Early detection of Alzheimer's diseases through IoT

Padmini Mansingh
Department of Computer Science and Engineering, Institute of Technical Education and Research (ITER), Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
Corresponding author email: padminimansingh@gmail.com

Binod Kumar Pattanayak
Department of Computer Science and Engineering, Institute of Technical Education and Research (ITER), Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
Email: binodpattanayak@soa.ac.in

Bibudhendu Pati
Rama Devi Women’s University, Bhubaneswar, Odisha, India
Email: patibibudhendu@gmail.com

Abstract---In this article, we discuss a biological explanation of Alzheimer's disease by using IoT-enabled devices. Alzheimer's disease has different stages depending on risk factors, and it has no current cure. Today, Alzheimer's disease is a prominent issue among researchers. In order to provide better treatment, the investigation is updated for improved understanding of Alzheimer's disease (AD). In this research, we classify IoT implemented data to recognize and identify stages of Alzheimer's patients. Wearable assistive IoT with complicated embedded artificial perception utilizing deep learning is being developed in this paper and also represents the largest comprehensive study of AD approaches with helping the neurologist to make a better diagnosis.

Keywords---IoT, wearables devices, sensors, AAL, Alzheimer's, dementia.

Introduction

Alzheimer's disease is a common type of dementia that causes different behavioral changes and memory losses[1]. By increasing age, the possibility factor increases to have a disease like Alzheimer's. It worsens over time because gradually the
neurons are dead. It is a progressive disorder that occurs in the age between 30s and 60s. It slowly destroys the ability of thinking by killing the neurons. Dr. Alois Alzheimer in 1906 noticed the unusually abnormal clumps (amyloid plaques) and bundles of tangles (tau or neurofibrillary) that appeared in his patient[2]. Her symptoms are so rare to noticeable like language problem thinking abilities and behavioral changes. We generally know that neuron communicates in the brain for information sharing. The procedure of flow is like neuron to neuron, the neuron to muscles and brain. Damages first appear in the hippocampus then gradually grows all over the brain is the final stage of Alzheimer’s disease. Currently, the rank of Alzheimer’s disease is the third in all over the world and causes death in the United States. Over 5.5 million Americans suffering from Alzheimer’s over the last 2 decades. Wearable 2.0 healthcare is built on smart clothing that incorporates a variety of physiological sensors.

The body area network (BAN) of the classification conduct now has to data gathering and communication methods[3]. These smart health care systems, which include all of these technologies, such as IoT, cloud technology, and big data analytics, could perform as a healthcare monitor. by sophisticated technology, IoT and big data analyst make healthcare professionals for doing a better diagnosis at the early stage of time. several important finding through a combination of technology IoT and big data analytics makes this article more prominent for further research.

Motivation and Contributions

We’re particularly interested in seeing if the patient’s movement can be used to compute the stage based on their movement using various machine learning and deep learning methodologies. Finally, utilizing a mix of IoT and deep learning technology, we suggested a new technique of application for detecting stages of Alzheimer’s disease patients through daily activities. Furthermore, we proved that combining several irregular activities with an existing dataset can diagnose illness stages with a higher accuracy factor. We conduct all of our tests on the care to eliminate the biases introduced by noisy data. To see how effectively the offered models generalize to new data, we use machine learning and deep learning to assess their performance. The major contribution is presented in this paper is, we initially analyzed all facets of Alzheimer’s disease before providing a more objective assessment of CNN performance for patient stage classification, which will serve as a firm foundation for future study.

The remaining section is organized as follows:

Section-2 contains an elaborative description of symptoms of Alzheimer’s disease, Section-3 describes the related works, section4 describes the Different types of IoT Sensor used, Section-5 describes different AD patient monitoring techniques, Section-6 describes the elaborates of methodology, Section-7 describes the experiments and Results, Section-8 elaborates the classification part, Section-9 gives the discussion part and the last section contribute the conclusion part.
Symptoms of Alzheimer’s disease

