

How to Cite:

Nair, P. C. P., & Baby, T. A. (2022). 2-domination polynomials of graphs. *International Journal of Health Sciences*, 6(S6), 875–882. <https://doi.org/10.53730/ijhs.v6nS6.9708>

2-domination polynomials of graphs

P. C. Priyanka Nair

Research Scholar, (Reg. No: 19213042092007), Department of Mathematics, Women's Christian College, Nagercoil, Tamilnadu, India | Affiliated to Manonmaniam Sundaranar University, Abishekappatti, Tirunelveli-627 012, Tamil Nadu, India

*Corresponding author email: priyanka86nair@gmail.com

T. Anitha Baby

Assistant Professor, Department of Mathematics, Women's Christian College, Nagercoil, Tamilnadu, India | Affiliated to Manonmaniam Sundaranar University, Abishekappatti, Tirunelveli-627 012, Tamil Nadu, India
Email: anithasteve@gmail.com

Abstract--Let G be a simple graph of order m. Let $\square D_2(G, i)$ be the family of 2-dominating sets in G with size i. The polynomial $D_2(G, x) = \sum_{i=\gamma_2(G)}^m [d_2(G, i)x^i]$ is called the 2-domination polynomial of G. Let $D_2(S_m, i)$ be the family of 2-dominating sets of the spider graph S_m with cardinality i and let $d_2(S_m, i) = |D_2(S_m, i)|$. Then the 2-domination polynomial $D_2(S_m, x)$ of S_m is defined as $D_2(S_m, x) = \sum_{i=\gamma_2(S_m)}^m [d_2(S_m, i)x^i]$, where $\gamma_2(S_m)$ is the 2-domination number of S_m . In this paper, we obtain some operations on graphs.

Keywords--2-dominating set, 2-domination number, 2-domination polynomial.

Introduction

Let $G = (V, E)$ be a simple graph of order m. For any vertex $v \in V$, the open neighbourhood of V is the set $N(v) = \{u \in V / uv \in E\}$ and the closed neighbourhood of V is the set $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighbourhood of S is $N(S) = \bigcup_{v \in S} N(v)$ and the closed neighbourhood of S is $N[S] = N(S) \cup S$. A set $D \subseteq V$ is a dominating set of G if $N[D] = V$ or equivalently, every vertex in $V - D$ is adjacent to at least one vertex in D . The domination number of the graph G is defined as the minimum size taken over all dominating sets D of vertices in G and is denoted by $\gamma(G)$. A set $D \subseteq V$ is a 2-dominating set if every vertex in $V - D$ is adjacent to at least two vertices in D . The 2-domination number of a graph G is defined as the

minimum size taken over all 2-dominating sets of vertices in G and is denoted by $\gamma_2(G)$.

2-Domination Polynomials Of Graph Operations

Definition 2.1

Let G be a simple graph of order m . A subset $D \subseteq V$ is a 2-dominating set of the graph G , if every vertex $v \in V - D$ is adjacent to at least 2 vertices in D . The 2-domination number $\gamma_2(G)$ is the minimum cardinality among the 2-dominating sets of G .

Definition 2.2

Let $D_2(G, i)$ be the family of 2-dominating sets in G with cardinality i . The polynomial

$D_2(G, x) = \sum_{i=\gamma_2(G)}^{|V(G)|} d_2(G, i)x^i$ is called the 2-domination polynomial of G , where $\gamma_2(G)$ is the 2-domination number of G .

Example 2.3

Consider the graph G given in Figure 2.1

V_1

V_5

G:

V_6

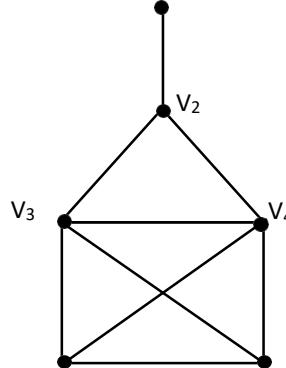


Figure 2.1

There is no 2-dominating sets of G of cardinality 1 and cardinality 2.

The 2-dominating sets of G of cardinality 3 are $\{\{v_1, v_3, v_4\}, \{v_1, v_3, v_5\}, \{v_1, v_3, v_6\}, \{v_1, v_4, v_5\}, \{v_1, v_4, v_6\}\}$.

Therefore, $d_2(G, 3) = 5$.

The 2-dominating sets of G of cardinality 4 are $\{\{v_1, v_2, v_3, v_4\}, \{v_1, v_2, v_3, v_5\}, \{v_1, v_2, v_4, v_6\}, \{v_1, v_3, v_4, v_6\}, \{v_2, v_3, v_4, v_6\}\}$.

