Overexpression, biochemical characterization, and anticancer activates of L-asparaginase from Bacillus subtilis

https://doi.org/10.53730/ijhs.v6nS8.11477

Authors

  • Doaa B. Darwish Department of Biology, Faculty of Science, Tabuk University, 71491Tabuk, Saudi Arabia & Botany Department, Faculty of Science, Mansoura University,35516 Mansoura, Egypt
  • Salma S. Alrdahe Department of Biology, Faculty of Science, Tabuk University, 71491Tabuk, Saudi Arabia
  • Yahya S. Al-Awthan Department of Biology, Faculty of Science, Tabuk University, 71491Tabuk, Saudi Arabia & Department of Biology, Faculty of Science, Ibb University, 70270, Ibb, Yemen
  • Imadeldin Elfaki Biochemistry Department, Faculty of Science, Tabuk University, 71491Tabuk, Saudi Arabia
  • Tarig M. Alnour Medical laboratory technology Department, Faculty of Applied Medical Sciences, Tabuk University, 71491Tabuk, Saudi Arabia
  • Ahmed B. Darwish Zoology Department, Faculty of Science, Suez University, El Salam-1, 43533, Suez, Egypt
  • Entsar A. Saad Biochemistry Division, Chemistry Department, Faculty of Science, Damietta University, New Damietta, 34511, Egypt
  • Basmah M. Alharbi Department of Biology, Faculty of Science, Tabuk University, 71491Tabuk, Saudi Arabia
  • Salem A. Habeb Biochemistry Department, Faculty of Science, Tabuk University, 71491Tabuk, Saudi Arabia
  • Magdy M. Youssef Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt

Keywords:

Bacillus subtilis, L asparaginase, overexpression, purification, immobilization, characterization

Abstract

L-asparaginases convert L-asparagine into L-aspartate and ammonia. The L-asparaginase from Bacillus subtilis was cloned and expressed in the E. coli strain BL21(DE3)pLysS in the current study. Using glutathione sepharose 4B column chromatography, the L-asparaginase enzyme was uniformly purified 173.34 times, with a final specific activity of 1769.13 IU/mg protein and a yield of 56.14%. The isolated enzyme was identified as a 36 kDa polypeptide chain by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The immobilized enzyme was placed on top of the Ca alginate beads. The immobilized enzyme is quite stable and retains the majority of its activity at 4 °C (74 percent). The enzymatic and structural characteristics of free and immobilized recombinant L-asparaginase were studied. The activity of the free enzyme peaked after 30 min of incubation at pH 8.0 and 45 °C. After 30 minutes at 50 °C, the immobilized enzyme showed its peak activity at a pH of 8.5. The refined enzyme's amino acid makeup was identified. An enzyme that heals leukemia, Bacillus subtilis L-asparaginase, can be successfully mass-produced using this technique.

Downloads

Download data is not yet available.

References

Aghaiypour K., Wlodawer A., Lubkowski J. (2001). Structural basis for the activity and substrate specificity of Erwinia chrysanthemi L-asparaginase. Biochemistry. 40: 5655- 5664.

Ahmad, N; Pandit, N; Maheshwari, S. (2012) l-asparaginase gene—a therapeutic approach towards drugs for the cancer cell. Int J Biosci 2(4):1–11.

Balcao, V.M., Mateo, C., Fernandez-Lafuente, R., Malcata, F.X., Guisan, J.M., (2001). Structural and functional stabilization of l-asparaginase via multisubunit Immobilization onto highly activated supports. Biotechnol. Prog. 17, 537–542.

Baskar, G; Aiswarya, R; Renganathan, S. (2019) Applications of asparaginase in food processing. In: Parameswaran B (ed) Green bio-processes, energy, environment, and sustain.nability. Springer, Berlin. https://doi.org/10.1007/978-981-13-3263-0.

Benchamin, D; Sreejai, R; Sujitha, S; Albert, C. (2019) Anti-proliferative activity of l-asparaginase enzyme from fungi on breast cancer. J Pharmacogn Phytochem 8(1):407–410.

Benchamin, D; Sreejai, R; Sujitha, S; Albert, C. (2019). Anti-proliferative activity of l-asparaginase enzyme from fungi on breast cancer. J Pharmacogn Phytochem 8(1):407–410.

Bradford, M.A., (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

Broome, J. D. (1981). L-Asparaginase: discovery and development as a tumor-inhibitory agent. Cancer Treat Rep. 65 Suppl 4:111-4.

Bush, L.A., Herr, J. C., Wolkowicz, M., N.E. Shore, A., C Flickinger, J. (2002) A novel LAsparaginase- like protein is a sperm autoantigen in rats, Mol. Reprod. Dev. 62 (2) 233–247.

Cammack, K. A; Marlborough, D. I., and Miller, D. S. (1972). Physical properties and subunit structure of L-Asparaginase isolated from Erwinia carotovora. Biochem J.: 126(2), 361-379.

Cedar, H., and Schwartz, J. H. (1967). Localization of the two-L-asparaginases in anaerobically grown Escherichia coli. J Biol Chem.242(16):3753-5.