Thinking, loss of memory and vision issues are the major cause of Alzheimer’s disease. Symptoms gradually improve over time. MCI (Mild Cognitive Impairment) is the first stage of disease among other stages. There are three stages: CN (Cognitively Normal), MCI (Mild Cognitive Impairment), and late-stage AD (Alzheimer’s Disease)[4]. It is hard to recognize but daily activities are measured to determine the early stages of AD. Earlier diagnosis should be to maintain the improvement of the patient. The basic symptoms are difficulty to speak, swallowing, behavior changes, disorientation, and loss of memory. It is best to immediately visit a doctor so that cause can be determined. Microscopic changes in the brain begin long before the first signs of memory loss. The memory changes will be captured through the microscopic test. Hundred billion nerve cells are connected in the brain for doing a specific operation like hearing seeing an object, smelling, thinking, learning, and remembering. Two abnormal structures called plaques and tangles are prime suspects in damaging and killing nerve cells[5]. Plaques are created due to the deposition of beta-amyloid protein and tangles are created due to tau protein are the two main factors for destroying neurons. By increasing their age unpredictable patterns are spreading all over the brain. Plaques and tangles play a major role in blocking of communication of neurons in Alzheimer’s disease. These nerve cells cause savior memory to fail. Different kinds of changes like personality changes are carried out.

Related Work

In this segment, we present related work in the area of IoT devices and sensor technology for the care of senior citizens. The work in this area is segmented into some types in several parts. Existing research has looked into how big data associations can lead to individualized, prediction-based improvements in care quality. We identify those aspects to be mainly focused on IoT technology on Alzheimer patients in different precepts. Various studies on the use of IoT in improving the lives of Alzheimer’s sufferers have been undertaken by various researchers. Ashfaq and colleagues offered a mobile-based system for Alzheimer’s disease diagnostics, as well as a system that employs the machine-to-machine (M2M)/Internet of Things platform to help patients[6]. Because it is very important to diagnose the stage one patient by accurate identification. The growth of the patient is now rapidly increasing with time. For early detection of diseases, IOT takes the main role by utilizing different sensors for monitoring patients to assist doctors to give better treatment. smartphone software helps patients to monitor their activities and reduce their health risk and cost of treatment.

By IoT sensors, the smart home concept is possible for Alzheimer’s patients by giving all details of the patient to the doctor and caretaker family member for immediate treatment for early detection is properly described by Sindhu and colleagues. The main focus of this study is to classify different stages of Alzheimer’s patients by using IoT health monitoring technology. Patients with Alzheimer’s disease who live alone. For monitoring emergencies, the controlling of activities through IoT devices is important. To overcome this short-term problem, wearable 2.0’s emotion recognition technology may be more accurate than existing health-care systems. The Path Tracking and Fall Detection System
(PTFaD), a smartphone-based traveling tracing system that can detect falls, was utilized as a safety assistant in the study[6].

Clinical practice is not only one solution for the diagnosis of a disease like Alzheimer’s, they have to be surrounded by proper care so that lifesaving method is going appropriately. As a result, designing a cost-effective healthcare system to deal with chronic diseases is a huge task, especially given the high number of older people and empty nesters, the majority of whom suffer from one or more chronic diseases. For data analysis, health professionals need a data analysis module for early prediction to get proper medication. The four parameters like sitting, sleeping, standing, and walking are taking considerations for data analysis for monitoring a patient through IoT sensors.

To determine patients’ activities with the help of the HAR dataset is a complex process but it gives a big health care dataset for researchers to make a proper diagnosis with a good accuracy factor[7]. When a negative feeling is recognized, the focus is shifted to obtaining detailed drug information from text. Most importantly, utilizing this knowledge to discover an intriguing link between finding value and actual posture. The presence and detection of correlations in data serve as the foundation for forecasting future patient outcomes in a particular setting. This technique is also used to calculate the survival rate.

Different types of IoT Sensor used

IoT devices open up a slew of new possibilities for healthcare providers to keep track of patients, as well as for patients to keep track of themselves. Sensor data can assist medical practitioners to comprehend crucial circumstances more quickly and correctly, and patients can be better informed about their conditions and progress. Different types of IoT devices aid in the development of more tailored approaches to health status assessments as well as more cohesive illness management strategies are describing follows:

Wearables Sensor Used

The devices that may well be positioned on the monitoring individual’s body are integrated into the wearable component. PPG (photoplethysmoGraphy) and ECG (electrocardiography) smart bands are two examples of smart bands that extract physiological data [8]. Now, there are many smart bands are implemented on the human body to track activities. The Apple Heart Study (AHS) is a well-known example[9].

