Saliva Tgfβ1 level in patients with type 2 diabetes mellitus and primary hypertension on dental caries
Keywords:
dental caries, primary hypertension, saliva, TGFβ1 levels, type 2 diabetes mellitusAbstract
The aim of this study is to analyze the relationship and differences in salivary Tgfβ1 levels in patients with type 2 diabetes mellitus (T2DM) and primary hypertension (PH) with dental caries patients. Salivary TGFβ1 levels of patients with T2DM & Caries, PH with dental caries were 577.85 pg/ml (0.042) and 386.3894 pg/ml (0.024). Then continued with testing the effect of TGFβ1 on T2DM and PH patients with dental caries, namely T2DM patients (p. 0.042) and PH patients (p. 0.024). This shows that there is a significant effect between salivary TGFβ1 levels of T2DM and PH patients on dental caries. Likewise, it was found that there was a significant difference between T2DM and PH in dental caries by looking at the average value of salivary TGFβ1 on PH was 386,3894pg/mL while salivary TGFβ1 on T2D was 577,8546pg/mL. It can also be seen from the standard deviation value of T2DM deviation is 173.04621, while HTP is 95.93092. There is associated and difference of Salivary TGFβ1 levels of patients with T2DM and PH at the age of 18-40 years with dental caries. The higher the salivary TGFβ1 level, the higher the risk of dental caries.
Downloads
References
Adashi, E. Y., & Resnick, C. E. (1986). Antagonistic interactions of transforming growth factors in the regulation of granulosa cell differentiation. Endocrinology, 119(4), 1879-1881.
Akhurst, R. J., & Hata, A. (2012). Targeting the TGFβ signalling pathway in disease. Nature reviews Drug discovery, 11(10), 790-811.
Al-Maskari, A. Y., Al-Maskari, M. Y., & Al-Sudairy, S. (2011). Oral manifestations and complications of diabetes mellitus: a review. Sultan Qaboos University Medical Journal, 11(2), 179.
Bellamy, L., Casas, J. P., Hingorani, A. D., & Williams, D. (2009). Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. The Lancet, 373(9677), 1773-1779. https://doi.org/10.1016/S0140-6736(09)60731-5
Bernardi, L., Souza, B. C. D., Sonda, N. C., Visioli, F., Rados, P. V., & Lamers, M. L. (2018). Effects of diabetes and hypertension on oral mucosa and TGFβ1 salivary levels. Brazilian Dental Journal, 29, 309-315.
Bradshaw, D. J., & Lynch, R. J. (2013). Diet and the microbial aetiology of dental caries: new paradigms. International dental journal, 63, 64-72. https://doi.org/10.1111/idj.12072
Derhaschnig, U., Shehata, M., Herkner, H., Bur, A., Woisetschläger, C., Laggner, A. N., & Hirschl, M. M. (2002). Increased levels of transforming growth factor-β1 in essential hypertension. American journal of hypertension, 15(3), 207-211.
Deshpande, K., Jain, A., Sharma, R., Prashar, S., & Jain, R. (2010). Diabetes and periodontitis. Journal of Indian Society of Periodontology, 14(4), 207.
Djukić, L. J., Roganović, J., Brajović, M. D., Bokonjić, D., & Stojić, D. (2015). The effects of anti‐hypertensives and type 2 diabetes on salivary flow and total antioxidant capacity. Oral diseases, 21(5), 619-625.
Dodds, M. W., Yeh, C. K., & Johnson, D. A. (2000). Salivary alterations in type 2 (non‐insulin‐dependent) diabetes mellitus and hypertension. Community dentistry and oral epidemiology, 28(5), 373-381.
