How to Cite:

Vavilapalli, R. K., Ramalingeswara, N., & Varma, K. K. (2022). Risk factor analysis for neonatal sepsis and the outcome in tertiary care neonatal nursery. *International Journal of Health Sciences*, 6(S5), 1873–1878. https://doi.org/10.53730/ijhs.v6nS5.9916

Risk factor analysis for neonatal sepsis and the outcome in tertiary care neonatal nursery

Ravi Kumar Vavilapalli

Assistant Professor, Department of Pediatrics, Great Eastern Medical School, Srikakulam, Andhra Pradesh, India

Noolu Ramalingeswara

Assistant Professor, Department of Pediatrics, Great Eastern Medical School, Srikakulam, Andhra Pradesh, India

Kothapally Kalyan Varma*

Assistant Professor, Department of Pediatrics, Mamata Academy of Medical Sciences, Bachupally, Telangana, India ***Correspondence author**

> Abstract --- Background: Adequate care has to be taken to the new born child because there is large number of mortality in the age group of less than 5. Further most prevalent group is babies within day zero to day 28 after birth. Aim and Objective: The present study was undertaken to observe the risk factor analysis for neonatal sepsis and the outcome in tertiary care neonatal nursery. Material and Methods: New born babies with standard signs and symptoms of sepsis were part of the study after obtaining consent from their parents. The study was conducted between April 2019 to June 2020. Venous blood was drawn from the newborn babies after proper consent from parents and assessed for sepsis. These newborn babies were managed as per the hospital protocol and a predesigned and standard questionnaire was used to collect the data about the risk factors. Results: The most common organism isolated from blood culture was Klebsiella (36.9%). Other organisms isolated were Acinetobacter, Pseudomonas, E.coli, Staphylococcus aureus, Proteus and Citrobacter. 1% had culture positive for Non Candida albicans. Conclusion: The most common organism isolated from blood culture was Klebsiella (36.9%). Further detailed studies are recommended to better understand the risk factors and to develop the management methods.

Keywords---Neonatal sepsis, Gram negative bacteria, Diagnosis, Pregnancy.

International Journal of Health Sciences ISSN 2550-6978 E-ISSN 2550-696X © 2022.

Manuscript submitted: 18 Feb 2022, Manuscript revised: 27 April 2022, Accepted for publication: 9 June 2022

Introduction

Adequate care has to be taken to the new born child because there is large number of mortality in the age group of less than 5 [1]. Further most prevalent group is babies within day zero to day 28 after birth [2]. The prevalence of neonatal sepsis reported by the NNPD analysis is thirty out of thousand new born babies [3].To reduce these deaths, WHO has issued guidelines that comprises of breastfeeding, cord care, eye care, thermoregulation, management of asphyxia, recognition of danger signs, immunization and care of the low birth weight infant [4]. However, to accomplish these guidelines not only health care workers but also the mothers should cooperate for adequate care to the new born child. As the neonatal sepsis is the second to premature deaths, there is a strong need to consider this as an emergency health issue and resolve it effectively. For this, it is essential to understand the risk factors associated with the neonatal sepsis. This will help to plan most effective treatment strategies [5]. Hence, the present study was undertaken to observe the risk factor analysis for neonatal sepsis and the outcome in tertiary care neonatal nursery

Aim and Objectives

The present study was undertaken to observe the risk factor analysis for neonatal sepsis and the outcome in tertiary care neonatal nursery.

Material and Methods

Study design: Cross-sectional study

Study setting: In-patient wards, Department of Pediatrics, GEMS Medical College, Andhra Pradesh, India.

Study participants: New born babies with standard signs and symptoms of sepsis were part of the study after obtaining consent from their parents. The study was conducted between April 2019 to June 2020. The following criteria were used in recruiting the participants.

Inclusion criteria:

Newborns admitted with sepsis screen positive were recruited in the study.

Tools: Venous blood was drawn from the newborn babies after proper consent from parents and assessed for sepsis. Those positive were recruited in the study. These newborn babies were managed as per the hospital protocol and a predesigned and standard questionnaire was used to collect the data about the risk factors.

Ethical considerations: The present study protocol was approved by the institutional human ethical committee. Confidentiality of the data was maintained as per the ICMR guidelines.

Statistical Analysis: Data was analyzed using SPSS 23.0 version. Descriptive statistics was used to present the data.

1874

Results

Out of the recruited new born babies, 49% were females and 51% were males. Table 1 presents the intra and extra mural cases details of participants. Mothers of 522(62%) neonates were primi gravida. Mothers of 24.3%(202) neonates were 2^{nd} gravid. Table-3: presents natal Risk Factors in Intramural Sepsis.