The health remote monitoring clothes(MERMOTH) is a European project in smart fabrics and interactive textiles for detecting ECG, skin temperature, and respiratory inductance plethysmography[10]. Worn health monitoring systems can include a variety of small sensors that are wearable or uniform implanted. Heart rate, blood pressure, body and skin temperature, oxygen saturation, respiration rate, and ECG are just a few of the physiological aspects that these biosensors can monitor.
The IMU, which retrieves motion data, is another information gathering sensor available through wearables devices [11]. There are so many wearable IoT devices like smart clothing, shoes, belt, band, etc. Bi-Fi is an embedded sensor technology for detecting blood content on the thorax, ECG, EEG SpO2 at well known designed wireless technique [12]. Medical implant communication service (MICS) band also is one of the wireless technology used in recent years for getting data [13]. Different Bluetooth sensors detect alarm conditions of Alzheimer's patients at the appropriate time for giving immediate medical care. Big data bring a new methodological platform for predicting effective high throughput measuring for risk management. The wearable health care system (WEALTHY) project and AMON (advanced care and alert portable telemedical monitor) wearable health-monitoring gadget was developed for high-risk cardiac/respiratory patients who would be restricted to the hospital or their residences [14].

The project, which was completed in 2005 as part of the European Commission's fifth framework program, developed a wearable garment that can recode biomechanical variables and physiological information and may be worn beneath conventional clothing. Patients may also be required to wear a gadget that measures physiological factors like heart rate or rhythm. If these data are handled with analytics, they will be most helpful in advising healthcare results. The sensing devices, in particular, should transmit a message regularly to confirm that they and the system are working properly. Sensors work within a 100-meter range from the base station for continuous monitoring of the patient[15]. The different kind of sensor is used in the human body is described in Fig 1.

Healthcare experts are focusing on using IoT devices to monitor patients in order to help patients with facial recognition, location traceability, and behaviour pattern identification issues. In case of infants and many other age groups, by combining routinely gathered psychological measurements with modern big data techniques that require minimal training and implementation, they are able to recognize and respond to other people's feelings and systems for human-machine interaction have also been developed. The key issue for Alzheimer's patients is monitoring, which these IoT gadgets can help with. Wearable sensors can read and calculate steps per day by tracking them. The Alzheimer's data is separated
into groups based on these wearable devices. Typically focusing on diagnosis, wearable devices are being more helpful for health professionals in decision making.

Non-Wearables IoT Used

Non-wearable devices are those that can recover info on persons without having to touch them. 2D cameras, lidar cameras, smart scales, mattress sleep evaluation sensors, localization beacons[16], and other sensors fall within this area. They're intriguing sensors to include because they provide additional charge without requiring constant wear. A list of these properties, laterally with a short-term explanation for each, has been selected for the estimation of the various wearable devices.

Environmental IoT Used

Environmental sensors are installed and used without being intrusive, which is valuable for a health system. For balancing disease and non-disease subjects at statistical experiment solve by a different sensor for individual treatment for understanding heterogeneity. To use what is sensed, such sensors characteristically involve a way to interrelate with a node. We discovered that we can gain information and status from the environment by introducing ambient temperature, touch, tilt, vibration, and audio sensors in it [16].

AD patient monitoring

“At any time, at any place, anyone can access the IoT device for collecting information. Kevin Ashton in 1982 proposed the term internet of things[17]. Although treatment can help manage symptoms but not cured permanently. Now big data tools are making history in medicine for risk satisfaction through predictive analytics. Patient behavioral analytics has a wide range of applications. Through Wireless sensor networks, healthcare professionals would help patients early. Sensors attached to patient, doctor, and hospital for collecting information continuously to keep tracking of patient details. Recent advancements of the Internet of Things (IoT) led in every sector of healthcare management. To maintain the hospital, visit the United Kingdom implements an IoT-based geographical sensor in the healthcare industry[18]. To implement IoT solutions for different diseases at different times related to performing a qualitative approach to a new world to a better future is now trending.