$\{v1, v2, v3, v6\}, \{v1, v2, v4, v5\}, \{v1, v2, v4, v6\}, \{v1, v2, v5, v6\}, \{v1, v3, v4, v5\}, \{v1, v3, v4, v6\}, \{v1, v3, v5, v6\}, \{v1, v4, v5, v6\}$.

Therefore, $d_2(G, 4) = 10$.

The 2-dominating sets of G of cardinality 5 are $\{v1, v2, v3, v4, v5\}, \{v1, v2, v3, v4, v6\}, \{v1, v2, v3, v5, v6\}, \{v1, v2, v4, v5, v6\}, \{v1, v3, v4, v5, v6\}$.

Therefore, $d_2(G, 5) = 5$.

The 2-dominating set of G of cardinality 6 is $\{v1, v2, v3, v4, v5, v6\}$. Therefore, $d_2(G, 6) = 1$.

Since, the minimum cardinality is 3, $\gamma_2(G) = 3$.

Therefore, the 2-domination polynomial of G is

$$\begin{aligned} D_2(G, x) &= \sum_{i=\gamma_2(G)}^m d_2(G, i)x^i \\ &= \sum_{i=3}^6 d_2(G, i)x^i \\ &= d_2(G, 3)x^3 + d_2(G, 4)x^4 + d_2(G, 5)x^5 + d_2(G, 6)x^6 \\ &= 5x^3 + 10x^4 + 5x^5 + x^6. \end{aligned}$$

$$D_2(G, x) = x(1 + x)^5 - (x + 5x^2 + 5x^3).$$

Theorem 2.4

Let K_m be a complete graph of order m . Then $D_2(K_m \circ \overline{K_n}, x) = x^{mn}(1+x)^m$, for all $m, n \geq 2$.

Proof

Since K_m has m vertices, $K_m \circ \overline{K_n}$ has $m(n+1)$ vertices. Clearly, $\{v_{m+1}, v_{m+2}, v_{m+3}, \dots, v_{mn+m}\}$ is the minimum 2-dominating set of $K_m \circ \overline{K_n}$.

Therefore, $\gamma_2(K_m \circ \overline{K_n}) = mn$

Obviously, there are $\binom{m}{i}$ chances for 2-dominating sets of $K_m \circ \overline{K_n}$ with cardinality $mn+i$

where $1 \leq i \leq mn$.

$$\begin{aligned} \text{Here, } D_2(K_m \circ \overline{K_n}, x) &= x^{mn} + \binom{m}{1}x^{mn+1} + \binom{m}{2}x^{mn+2} + \dots + x^{mn+m} \\ &= x^{mn}[1 + \binom{m}{1}x + \binom{m}{2}x^2 + \dots + x^m] \\ &= x^{mn}[1 + x]^m, \text{ for all } m, n \geq 2. \end{aligned}$$

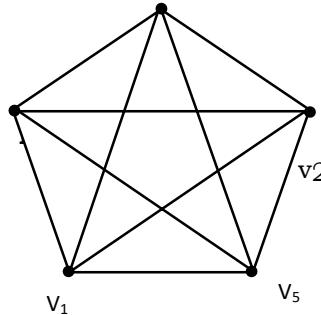
Example 2.5

Consider $K_5 \circ \overline{K_2}$ be the graph given in Figure 2.2.

V3

K5:
V2

V4



v11

V10

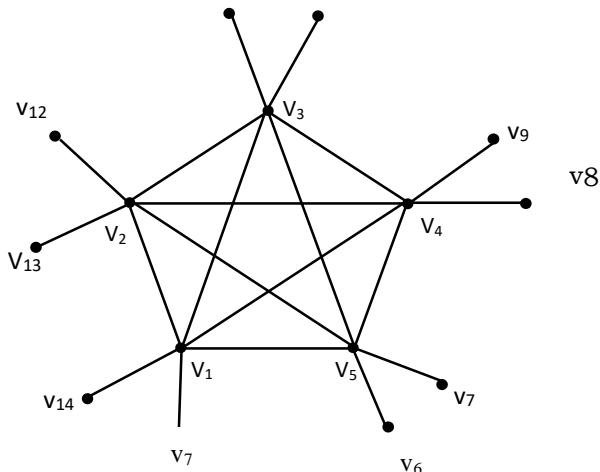
K5 \circ \overline{K}_2 :

Figure 2.2

There is no 2-dominating sets of $K_5 \circ \overline{K}_2$ of cardinality 1, 2, 3, 4, 5, 6, 7, 8, 9.
The minimum cardinality of $K_5 \circ \overline{K}_2$ is 10.

