~ 60% 3% 0%
MName PID CcPuy Memory Disk Metwork

@ Google Chrome (14) 2.8% 920.8 MB 0.1 MB/s 0 Mbps
@ Google Chrome 18a8 0% 601.9 MB 0 MB/s 0 Mbps
8] Antimalware Service Executable 3972 0.3% 121.8 MB 0 MB/s 0 Mbps

Service Host: SysMain 1976 0% 78.9 MB 0 MB/s 0 Mbps

Figure 2 : Metrics

15016

Traces

Traces follow the progress of a single request, known as a trace, as it is managed
by the services that represent an application. A user or an application may
initiate the request. Tracing that navigates process, network, and security borders
is known as distributed tracing. A span is a sequence of tasks in a trace and
therefore a trace is also a tree of many spans. Spans are entities that reflect the
job completed by specific services or components as a request tends to flow
through a framework. Fig. 3 demonstrates the HTTP traces when collected using
tracing techniques.

! attributes

! hitp.header.Date: Wed, 18 Nay 2022 10:49:10 OMY
! http.header.Content-Length:

! http.status_code: 200

! hetp.mothod: CET

! htp.header . Host: localhost

| nttp.header.Content Type: text/platn

! hitp.header . Connection: keep allve

| ntep.scheme: hetp

| htetp.url: Attp://localhost 18800/ helloworld
|

|

|

|

Figure 3 : Http traces

To strengthen observability products, telemetry data is required. Telemetry data
has typically been provided by either open-source projects or commercial vendors.
A lack of clear standard rules has led to a lack of data portability and it places the
burden on the user to maintain the instrumentation. Fig. 4 explains the pillars of
observability using logs, metrics and traces [7].

OpenTelemetry (also known as OTel) is an open-source observability framework
that comprises a set of tools, APIs, and SDKs. IT teams can use OTel to
instrument, generate, collect, and export telemetry data for analysis and
understanding of software performance and behaviour. OpenTelemetry plays a
significant role in providing a standard format for collecting and transmitting
observability data. OTel, a Cloud Native Computing Foundation (CNCF)
incubating project, aims to provide fully integrated sets of vendor-independent
libraries and APIs — mainly for data collection and data transfer. OpenTelemetry
is a merger of OpenCensus and OpenTracing, both of which were previously
hosted by CNCF itself [6]. Many vendors, like Dynatrace, Lightstep, etc, have
joined the project since its inception to help make a rich collection of data easier
and more useable.

15017

WHAT WHEN WHERE
Logs Metrics Traces
* Tools = Tools * Tools

* Processes * Processes + Processes
* People * People * People

. e
Figure 4: The three pillars of observability

The OpenTelemetry project addresses these issues by providing a single, vendor-
independent solution. The project has widespread industry support and adoption,
with cloud providers, distributors, and end users all on board [6]. This paper
presents a literature review of OpenTelemetry and its related issues.The main
objective of this paper is to review the different papers and literature available on
the internet to see what are the different areas where OpenTelemetry was
implemented and how it has changed the way observability frameworks work.

The remaining work in this paper is as follows. First, we discuss the research
method that was used, the sources, and the criteria. Then we move on to discuss
how the different papers were sorted. The main part of the paper is to see the
contribution of each paper or literature towards understanding OpenTelemetry.

Research Method

The systematic review helped to perform a thorough balanced literature review,
summing up the technical value of its findings. The main objective of a
methodical literature review is to introduce a concise valuation concerning the
research topic we choose as a result of the presentation of a dependable,
accurate, and reviewed approach. The review begins with a summary of the
processes that will guide the research's progress, such as research issues and
techniques. According to the custom, the mandatory steps are as follows

The key issues that the paper will attempt to answer:

1. Approach that was used to search for the other authors’ papers like search
keywords and sources to find the papers, documents, and seminars.

2. Insertion and elimination criteria for the searched paper got over the
internet.

3. Approach for information withdrawal and following procedure of obtained
information.

Objective

One of the really important aspects that must be incorporated into the
microservices design is observability. There are numerous observability
frameworks for keeping the system in good health. Splunk, Dynatrace, and
Lightstep are a few examples.

15018

In today's scenario, everyone has their own observability pieces, big cloud services
have a lot of tools that allow them to look at the data, for example, there is
Splunk where the logs are structured where we can see the fancy dashboard, and
their performance. But here everyone is on their own in terms of looking at the
data and seeing what went wrong but as a system, we don’t have a standard way
to collect that data.