Using different methodology in deep learning with the help of IoT sensor data gives good research in the field of diseases like Alzheimer's. To monitor different stages of Alzheimer’s patients for different care at a different time can be maintained through real-time monitoring patients to perform a qualitative solution. Without any preference for this common approach, technology can now be used to develop prediction models. The MMC includes a 6-axis accelerometer and gyroscope, 3-axis magnetometer, ambient temperature, barometer, pressure, altimeter, and ambient light[16], among other sensors, and from databases like Fitbit, we can easily retrieve data using API. Activity Recognition Systems (ARS)
based on Human Activity Recognition have been developed as part of the Ambient Assisted Living (AAL) research field (HAR)\[19\].

The effectiveness of these systems is enhanced for the aged and dependent population’s quality of life and health care. The activities of daily living are gathered in a huge number of datasets for HAR to identify or classify with the help of deep learning in a specific context. Sensor-based datasets were used to evaluate in this paper to categorized the CN, MCI, and AD patients. By utilizing HAR’s sensor-based dataset to track patient health. This system’s sole purpose is to improve the precision with which emotions are recognized. ECG, body temperature, and heart rate are some of the physiological signals collected by the physiological signals based on emotional human machine interactive (HMI) system research\[20\]. Accelerometer, gyroscope, and other sensors are used to forecast human activities. A Convolutional neural network (CNN) with spatiotemporal three-dimensionalities was employed in several of the articles. Smart systems are connected to every object in this world, the architecture contains a combination of SMEs’ back-end servers, Technology Integrated Health Management (TIHM) back-end system, installed sensor at home, and user interface for data visualization and management\[21\]. Both humans and robots We initially describe the emotion as unique multimedia that is analogous to sound and video in the line sight(LOS) propagation environment. Communication between the persons involved must be done in real-time. The continuous incorporation of corporeal creation and the material world has developed the network's feature growth trend, thanks to the internet, mobile phones, and a plethora of other devices. The framework gathered information from the server through IoT devices for better health care management. The activities of daily living are maintained through monitoring devices, and this will help to prevent diseases like AD. Automatic medication dispensers and the corresponding software applications are now very much helpful for mild and moderate Alzheimer patients wearable IoT gadgets linked with a mobile application can act as an intelligent personal assistant for patients, and the "ALZ Caretaker" software offers several services, including tracking the patient’s activities through GPS, prescriptions, and food schedule notifications\[22\]. For identifying AD patients by identifying a known face in a real-time manner through wearable IoT devices. According to “An IoT-Aware Architecture for Smart Healthcare Systems,” current procedures for patient monitoring, care, management, and supervision are often physically accomplished by healthcare consultants\[21\].

Programs for managing high-cost patients are costly. It also included a two-axis accelerometer for connecting user activity with the vital signs being measured. Even if advanced E’HR systems were to be universally adopted instantaneously as described in the next section, the body area network of classification communication has diverse conducts to obtain a huge volume of cloud-based smart health systems combine all these technologies including IoT, medical monitoring, cloud computing, and big data analysis, which can all be aided. Wearable sensor data is big data. Medical sensors record daily activities over a specific time interval. Sensor data is reoffered as time series frequency. iCare is one of the reliable projects which helps Alzheimer patients as well as caregivers to give proper care through IoT sensors. Another project called City4Age by Horizon2020 referred to age-friendly cities for a consistent environment to
sustain[23]. The early symptoms of dementia patients are tracked by sphere project and also through GPS technology caregiver track their patient or loved one through Tweri project. multimodal data access platform can give researchers a better platform to investigate the data for a better diagnosis through ROADMAP[24]. The project called Timeless is applied for facial recognition also helps Alzheimer’s patients with better medication. It’s extremely crucial to identify and address behavioral health issues, especially when depression is so common. Six use cases for high-risk patients have been addressed, all of which are probable to benefit greatly from clinical analytics. the length of a patient staying in the hospital is decided by health professionals through analyzing data.