Table 1: Intra	and extra	mural	cases	details	of participants	

							Culture	Death in
		Total					proven	culture
		(957)	EOS	LOS	Recovery	Death	sepsis	provensepsis
Intra	Number		743	102	804	41	72	8
Mural	Percentage	845	88	12	95	5	9	11
Extra	Number		57	55	108	4	29	2
Mural	Percentage	112	50.8	49.2	96.4	3.6	25.5	8

Table-2: Maternal Risk Factors in Intramural Sepsis

MATERNAL RISKFACTORS	NUMBER(n=845)					
	· · · ·	PERCENT (%)				
	HEMOGLOBIN					
>10 gm/dl	450	53.3				
8 to 10 gm/dl	313	37				
<8 gm/dl	82	9.7				
	PIH					
YES	149	17.6				
NO	696	82.4				
		GDM				
YES	128	15				
NO	717	85				
MATERNAL FEVER WITHIN 2 WEEKS PRIOR TO DELIVERY						
YES	98	11.6				
NO	747	88.4				
QUANTITY OF LIQUOR						
NORMAL	664	78.6				
OLIGO HYDRAMINOS	132	15.6				
POLY HYDRAMINOS	49	5.8				
	H/O UTI					
YES	54	6.4				
NO	791	93.6				

Table-3: Natal Risk Factors in Intramural Sepsis

NATAL RISK FACTORS	NUMBED $(n-845)$	$\mathbf{DEDCENT}$ (9/)			
NATAL KISK FACTORS	NUMBER (n=845) PERCENT (%) PLACE OF DELIVERY				
HOME/ TRANSIT	13	1.5			
PHC/GH	20	2.4			
TERTIARY CARE	812	96.1			
		90.1			
PRIVATE HOSPITAL					
	MODE OF ONSET OF LABOUR				
SPONTANEOUS	683	80.8			
INDUCED	142	16.8			
MEMBRANES RUPTURED OUTSIDE					
YES	210	24.9			
NO	635	75.1			
PROLONGED RUPTURE OF MEMBRANES					
YES	107	12.7			
NO	738	87.8			
	MODE OF DELIVERY				
NVD	455	53.8			
AVD	107	12.7			
ELECTIVE LSCS	20	2.4			
EMERGENCY LSCS	263	31.1			
LIQUOR					
NORMAL	706	83.6			
BLOOD STAINED	7	15.6			
MECONIUM STAINED	132	0.8			

The most common organism isolated from blood culture was Klebsiella(36.9%). Other organisms isolated were Acinetobacter, Pseudomonas, E.coli, Staphylococcus aureus, Proteus and Citrobacter. 2. 1% had culture positive for Non Candida albicans.

Discussion

The present study was undertaken to observe the risk factor analysis for neonatal sepsis and the outcome in tertiary care neonatal nursery. Out of the recruited new born babies, 49% were females and 51% were males. Table 1 presents the intra and extra mural cases details of participants. Mothers of 522(62%) neonates were primi gravida. Mothers of 24.3% (202) neonates were 2nd gravid. Table-3: presents natal Risk Factors in Intramural Sepsis. The most common organism isolated from blood culture was Klebsiella (36.9%). Other organisms isolated were Acinetobacter, Pseudomonas, E.coli, Staphylococcus aureus, Proteus and Citrobacter. 1% had culture positive for Non Candida albicans.

Neonatal mortality is a global issue and has to be addressed [6] Due to increase in the deaths of the newborns there is a strong need to develop guidelines to save the lives of these newborns [7-9]. Keeping this in mind WHO issued guidelines to be followed [10]. Despite these guidelines, there is higher mortality rate in the

1876

developed and developing countries [11-15]. Hence, there is a strong need to evaluate the risk factors for the neonatal sepsis. Earlier studies reported that mainly gram negative organisms are the reason for development of sepsis [16-20]. The present study agrees with earlier studies as we have observed similar results in our study.

Conclusion

The most common organism isolated from blood culture was Klebsiella (36.9%). Other organisms isolated were Acinetobacter, Pseudomonas, E.coli, Staphylococcus aureus, Proteus and Citrobacter. 1% had culture positive for Non Candida albicans. Further detailed studies are recommended to better understand the risk factors and to develop the management methods.