The main aim of OpenTelemetry is not to have a platform for observability, but
instead to provide us with a conventional substrate for collecting and transmitting
operational data that can be used in open-source or commercial monitoring and
observational platforms. In this context, the objective of this research is to deal
with the question: What is the reason that OpenTelemetry was introduced when
we already had OpenCensus and OpenTracing for traces, metrics, and logs?
OpenTelemetry is a reasonably followed platform for distributed tracing, it
nevertheless has room for enhancements and we need to find out what are those
areas.

Research Questions

1. When we already had OpenCensus and OpenTracing for observability, what
was the need for OpenTelemetry?

2. In terms of observability, is there something OpenTelemetry does not
provide us with?

Search approaches

After the study questions had been determined, the search approaches and the
search string were demarcated. The scope of the research and the digital archives
consulted were also defined. Investigation Keywords: We identify keywords based
on research matters. Synonyms for the keywords did not have to be taken into
account, as the names were predefined on the basis of the terms defined by the
development creators. "Observability" and "OpenTelemetry" were identified as
search terms.

Sources

The criteria for selecting the sources of the studies were searched on the web
mechanism; Search mechanisms should enable personalized examinations by
title and summary; the complete articles must be accessible for transfer via the
digital library; Significance and applicability of the sources. With the search
approaches defined, the following digital collections as sources: ACM Digital
Library. IEEEXplore ScienceDirect, Google Scholar relevance of the sources.

Study assortment criteria

In order to exclude irrelevant studies, research work outside the scope, the
subsequent elimination criteria were applied:

1. Articles that do not contain a description of the OTel framework or
an application that uses observability.

15019

2. Article without reference to a field of computer science.

3. Articles are written in a language other than English

4. Training article

S. Articles that do not (or partially discuss) OpenTelemetry or
Observability

Results of the Methodical Literature Review

The conclusion of the literature review is presented in this section. The findings
are focused on pre-defined replies to questions that were identified as the final
outcome of our methodical literature analysis. Each part includes details that
answers these questions about the study's goal. The outcomes of this review are
shown in certain tables.

RQ 1. When we already had OpenCensus and OpenTracing for observability, what
was the need for OpenTelemetry??

OpenCensus is a collection of libraries for different languages that enable users to
gather application metrics and distributed traces and then send them in real-time
to a backend of your preference. Developers and administrators can use this data
to assess the safety of the application and troubleshoot issues [15]. OpenTracing
is a CNCF open-source project that offers vendor-neutral APIs and
instrumentation for distributed tracing. It is a vendor-independent API that allows
developers to easily incorporate tracing into their codebase. It is open because it
is not owned by a single company. In fact, many tracing tooling vendors are
supporting OpenTracing as a standardized way to instrument distributed tracing
[16].

Logs, Metrics, and Traces are the pillars of observability but individually they
don’t provide the value observability is supposed to deliver. To better understand
this, a good analogy is to compare tyres, gasoline, and motor oil by saying that
they all contribute to what we call f1 tracing. Technically, this is not incorrect,
but they all work together to achieve the goal [4]. Similarly, OpenTelemetry
replaced previous technologies such as OpenTracing and OpenCensus.
Individually, those technologies used to cover a portion of observability, such as
OpenTracing for distributed tracing and OpenCensus, will be more focused on
metrics, but as we have seen before, they do not provide the value that we are
attempting to achieve with observability. OpenTelemetry incorporates all of the
learning experiences and even some pieces of code that have been built up over
the years, and it has now grown into a new project that is supported and
managed by CNCF and is free and open source.

RQ 2. 2. In terms of observability, is there something OpenTelemetry does not
provide us with?

Microservices, or independent services that perform a specific core function, are
used in modern cloud-native applications. A particular requirement in an use can
bring up a large number of micro-services that interact with one another. In fact,
it is becoming increasingly difficult to track and separate a problem, such as a

15020

service slowdown. This is why OpenTelemetry, which is based on distributed
tracing, is beneficial. It enables the observation and comprehension of a complete
series of actions in a complicated interface among microservices. When the
problem is network-related rather than application-related, however, OTel
appears to be ineffective [7].

Assume that an HTTPS request is being monitored. Based on application traces,
OpenTelemetry provides useful information at the application level. Consider the
case where an unusually long execution time is noticed. It is impossible to
pinpoint why this occurs. Worse, if the issue isn't with the programme, but with
the link or alternate hops (for example, due to high traffic), one may question why
and how the request is taking so long when everything on the application side
appears to be fine [12]. A better explanation would be to demonstrate how the call
continues to progress through the network hop by hop in order to identify
(potential) bottlenecks [11].