Methodology

The potential for active, clinically appropriate predictive analytics with big data, serving both better-quality physician decision-making and medical system operations, is largely untapped. To develop a unique abnormal activities recognition model for each user, a deep neural network is used to analyze the training set and establish the classification model, which is then tested using the testing set. This research presents the design of a big data analytics and sensor-built patient behavior one-to-one care system through deep learning technology that is too attentive and reports for patient dynamic signs monitoring at an early stage of time. The amount of devices attached to a person varies depending on the request, which is normally determined by healthcare specialists. For receiving a lot of scrutiny and questioning from patients and healthcare providers. MongoDB interacts closely with patient data organization, device-based apps, and consoles [25].

The healthcare professionals are in charge of managing patient data, as well as providing medical and dietary advice and making decisions. In related work, life-size development of big data and sensor-based patient actions one-to-one care systems is not available and decision rules require prospective validation after model estimation are estimated in one study and their predictive value is tested in a second, usually with a completely different patient group [26]. It is undeniable that extending healthcare practitioners’ access to patient records is beneficial. The use of IoT to analyze large amounts of medical data creates a noise accumulation effect. As a result, we place a strong emphasis on the fact that, nowadays, wearable technology is widely recognized. It is challenging to obtain high accuracy from cloud-based health data. From the different scenarios, we conclude that mining the electronic health care records which are collected from IoT sensor data are ideally, and surprisingly increased so; management is a very much difficult part for the data scientist.

The proposed of this method is to use IoT during data transmission and reduce the cost and the excessive personal involvement and analyze big data with IoT-based sensor data to recognize and monitor patient behavior. Using data from patients’ accelerometers, we solve the challenge of Alzheimer’s staging categorization. Data plotting concerning weight, height, age, and gender is shown in Fig.2.Because the time-series data given by accelerometers may contain noise, have varied durations, or not be time regular, some pre-processing processes are required to evaluate them efficiently. By applying Gaussian kernel smoother to
complete smoothing or denoising. After the data has been pre-processed, a deep learning algorithm can use it to create a model.

![Fig.2. Data plotting concerning weight, height, age, and gender](image)

The following steps are proposed for evaluating CNNs in everyday life activity recognition and unusual behavior recognition tasks: To begin, a real-world dataset is altered to imitate anomalous behaviors associated with Alzheimer’s. CNNs are taught to recognize and encode daily activities and behaviors patterns. Finally, the trained model is utilized to spot abnormalities that deviate from usual everyday habits. The datasets, as well as the methodology used to construct a non-natural dataset that reflects the normal behaviors of a person with Alzheimer’s.

The activities in this dataset are completely normal, but some of them will be changed to find variances. The step-by-step layer of the data processing is described in the following model in Fig.3.

![Fig.3. The proposed workflow system](image)

Participants are creating different abnormal activities to generate the error. These mistakes can be detected in the day-to-day routines and motion patterns of elderly adults who are suffering from dementia. To identify certain types of abnormalities that can be noticed in the daily habits of persons with Alzheimer’s. Activities that are repeated: Alzheimer-affected seniors may forget whether or not they completed a certain daily activity, prompting them to repeat it. To reflect on this cognitive issue, by creating aberrant behaviors by physically adding a certain set of movements into a dataset.
Experiments and Results

The patient's accelerometer movement records should then be used by a classifier to forecast one of the three groups. Because the problem's input data comes from accelerometer sensors, each patient in the dataset will have at least one accelerometer sequence. These sequences, or data streams recorded over time, will contain the values for acceleration changes in the axes X, Y, and Z, and these three data features, along with the temporal dimension, will be the three data characteristics to be analyzed in our methodology. We expect the movement data to show complicated patterns sequences of mixed duration over time due to the peculiarities of this situation.