Chohan,S.M. Rashid,N Sajed,. M. Imanaka, T. (2019). Pcal_0970: an extremely thermostable L-Asparaginase from Pyrobaculum calidifontis with no detectable glutaminase activity, Folia Microbiol. (Praha) 64 (3) 313–320.

Clavell L.A., Gelber R.D., Cohen H.J., Hitchcock-Bryan S., Cassady J.R., Tarbell N.J., Blattner S.R., Tantravahi R., Leavitt P., Sallan S.E. (1986). Four agent induction and intensive asparaginase therapy for the treatment of childhood acute lymphoblastic leukemia. New Engl. J. Med., 315: 657-663.

Darwesh, D. B; Al-Awthan, Y. S; Elfaki, I; Habib, S. A; Alnour, T. M; Darwish, A. B. and Youssef, M. M. (2022). Anticancer Activity of Extremely Effective Recombinant L-Asparaginase from Burkholderia pseudomallei. J. Microbiol. Biotechnol. 32(5): 551-563. https://doi.org/10.4014/jmb.2112.12050.

Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M. (2008). Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36:465–469.

Evtimova, V., Zeillinger, R. Kaul, S., Weidle, U.H. (2004). Identification of CRASH, a gene deregulated in gynecological tumors, Int. J. Oncol. 24 (1) 33–41.

Fine, B.M., Kaspers, G.J.L. Ho, M., Loonen, A.H. Boxer, L.M. (2005). A genome-wide view of the in vitro response to L-Asparaginase in acute lymphoblastic leukemia, Cancer Res. 65 (1) 291–299.

Fisher S.H., Wray L.V. Jr. (2002). Bacillus subtilis 168 contains two differentially regulated genes encoding L-asparaginase. J. Bacteriol., 184: 2148-2154.

Geckil H., Gencer S., Ates B., Ozer U., Uckun M., Yilmaz I. (2006). Effect of Vitreoscilla hemoglobin on production of a chemotherapeutic enzyme, L-asparaginase, by Pseudomonas aerugionosa. Biotechnol. J., 2: 203-208.

Harms E., Wehner A., Jennings M.P., Pugh K.J., Beacham I.R., Roehm, K.H. (1991). Construction of expression systems for Escherichia coli asparaginase II and two-step purification of the recombinant enzyme from periplasmic extracts. Protein Exp. Purif., 2:144-150.

Kijima K., Suzuki H. (2003). Improving the umami taste of soy sauce by the addition of bacterial γ-glutaminase as a glutaminase to the fermentation mixture. Enzyme Microb. Technol., 32: 431-438.

Laemmli, U.K., (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

Mercado, L. and Arenas, G. (1999) Escherichia coli L-asparaginas induced phosphorylation of endogenous polypeptide in human immune cells. Sangre (Brac), 44, 438-442.

Milburn, D., Laskowski, R.A. Thornton, J.M. (1998). Sequences annotated by structure: a tool to facilitate the use of structural information in sequence analysis, Protein Eng. 11 (10) 855–859.

Nandakumar R., Yoshimune K., Wakayama M., Moriguchi M. (2003). Microbial glutaminase: biochemistry, molecular approaches, and applications in the food industry. J. Mol. Catal. B, 23: 87-100.

Narta, U.K., Kanwar, S.S., Azmi, W. (2007). Pharmacological and clinical evaluation of L- Asparaginase in the treatment of leukemia, Crit. Rev. Oncol. Hematol. 61 (3) 208–221.

Nomme, J., Su, Y., Lavie, A. (2014). Elucidation of the specific function of the conserved threonine triad responsible for human L-Asparaginase autocleavage and substrate hydrolysis, J. Mol. Biol. 426 (13) 2471–2485.

Nomme, J., Su, Y., Lavie, A. (2014). Elucidation of the specific function of the conserved threonine triad responsible for human L-Asparaginase autocleavage and substrate hydrolysis, J. Mol. Biol. 426 (13) 2471–2485

Oinonen, C., Tikkanen, R., Rouvinen, J., Peltonen, L. (1995). Three-dimensional structure of human lysosomal aspartylglucosaminidase, Nat. Struct. Biol. 2 (12) 1102.

Parsons, S. K. Skapek, S. X. Neufeld, E. J. Kuhlman, C. Young, M. Donnelly, L. M. Brunzell, J. D. Otvos, J. D. Sallan, S. E. Rifai, N. (1997). L-Asparaginase-associated lipid abnormalities in children with acute lymphoblastic leukemia, Blood 89 (6) 1886–1895

Raetz, E. A. Salzer, W.L. (2010) Tolerability and efficacy of L-Asparaginase therapy in pediatric patients with acute lymphoblastic leukemia, J. Pediatr. Hematol. Oncol. 32 (7) 554–563.