To address such a problem, [Towards Cross-Layer Telemetry] introduced Cross-
Layer Telemetry (Clt), which combines device, flow, packet, and application
telemetry. Clt combines OpenTelemetry and network telemetry from In-Situ
Operations, Administration, and Maintenance (IOAM). Fig 5 gives the architecture
of Cross-Layer Telemetry. The authors have chosen Jaeger as the tracing tool for
this implementation, although CLT is generic enough to accommodate any other
tracing tool. The matching is accomplished by extending the IOAM headers.
Lastly, a telemetry driver is responsible for retrieving data from traces and
transmitting it to a collector for subsequent analysis [12].

Application Application

OTel Client CLT

Trace
reporting

:
NETLINK

! Network Traffic

i
| Trace-id
| Span-id
i

User Space
asedg Jasn

I0AM Agent

|

|———————
I Kernel Space
w
£ -
=L
D
-
=
E
2
=
3
b=l
@
3
o
c
o
@
)
32eds [puia)y

Application Trace I0AM Trace Reporting
y ___ Reporting

1 OTel Correlation 1OAM 1

i Collector 1 i Collector i

Figure 5: CLT Architecture
Implementation

OpenTelemetry is a set of tools for instrumenting, creating, gathering, and
transferring telemetry data in order to manage applications and infrastructure.
Metrics, logs, and traces are all part of this. Using diverse programming interfaces
is encouraged by the microservices strategy. Many firms still utilize C++ to build
high-performance systems instead of Java, Go or Node.js.

15021

We have deployed an application made up of two microservices that interact
through HTTP. To start, we used C++ to create two HTTP services, server and
client. Both make the ping endpoints available. In addition, when server's
endpoint is called, it automatically sends a ping to client .

To enable tracing, first we installed the OpenTelemetry C++ client (github).We
cloned its repository into our project's common folder. Then we generate
CMakelLists.txt to include both the OpenTelemetry C++ client and the
OpenTelemetry C++ library.

Our cmake files contain the curl command, the executables- Client and Server
and the ostream to output the logs to the console.The output from the build can
be seen the figures.

ile Edit View Search Terminal Help

File Edit View Search Terminal Help

: Jwork/source/opentelenetry-cpp/build/exanples/http$./http_si

Server is running..Press ctrl-c to exit... {
Ihell u name : [helloworld
nane : fhellowor . .
trace_id : c1d8577d7a941ec531Ff16c63%ee1e0f trace_td § €1d0577d7a941ec531FF10¢639ee1e0f
span_id : edcob3876765c05C span_id : 00eb88sdb193b64f
tracestate tracestate
parent_span_id: 00eb888db193b64f parent_span_id: 60060060000006060
start i 1652876950555145139 start 1 1652870956553019465
duration = @ oee1s duration | 2668379
escription h
span kind : Server description)
status : Unset span kind : Client
attributes : status : Unset
http.header.Traceparent: 80-c1d0577d7a941ec531fF10c639eel1edf-00eb88adb19 attributes

http.header.Accept: */*
http.request_content_length: 0
http.header.Host: localhost:8860
http.scheme: http
http.client_ip: 127.6.0.1:47206
http.method: GET

net.host.port: 8800
http.server_name: localhost

http.header.Date: Wed, 18 May 2022 10:49:10 GMT
http.header.Content-Length: &

http.status_code: 200

http.method: GET

http.header.Host: localhost
http.header.Content-Type: text/plain
http.header.Connection: keep-alive

events
http.scheme: http
name : Processing request http.url: http://localhost:8800/helloworld
tinestamp : 1652870950555167851 events .
attributes Links
1links 1 . resources

: fwork/source/opentelemetry-cpp/build/examples/http$./http_clien

resources
service.name: unknown_service
telemetry.sdk.version: 1.3.0
telemetry.sdk.name: opentelemetry
telemetry.sdk.language: cpp
instr-1ib : http-server