As a result, deep learning methods are appropriate classifiers for this data because they can make use of the internal structure of the sequences. The CNN-2D network's extracted feature maps from the first and second layers, as well as the flattening layer, are visualized as stated. Noise is decreased, and more useful features are learned as a result. Diverse activities produce different characteristics as time passes. The second experiment involves detecting aberrant activity. The Extracted characteristics from the first layer are indicative of CNN networks. Features extracted from the previous layer. The deeper intermediate representations are learned as the model layers progress. In the last layer, the features become more discriminative and noticeable. The CNN-2D network is used to present the results. After the models have been trained with normal behaviors, a test set containing abnormal action is presented to the classifier, and activity cases with low confidence values are identified as abnormal. Experiments in our work, on the other hand, are carried out on activity slices CNN is better at detecting "confusion-related activities," and as well as better at capturing "repetition-related activities." Changes in feature patterns can be detected by CNN. Even though it isn’t stated directly in daily activity records, each action is made up of steps. This dataset's steps are based on motion sensors that have been triggered.

Algorithm 1: Patient identification model

Step 0: Start
Step 1: Capture the data
Step 2: Add abnormal data to original data data
Step 3: Preprocessed the data H1={f1,f2,...}+{g1,g2,...}
Step 4: Apply Gaussian kernel smoother for denoising
Step 5: By applying deep learning feature extraction algorithm
H*=f*1,f*2,...,g*1,g*2,...
Step 6: For (i=1 to m) && (j=1 to n)
Match the vector with existing vectors
u2(f1,fi,g1,gj)
Step 7: if u2=>0
Identify the patient concerning their stages.
Step 8: Else Normal patient
Step 9: End
Classification

According to their steps or progression, disease stages determine normal and abnormal behavior. Different types of sensors, such as accelerometers, gyroscopes, and magnetometers, are built into the patient's body and environment to provide visual, depth, and motion information. Through the use of a human tracking movement algorithm[27], patient behavior analysis has become a key aspect in detecting Alzheimer's disease. For senior patients, patient stages of sickness such as CN, MCI, and AD are defined based on their anomalous behavior. The different stages of Alzheimer's disease are described in Fig 4.

Data is acquired using a sensor in multiple sessions over a while. How patients interact with one another and how their posture alters as a result of real-time monitoring via IoT devices. Emotional changes in patients with Alzheimer's disease are a crucial component in determining whether or not they have the condition. In this paper, we used an algorithm to predict which patients might have irregular behavior. Using various datasets, aberrant activities examine the stages of the disease. Aberrant actions detected by sensors, such as recurring activities. A sliding window technique was used to extract the daily activities feature along each axis x, y, and z, magnitude. For both healthy and Alzheimer's patients, the feature vector used to train the CNN was confused behavior. Validation is performed using one of three classifiers: SVM, Logistic Regression or CNN. A patient's wearable can be used to track the patient's movement. The user's movement can be measured using the accelerometer, gyroscope, and magnetometer sensors. From Table1 and Fig.5, we get a comparative performance analysis of LSTM, SVM, DeepconvLSTM, and CNN.
Fig. 5. Performance comparison of the proposed model

Table 1: Classification comparison analysis of LSTM, SVM, DeepconvLSTM and CNN

<table>
<thead>
<tr>
<th></th>
<th>F1 score</th>
<th>Precision</th>
<th>Recall</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM</td>
<td>70</td>
<td>62</td>
<td>81</td>
<td>97</td>
</tr>
<tr>
<td>SVM</td>
<td>67</td>
<td>59</td>
<td>78</td>
<td>97</td>
</tr>
<tr>
<td>DeepconvLSTM</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>CNN</td>
<td>98.6</td>
<td>98.6</td>
<td>98.2</td>
<td>98.8</td>
</tr>
</tbody>
</table>

Discussions

A growing number of studies on big data and IoT are being conducted. IoT security is critical for retaining and gaining patients’ faith in privacy, as well as realizing the promise of IoT. In this paper, we proposed a different method of application to detect stages of Alzheimer’s patients through daily activities using a combination of IoT through deep learning technology. With this system, the health industry becomes very easy to access the data remotely via different IoT devices.