Conflicts of interest: none declared

Source of funding: Nil

References

- 1. Edmond K, Zaidi A. New approaches to preventing, diagnosing, and treating neonatal sepsis. PLoS Med. 2010;7:e1000213
- Neonatal Sepsis in Newborn, AIIMS Protocol in India. 2014. [Last cited 2019 Jun 15]. Available from: <u>http://www.newbornwhocc.org/2014_pdf/Neonatal%20sepsis%202014</u>.pdf.
- 3. Sanghvi KP, Tudehope DI. Neonatal bacterial sepsis in a neonatal intensive care unit: A 5 year analysis. J Paediatr Child Health. 1996;32:333–8.
- 4. West B, Tabansi P. Prevalence of neonatal septicaemia in the University of port harcourt teaching hospital, Nigeria. Niger J Paediatr. 2013;41:33.
- 5. Simonsen KA, Anderson-Berry AL, Delair SF, Davies HD. Early-onset neonatal sepsis. *Clin Microbiol Rev.* 2014;27:21–47.
- 6. erma P, Berwal P, Nagaraj N, Swami S, Jivaji P, Narayan S. Neonatal sepsis: epidemiology, clinical spectrum, recent antimicrobial agents and their antibiotic susceptibility pattern. *Int J Contemp Pediatr.* 2015;365:176–80.
- 7. Leal YA, Álvarez-Nemegyei J, Velázquez JR, Rosado-Quiab U, Diego-Rodríguez N, Paz-Baeza E, et al. Risk factors and prognosis for neonatal sepsis in southeastern mexico: Analysis of a four-year historic cohort followup. *BMC Pregnancy Childbirth*. 2012;12:48.
- 8. Stefanovic IM. Neonatal sepsis. *Biochem medica*. 2011;21:276-81.
- 9. Onalo R, Ogala WN, Ogunrinde GO, Olayinka AT, Adama SA, Ega BA. Predisposing factors to neonatal septicaemia at ahmadu bello University teaching hospital, Zaria Nigeria. *Niger Postgrad Med J.* 2011;18:20–5.
- Omoregie R, Egbe CA, Dirisu J, Ogefere HO. Microbiology of neonatal septicemia in a tertiary hospital in Benin City, Nigeria. *Biomarkers Genomic Med.* 2013;5:142–6.
- 11. Pius S, Bello M, Galadima GB, Ibrahim HA, Yerima ST, Ambe JP. Neonatal septicaemia, bacterial isolates and antibiogram sensitivity in Maiduguri North-Eastern Nigeria. *Niger Postgrad Med J.* 2016;23:146–51.

- 12. Garba B, Muhammad A, Mohammed B, Obasi A, Adeniji A. A study of neonatal mortality in a specialist hospital in Gusau, Zamfara, North-Western Nigeria. *Int J Trop Dis Heal.* 2017;28:1–6.
- 13. Ogunlesi TA, Ogunfowora OB. Predictors of mortality in neonatal septicemia in an underresourced setting. *J Natl Med Assoc.* 2010;102:915–21.
- 14. Charan J, Biswas T. How to calculate sample size for different study designs in medical research? *Indian J Psychol Med.* 2013;35:121–6.
- 15. Gebrehiwot A, Lakew W, Moges F, Moges B, Anagaw B, Unakal C, et al. Predictors of positive blood culture and death among neonates with suspected neonatal sepsis in Gondar University hospital, Northwest Ethiopia. *Euro J Exp Bio.* 2012;2:2212–8.
- 16. Jajoo M, Kapoor K, Garg L, Manchanda V, Mittal S. To study the incidence and risk factors of early onset neonatal sepsis in an out born neonatal intensive care unit of India. *J Clin Neonatol.* 2015;4:91.
- 17. Kayange N, Kamugisha E, Mwizamholya DL, Jeremiah S, Mshana SE. Predictors of positive blood culture and deaths among neonates with suspected neonatal sepsis in a tertiary hospital, Mwanza-Tanzania. *BMC Pediatr.* 2010;10:39.
- 18. Al-Zwaini EJ. Neonatal septicaemia in the neonatal care unit, al-anbar governorate, Iraq. *East Mediterr Health J.* 2002;8:509–14.
- 19. John B, David M, Mathias L, Elizabeth N. Risk factors and practices contributing to newborn sepsis in a rural district of Eastern Uganda, august 2013: A cross sectional study. *BMC Res Notes*. 2015;8:339.
- 20. Karthikeyan G, Premkumar K. Neonatal sepsis: Staphylococcus aureus as the predominant pathogen. *Indian J Pediatr.* 2001;68:715–7.