Therefore, $\gamma_2(K_5 \circ \overline{K}_2) = 10$

The 2-dominating set of $K_5 \circ \overline{K}_2$ with cardinality 10, 11, 12, 13, 14, 15.

$$d_2(K_5 \circ \overline{K}_2, 10) = \binom{5}{0} = 1.$$

$$d_2(K_5 \circ \overline{K}_2, 11) = \binom{5}{1} = 5.$$

$$d_2(K_5 \circ \overline{K}_2, 12) = \binom{5}{2} = 10.$$

$$d_2(K_5 \circ \overline{K}_2, 13) = \binom{5}{3} = 10.$$

$$d_2(K_5 \circ \overline{K}_2, 14) = \binom{5}{4} = 5.$$

$$d_2(K_5 \circ \overline{K}_2, 15) = \binom{5}{5} = 1.$$

$$\text{Therefore, } D_2(K_5 \circ \overline{K}_2, x) = \sum_{i=10}^{15} d_2(K_5 \circ \overline{K}_2) x^i \\ = x^{10} + 5x^{11} + 10x^{12} + 10x^{13} + 5x^{14} + x^{15}$$

$$\begin{aligned}
 &= x^{10} (1 + 5x + 10x^2 + 10x^3 + 5x^4 + x^5) \\
 &= x^{10}(1 + x)^5.
 \end{aligned}$$

Corollary 2.6

Let K_m be a complete graph of order m . Then, $D_2(K_m \circ \overline{K_m}, x) = x^{m^2}(1+x)^m$, for all $m \geq 2$.

Theorem 2.7

The 2-domination polynomial of $K_m \vee P_2$ is $D_2(K_m \vee P_2, x) = (1 + x)^{m+2} - [1 + (m+2)x]$.

Proof

Let K_m be a complete graph with order m and P_2 be the path with order 2.

Label the vertices of $K_m \vee P_2$ as, $v_1, v_2, v_3, \dots, v_m, u_1, u_2$.

Since K_m has m vertices, $K_m \vee P_2$ has $m+2$ vertices.

The minimum cardinality of $K_m \vee P_2$ is 2.

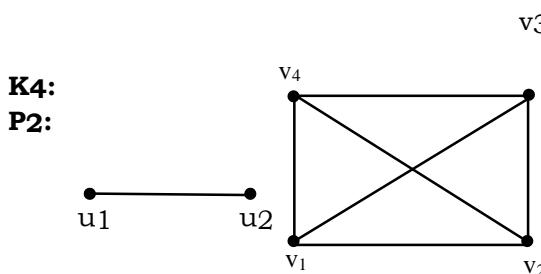
Therefore, $\gamma_2(K_m \vee P_2) = 2$.

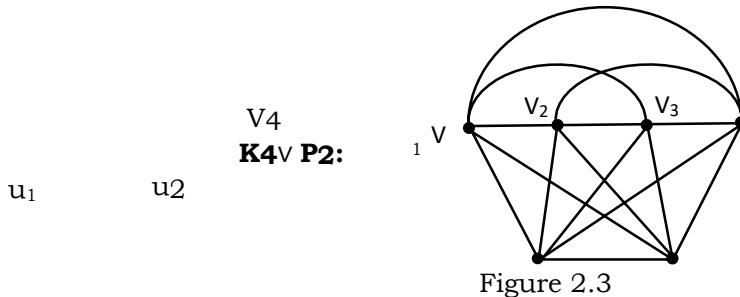
There are $\binom{m+2}{i}$ possibilities of 2-dominating sets of $K_m \vee P_2$ with cardinality $m+2+i$.

$$\begin{aligned}
 \text{Hence, } D_2(K_m \vee P_2, x) &= \sum_{i=\gamma_2(K_m \vee P_2)}^{|V(K_m \vee P_2)|} d_2(K_m \vee P_2, i) x^i \\
 &= \sum_{i=2}^{m+2} d_2(K_m \vee P_2, i) x^i \\
 &= \binom{m+2}{2} x^2 + \binom{m+2}{3} x^3 + \binom{m+2}{4} x^4 + \dots + \binom{m+2}{m+1} x^{m+1} \\
 &\quad + \binom{m+2}{m+2} x^{m+2} \\
 &= [\sum_{i=0}^{m+2} \binom{m+2}{i} x^i] - 1 - (m+2)x \\
 &= (1+x)^{m+2} - 1 - (m+2)x \\
 &= (1+x)^{m+2} - [1 + (m+2)x]
 \end{aligned}$$

Example 2.8

Consider $K_4 \vee P_2$ given in the Figure 2.3





There is no 2-dominating set $K_4 \vee P_2$ of cardinality 1. The minimum cardinality of $K_4 \vee P_2$ is 2.