Caring is needed 24x7 for Alzheimer’s patients, which is not possible for watching for all the time. IoT sensor is only one solution for preventing the disease for not to spread. Another factor for the diagnosis of Alzheimer’s patients is data, which is gathered by real-time data captured through IoT sensors in real-time. The rapidly received popularity of IoT gives a continuous improvement to old-aged Alzheimer’s patients. In this paper, we proposed a good solution for analyzing data of Alzheimer’s patients with the help of deep learning and IoT sensors. An algorithm should be used by all healthcare organizations to forecast who is probable to be back to the medical. Nevertheless, among the systems we looked at in this paper, there were a few that scored exceptionally well.
For a qualitative usability assessment, we need long-term data by receiving through monitoring patients by an increasing preference to use wearable sensors to take a more proactive approach (prediction) and evaluate the possibilities of facilitating self-regulating active in home surroundings by boosting the intelligence of safekeeping (alarm). Similarly, substantially more information is available in medical situations to help with analysis and supervisory. By different aspects of diagnosis, a health monitoring system takes a very important role in the detection of diseases. To meet this desire, a variety of system models and salable solutions aimed at giving immediate response evidence about one’s fitness state have been developed in recent years. The age between 19 to 48 as a group of 30 people have been counted for research. Each participant did different actions while trying a smartphone (Samsung Galaxy S II) around their diaphragm (STANDING, SITTING, WALKING, WALKING UPSTAIRS, SITTING, WALKING DOWNSTAIRS) [28].

The data is divided into two-part as 8:2 training and testing. The signals are pre-processed with a sliding window of 2.56 sec and 0.37Hz frequency. The activities of daily living (ADL) are recorded through the waist-mounted smartphone. Many new sources of data, such as data from cell phones and social media applications, are becoming available. As a result, combining data from many sources about mental health, socioeconomic status, or other issues like marital and living situations may improve the quality of predictions that can be made dramatically. By the data is sent to a server, where real-time analytics are utilized to determine whether the patient is likely to decompensate. Furthermore, data mining is considered a source of conflict of interest among the population. For detecting abnormal activities, we consider the CNN model by accomplished of encrypting the order of activities. Fig.6, shows the activities of the patient.

![Plot of count activities](image)

Fig.6. The plot of count activities

By dividing the data set into an 8:2 ratio, we employed a deep learning approach to classify the disease and its various stages. For the classification of, CN, MCI, and AD, different classifier models were employed. The performance Metrics cast-off is used for each of the classifiers. The same performance indicators were
utilized to maintain the consistency of the AD, MCI, and CN categorization results.

Conclusion and Future Work

The monitoring of patient behavior will become an important element of healthcare. The use of big data and the Internet of Things can aid in the analysis of patient behavior. Big data analytics, is a strong technology that will be just as beneficial in health care as it has been in additional areas. Finally, such systems must be inexpensive to provide widespread public access to low-cost, omnipresent health monitoring. Finally, this paper examines the real-time performance of individuals and their movement detection systems, highlighting the practicality and effectiveness of implementing movement detection systems. Detecting disease at an earlier stage, when it is easier and more effective to treat it; controlling specific individual and group health, and detecting healthcare fraud promptly and effectively are all potential benefits. All studies covered in this section will cover the cause of diseases and the helping hand of IoT devices to cure the diseases at their early stage. The IoT devices can embrace new ways for the treatment of Alzheimer’s disease.

This research can also help to monitor AD patients through IoT devices. Brought together with a term clinical and health care expert to allow the patient with AD for a better quality of life, is the main focus of care. IoT platform is changing the daily human experience with the heterogeneity and complexity of big data. This research describes a technique for recognizing sensor-based activities and detecting dementia-related anomalies. To accomplish these tasks, CNNs are used. Furthermore, the results of anomaly detection show that it is possible to detect the majority of abnormal behaviors in aging persons by dementia in their daily lives. Based on these findings, more studies will be done to develop better methods for disease screening and monitoring in Alzheimer’s disease, thereby increasing the efficiency of clinical research and therapy. We will experiment with other deep neural models and data reduction strategies in the future to overcome high dimensionality data and improve performance with emotional data.

Additional work will figure out on these results to progress better-quality tools for disease screening and monitoring in AD, We will experiment with other deep neural models and data reduction strategies in the future to overcome high dimensionality data and improve performance with emotional data.

References