Ewoldsen, N., & Koka, S. (2010). There are no clearly superior methods for diagnosing, predicting, and noninvasively treating dental caries. Journal of Evidence Based Dental Practice, 10(1), 16-17. https://doi.org/10.1016/j.jebdp.2009.11.008
Ivanović, V., Demajo, M., Krtolica, K., Krajnović, M., Konstantinović, M., Baltić, V., ... & Dimitrijević, B. (2006). Elevated plasma TGF-β1 levels correlate with decreased survival of metastatic breast cancer patients. Clinica chimica acta, 371(1-2), 191-193. https://doi.org/10.1016/j.cca.2006.02.027
Kahn, S. E. (2000). The importance of the β-cell in the pathogenesis of type 2 diabetes mellitus. The American journal of medicine, 108(6), 2-8. https://doi.org/10.1016/S0002-9343(00)00336-3
Lamers, M. L., Gimenes, F. A., Nogueira, F. N., Nicolau, J., Gama, P., & Santos, M. F. (2007). Chronic Hyperglycaemia Increases TGF- Beta 2 Signaling and The Expression of Extracellular Matrix Proteins in The Rat Parotid Gland. Matrix Biol, 26(7), 572–582.
Landry, M. L., Criscuolo, J., & Peaper, D. R. (2020). Challenges in use of saliva for detection of SARS CoV-2 RNA in symptomatic outpatients. Journal of Clinical Virology, 130, 104567. https://doi.org/10.1016/j.jcv.2020.104567
Lee, K. Y., & Bae, S. C. (2002). TGF-β-dependent cell growth arrest and apoptosis. BMB Reports, 35(1), 47-53.
Lindholm, L. H., Carlberg, B., & Samuelsson, O. (2005). Should β blockers remain first choice in the treatment of primary hypertension? A meta-analysis. The Lancet, 366(9496), 1545-1553. https://doi.org/10.1016/S0140-6736(05)67573-3
Löe, H. (1993). Periodontal disease: the sixth complication of diabetes mellitus. Diabetes care, 16(1), 329-334.
Lourenço, S. V., Uyekita, S. H., Lima, D. M. C., & Soares, F. A. (2008). Developing human minor salivary glands: morphological parallel relation between the expression of TGF-beta isoforms and cytoskeletal markers of glandular maturation. Virchows Archiv, 452(4), 427-434.
Mahardika, I. M. R., Suyasa, I. G. P. D., Kamaryati, N. P., & Wulandari, S. K. (2021). Health literacy is strongest determinant on self-monitoring blood glucose (SMBG) type 2 DM patients during COVID-19 pandemic at public health centre in Tabanan Regency. International Journal of Health & Medical Sciences, 4(3), 288-297. https://doi.org/10.31295/ijhms.v4n3.1752
Masriadi, F. A. (2018). Effectiveness of ergonomic gymnastics on decreasing blood pressure in patients with stage one hypertension, Indonesia. Prof RK Sharma, 12(3), 281.
Masriadi, M. S. A., & Azis, R. (2019). Effect of supervisory drink drugs (SDG) on decreasing blood pressure reduction in hypertension patients, Indonesia. Indian J Forensic Med Toxicol, 13(3), 385-90.
Masriadi, M., Alam, R. I., Junaidin, J., Firdaus, E. K., Asnaniar, W. O. S., Padhila, N. I., ... & Fitriani, F. (2022). Predictors that affect the Quality of Life Patient with Diabetes Mellitus: A Systematic Review. Open Access Macedonian Journal of Medical Sciences, 10(F), 340-344.
Masriadi, N. U. M., & Muriyati. (2022). Determinant of Metabolic Syndrome (Case Study Hypertension and Diabetes Mellitus Type II. International Journal of Health Sciences, 6(2), 1046–1057.
Masriadi, S. A., Pamewa, K., Chotimah, C., & Devi, S. (2021). The relationship between dental care perception towardoral Health ofpatients with primary hypertension in Padongko Health Center, Barru Regency. Medico-legal Update, 21(2), 786-91.
Masriadi, S. E. (2019). Effectiveness of foot soak therapy with warm water on decreasing blood pressure in patients with stage one hypertension, Indonesia. Prof. RK Sharma, 3, 391.