Therefore, $\gamma_2(K_4 \vee P_2) = 2$.

The 2-dominating set of $K_4 \vee P_2$ with cardinality 2, 3, 4, 5, 6 are

$$d_2(K_4 \vee P_2, 2) = \binom{6}{2} = 15$$

$$d_2(K_4 \vee P_2, 3) = \binom{6}{3} = 20$$

$$d_2(K_4 \vee P_2, 4) = \binom{6}{4} = 15$$

$$d_2(K_4 \vee P_2, 5) = \binom{6}{5} = 6$$

$$d_2(K_4 \vee P_2, 6) = \binom{6}{6} = 1$$

Therefore, 2-domination polynomial of $K_4 \vee P_2$

$$\begin{aligned} D_2(K_4 \vee P_2, x) &= \sum_{i=2}^6 d_2(K_4 \vee P_2, i) x^i \\ &= 15x^2 + 20x^3 + 15x^4 + 6x^5 + x^6 \\ &= (1+x)^6 - 1 - 6x. \end{aligned}$$

Theorem 2.9

The 2-domination polynomial of $P_2[K_m]$ is $D_2(P_2[K_m], x) = (1+x)^{2m} - (1+2mx)$.

Proof

Let P_2 be the path with order 2 and K_m be the complete graph with order m .

Then, $P_2[K_m]$ has $2m$ vertices.

The minimum cardinality of $P_2[K_m]$ is $\gamma_2(P_2[K_m]) = 2$.

There are $\binom{2m}{i}$ possibilities of 2-dominating sets of $P_2[K_m]$ with cardinality i .

$$\begin{aligned} \text{Hence, } D_2(P_2[K_m], x) &= \sum_{i=\gamma_2(P_2[K_m])}^{|V(P_2[K_m])|} d_2(P_2[K_m], i) x^i \\ &= \sum_{i=2}^{2m} d_2(P_2[K_m], i) x^i \end{aligned}$$

$$\begin{aligned}
 &= \binom{2m}{2}x^2 + \binom{2m}{3}x^3 + \binom{2m}{4}x^4 + \cdots + \binom{2m}{2m-1}x^{2m-1} + \\
 &\quad \binom{2m}{2m}x^{2m}. \\
 &= \left[\sum_{i=0}^{2m} \binom{2m}{i} x^i \right] - 1 - 2mx \\
 &= (1+x)^{2m} - (1+2mx).
 \end{aligned}$$

Example 2.10

Consider $P_2[K_4]$ given in the figure 2.4.