Figure 6: Https Server Tracing

service.name: unknown_service

telemetry.sdk.version: 1.3.0

telemetry.sdk.name: opentelemetry

telemetry.sdk.language: cpp
instr-lib : http-client

Figure 7: Https Client Tracing

Conclusion and Discussion

Failure is never predicted, and pinpointing the specific reason of post-
deployed sophisticated programme issues is extremely challenging. Even for the
most experienced teams it is difficult to anticipate all possible circumstances that
could cause their programmes to crash or expose sensitive data. As a result, the
capacity to recognise issues in real time and respond fast is critical. That's where
observability and monitoring play a role, and architects who work carefully on
these two tasks will enjoy the profits of a more resilient software design. The
purpose of OpenTelemetry is not to have an observability platform, but instead to
provide a standard platform for collecting and transmitting operational data that
may be utilised in monitoring and observatory systems, both open source and
commercial. We have successfully implemented tracing with the help of
OpenTelemetry API. The traces gave the information about the spans, parent
spans, trace-ids etc. As discussed earlier, the traces we received with

15022

OpenTelemetry are application based and nothing on network information. Hence
we cannot rely only on OpenTelemetry for analytics.

References

[1] Karumuri, Suman & Solleza, Franco & Zdonik, Stan & Tatbul, Nesime.
(2021). Towards Observability Data Management at Scale. ACM SIGMOD
Record. 49. 18-23. 10.1145/3456859.3456863.

[2] T. Salah, M. Jamal Zemerly, Chan Yeob Yeun, M. Al-Qutayri and Y. Al-
Hammadi, "The evolution of distributed systems towards microservices
architecture," 2016 11th International Conference for Internet Technology and
Secured Transactions (ICITST), 2016, pPp- 318-325, doi:
10.1109/ICITST.2016.7856721.

[3] Kasun Indrasiri and Prabath Siriwardena. 2018. Microservices for the
Enterprise: Designing, Developing, and Deploying (1st. ed.). Apress, USA.

[4] Reichelt, D.G., Kithne, S. and Hasselbring, W., 2021. Overhead Comparison
of OpenTelemetry, inspectIT and Kieker.

[5] Ellis, A., 2022. Emplacing New Tracing: Adding OpenTelemetry to Envoy
(Doctoral dissertation, Tufts University).

[6] Fong-Jones, L. and Parker, A., 2020. Observing and Understanding
Distributed Systems with OpenTelemetry.

[7] Castanheira, L., Benson, T.A. and Schaeffer-Filho, A., 2020, December. The
Case for More Flexible Distributed Tracing. In Proceedings of the Student
Workshop (pp. 27-28).

[8] F. Boldrin, C. Taddia and G. Mazzini, "Distributed Computing Through Web
Browser," 2007 IEEE 66th Vehicular Technology Conference, 2007, pp. 2020-
2024, doi: 10.1109/VETECF.2007.424.

[9] N. Marie-Magdelaine, T. Ahmed and G. Astruc-Amato, "Demonstration of an
Observability Framework for Cloud Native Microservices," 2019 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), 2019, pp.
722-724.

[10] Chumpolsathien, Nakhun. (2019). Microservices: the Future of Distributed
System. 10.13140/RG.2.2.10322.61128/1.

[11] Gatev, R., 2021. Introducing Distributed Application Runtime (Dapr). Apress.

[12] Justin Iurman, Frank Brockners, and Benoit Donnet. 2021. Towards cross-
layer telemetry. In Proceedings of the Applied Networking Research Workshop
(ANRW '21). Association for Computing Machinery, New York, NY, USA, 15-
21. https://doi.org/10.1145/3472305.3472313

[13] H. Zhao and J. Bi. 2013. Characterizing and Analysis of the Flattening
Internet Topology. In Proc. International Symposium on Computers and
Communications (ISCC).

[14] OpenTelemetry. Effective Observability Requires High-Quality Telemetry. See
https://opentelemetry.io/

[15] OpenCensus. Introduction, Tracing . See
https://opencensus.io/introduction/
[16] Opentracing. Extended tracing with open-tracing. See

https://www.dynatrace.com/support/help/extend-dynatrace/extend-
tracing/opentracing/

[17] Lozano-Nieto, A., 2003. Telemetry. In Electrical Measurement, Signal
Processing, and Displays (pp. 27-1). CRC Press.

15023

[18] Rinartha, K., & Suryasa, W. (2017). Comparative study for better result on
query suggestion of article searching with MySQL pattern matching and
Jaccard similarity. In 2017 5th International Conference on Cyber and IT
Service Management (CITSM) (pp- 1-4). IEEE.

[19] Rinartha, K., Suryasa, W., & Kartika, L. G. S. (2018). Comparative Analysis of
String Similarity on Dynamic Query Suggestions. In 2018 Electrical Power,

Electronics, Communications, Controls and Informatics Seminar (EECCIS) (pp.-
399-404). IEEE.