Mishra, S. (2016). Diuretics in primary hypertension–reloaded. Indian heart journal, 68(5), 720-723. https://doi.org/10.1016/j.ihj.2016.08.013
Mokoginta, A. V., Leman, M. A., & H.C, D. (2016). Assessment of The Risk of Dental Caries in Users of Amlodipine Antihypertensive Drugs Based on Salivary Flow Rate. Pharmacon The Scientific J of Pharmacy, 5(1), 103–108.
Pasomsub, E., Watcharananan, S. P., Boonyawat, K., Janchompoo, P., Wongtabtim, G., Suksuwan, W., ... & Phuphuakrat, A. (2021). Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease 2019: a cross-sectional study. Clinical Microbiology and Infection, 27(2), 285-e1. https://doi.org/10.1016/j.cmi.2020.05.001
Rao, P. V., Reddy, A. P., Lu, X., Dasari, S., Krishnaprasad, A., Biggs, E., ... & Nagalla, S. R. (2009). Proteomic identification of salivary biomarkers of type-2 diabetes. Journal of proteome research, 8(1), 239-245.
Rojo‐Botello, N. R., García‐Hernández, A. L., & Moreno‐Fierros, L. (2012). Expression of toll‐like receptors 2, 4 and 9 is increased in gingival tissue from patients with type 2 diabetes and chronic periodontitis. Journal of periodontal research, 47(1), 62-73.
Sahakyan, K., Klein, B. E., Myers, C. E., Tsai, M. Y., & Klein, R. (2010). Novel risk factors in long-term hypertension incidence in type 1 diabetes mellitus. American Heart Journal, 159(6), 1074-1080. https://doi.org/10.1016/j.ahj.2010.03.023
Saraswati, P. A. I. ., Gunawan, I. M. K., & Budiyasa, D. G. A. (2021). Overview of glomerulus filtration in type 2 of diabetes mellitus at Sanjiwani Gianyar hospital year of 2018-2019. International Journal of Health & Medical Sciences, 4(1), 50-55. https://doi.org/10.31295/ijhms.v4n1.726
Seay, U., Sedding, D., Krick, S., Hecker, M., Seeger, W., & Eickelberg, O. (2005). Transforming growth factor-β-dependent growth inhibition in primary vascular smooth muscle cells is p38-dependent. Journal of Pharmacology and Experimental Therapeutics, 315(3), 1005-1012.
Sreebny, L. M., & Schwartz, S. S. (1997). A reference guide to drugs and dry mouth–2nd edition. Gerodontology, 14(1), 33-47.
Stefoni, S., Cianciolo, G., Donati, G., Dormi, A., Silvestri, M. G., Colì, L., ... & Iannelli, S. (2002). Low TGF-β1 serum levels are a risk factor for atherosclerosis disease in ESRD patients. Kidney international, 61(1), 324-335. https://doi.org/10.1046/j.1523-1755.2002.00119.x
Wylie-Sears, J., Levine, R. A., & Bischoff, J. (2014). Losartan inhibits endothelial-to-mesenchymal transformation in mitral valve endothelial cells by blocking transforming growth factor-β-induced phosphorylation of ERK. Biochemical and biophysical research communications, 446(4), 870-875. https://doi.org/10.1016/j.bbrc.2014.03.014
Yadav, H., Quijano, C., Kamaraju, A. K., Gavrilova, O., Malek, R., Chen, W., ... & Rane, S. G. (2011). Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell metabolism, 14(1), 67-79. https://doi.org/10.1016/j.cmet.2011.04.013
Zeisberg, M., Hanai, J. I., Sugimoto, H., Mammoto, T., Charytan, D., Strutz, F., & Kalluri, R. (2003). BMP-7 counteracts TGF-β1–induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nature medicine, 9(7), 964-968.
Published
How to Cite
Issue
Section
Copyright (c) 2022 International journal of health sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.