Ratnawati, I. G. A. A., Sutapa, G. N., & Ratini, N. N. (2018). The concentration of radon gas in air-conditioned indoor: Air quality can increase the potential of lung cancer. International Journal of Physical Sciences and Engineering, 2(2), 111–119. https://doi.org/10.29332/ijpse.v2n2.169

Roberts, J., Holcenberg, J.S., Dolowy, W.C. (1972). Isolation, crystallization, and properties of Achromobacteraceae glutaminase-asparaginase with antitumor activity. Journal of Biological Chemistry, 247 (1), pp. 84-90.

Saito, S., Ohno, K. Sugawara, K. Suzuki,T. T Togawa, Sakuraba, H. (2008). Structural basis of aspartylglucosaminuria, Biochem. Biophys. Res. Commun. 377 (4) 1168–1172.

Sambrook, H. Molecular cloning: a laboratory manual., (1989) Second ed., Cold spring harbor laboratory press, New York.

Schwarts J.H., Reeves J.T., Broome J.D. (1966). Two L-asparaginase from E. coli and their action against tumors. Proc. Natl. Acad. Sci. USA, 56: 1516-1519.

Siechiechowcicz, K. and Ireland, R. (1989) Isolation and properties of an asparaginase from leaves o f Pisum sativum. Phytochem. 28, 2275.

Sindhu, R; Manonmani, H.K. (2018) Expression and characterization of recombinant l-asparaginase from Pseudomonas fluorescens. Protein Expr Purif 143:83–91. https://doi.org/10.1016/j. pep.2017.09.009.

Sun D., Setlow P. (1993). Cloning and nucleotide sequence of the Bacillus subtilis ansR gene, which encodes a repressor of the ans operon coding for L-asparaginase and L-aspartase. J. Bacteriol., 175: 2501-2506.

Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2022). Post-pandemic health and its sustainability: Educational situation. International Journal of Health Sciences, 6(1), i-v. https://doi.org/10.53730/ijhs.v6n1.5949

Swain, A., L., Jakolski, M., Housset, D., Rao, J.K., Woldawer, A. (1993). Crystal structure of Escherichia coli L-asparaginase, an enzyme used in cancer therapy. Proc. Natl. Acad. Sci. 90: 1474-1478.

Tabandeh, M.R. and Aminlari,M. (2009). Synthesis, physicochemical and immunological properties of oxidized inulin–L-Asparaginase bioconjugate, J. Biotechnol. 141 (3–4) 189–195.

Thaib, P. K. P., & Rahaju, A. S. (2022). Clinicopathological profile of clear cell renal cell carcinoma. International Journal of Health & Medical Sciences, 5(1), 91-100. https://doi.org/10.21744/ijhms.v5n1.1846

Tikkanen, R., Riikonen, A., Oinonen, C., Rouvinen, R., Peltonen, L. (1996). Functional analyses of active site residues of human lysosomal aspartylglucosaminidase: Implications for catalytic mechanism and autocatalytic activation. The EMBO Journal 15(12):2954-60.

Wakayama M., Yamagata T., Kamemura T., Boontim N., Yano S., Yoshimune K., Moriguchi M. (2005). Characterization of salt tolerant glutaminase from Stenotrophomonas maltophilia NYW-81 and its application in Japanese soy sauce fermentation. J. Ind. Microbiol. Biotechnol., 32: 383-390.

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer F.T., de Beer, T.A.P., Rempfer, C., Bordoli. L. (2018). SWISS-MODEL: homology modeling of protein structures and complexes, Nucleic Acids Res. 46 (W1) W296–W303.

Yim, S. Kim, M. (2019). Purification and characterization of thermostable L-Asparaginase from Bacillus amyloliquefaciens MKSE in Korean soybean paste, LWT-Food Science and Technology 109 415–421.

Youssef, M. M. (2015). Overexpression, Purification, Immobilization, and Characterization of Thermophilic Lipase from Burkholderia pseudomallei. American Journal of Microbiology and Biotechnology.2 (6): 82-91.

Youssef, M. M., Al-Omair, M. A. and Picksley, S. M. (2014). Genetic characterization of the Escherichia coli RecN protein as a member of the SMC family of proteins. Arabian Journal of Chemistry 7, 327–334.

Youssef, M.M and Al-Omair, M. A. (2008). Cloning, Purification, Characterization, and Immobilization of L-asparaginase II from E. coli W3110. Asian Journal of Biochemistry 3(6):337-350. DOI: 10.3923/ajb.2008.337.350.

Zuo, S., Zhang, T., Jiang, B., Mu, W. (2015). Reduction of acrylamide level through blanching with treatment by an extremely thermostable L-Asparaginase during French fries processing, Extremophiles 19 (4) 841–851.

Published

02-08-2022

How to Cite

Darwish, D. B., Alrdahe, S. S., Al-Awthan, Y. S., Elfaki, I., Alnour, T. M., Darwish, A. B., Saad, E. A., Alharbi, B. M., Habeb, S. A., & Youssef, M. M. (2022). Overexpression, biochemical characterization, and anticancer activates of L-asparaginase from Bacillus subtilis. International Journal of Health Sciences, 6(S8), 1731–1752. https://doi.org/10.53730/ijhs.v6nS8.11477

Issue

Section

Peer Review Articles