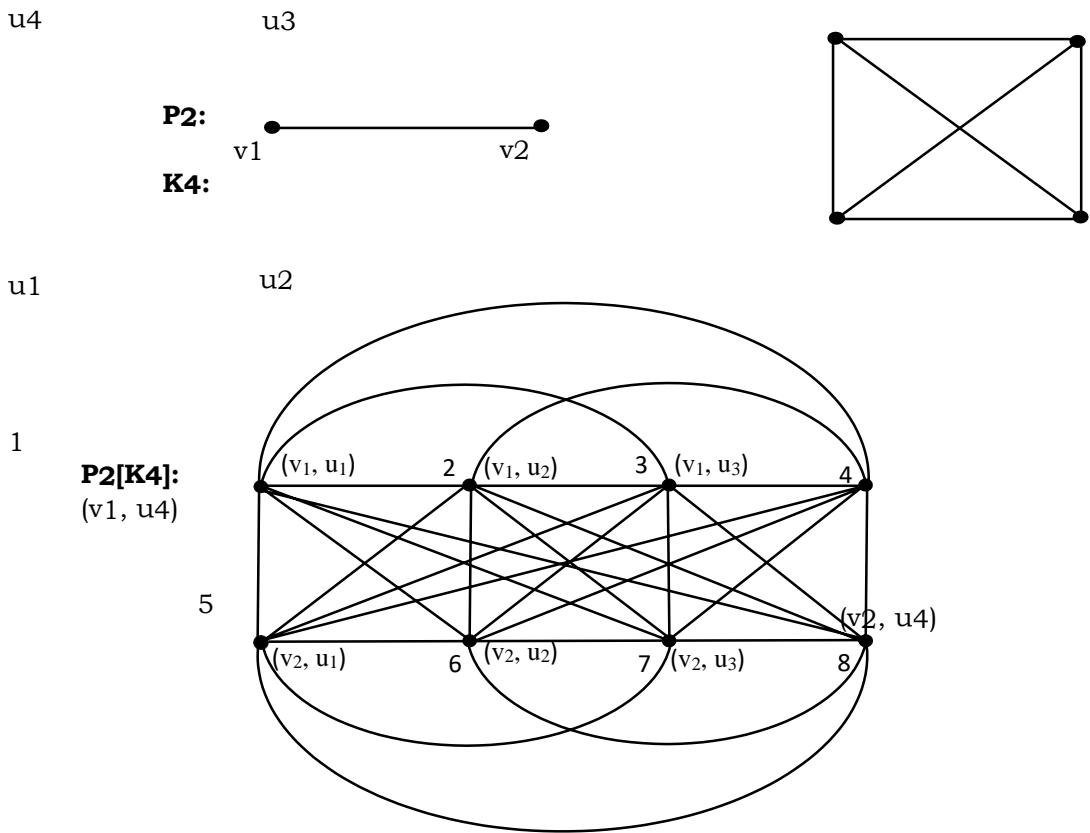


Figure 2.4

There is no 2-dominating sets of $P_2[K_4]$ of cardinality 1.

The minimum cardinality of $P_2[K_4]$ is 2.

Therefore, $\gamma_2(P_2[K_4]) = 2$.

The 2-dominating set of $P_2[K_4]$ with cardinality 2, 3, 4, 5, 6, 7, 8 are,

$$d_2(P_2[K_4], 2) = \binom{8}{2} = 28.$$

$$d_2(P_2[K_4], 3) = \binom{8}{3} = 56.$$

$$d_2(P_2[K_4], 4) = \binom{8}{4} = 70.$$

$$d_2(P_2[K_4], 5) = \binom{8}{5} = 56.$$

$$d_2(P_2[K_4], 6) = \binom{8}{6} = 28.$$

$$d_2(P_2[K_4], 7) = \binom{8}{7} = 8.$$

$$d_2(P_2[K_4], 8) = \binom{8}{8} = 1.$$

$$\begin{aligned} \text{Therefore, } D_2(P_2[K_4], x) &= \sum_{i=2}^8 d_2(P_2[K_4], i)x^i \\ &= 28x^2 + 56x^3 + 70x^4 + 56x^5 + 28x^6 + 8x^7 + x^8. \\ &= (1+x)^8 - (1+8x). \end{aligned}$$

$$\text{Hence, } D_2(P_2[K_4], x) = (1+x)^8 - (1+8x).$$

Conclusion

In this paper, 2-domination polynomials of graphs has been derived by identifying its 2-dominating sets. It also help us to characterize the 2-dominating sets of cardinality i. We can generalize this study to any graph and some interesting operation can be obtained via the roots of the 2-domination polynomial of graphs.

References

1. Acharya. B.D, Walikar. H.B and Sampath Kumar. E, "Recent Development in the Theory of Domination in Graphs", Mehta Research institute, Allahabad, MRI lecture notes in math.1 (1979).
2. Akbari.S, Alikhani. S and Peng. Y. H, "Characterization of Graphs using Domination Polynomials", European Journal of Combinatorics, vol. 31, no. 7, pp. 1714–1724, 2010.
3. Alikhani. S, "On the Domination Polynomial of Some Graph Operations", ISRN Combinatorics, vol. 2013, Article ID 146595, 3 pages, 2013.
4. M. chellali, O.Favaron, A. Hansberg, L.Volkmann, "k-Domination and k-Independence in Graphs" A Survey, Received: 27 May 2009/ Revised: 27 February 2011 / Published online: 8 April 2011© Springer 2011.
5. Frucht. R & Harary. F, 1970, "On the Corona of Two Graphs", Aequationes Mathematicae, vol. 4, pp. 322–325.
6. Suryasa, W., Sudipa, I. N., Puspani, I. A. M., & Netra, I. (2019). Towards a Change of Emotion in Translation of Kṛṣṇa Text. *Journal of Advanced Research in Dynamical and Control Systems*, 11(2), 1221-1231.
7. Suwija, N., Suarta, M., Suparsa, N., Alit Geria, A.A.G., Suryasa, W. (2019). Balinese speech system towards speaker social behavior. *Humanities & Social Sciences Reviews*, 7(5), 32-40. <https://doi.org/10.18510/hssr.2019.754>