Vancomycin for methicillin-resistant staphylococcus aureus biofilm eradication is associated with the emergence of heterogeneous vancomycin intermediate staphylococcus aureus

https://doi.org/10.53730/ijhs.v6nS9.12536

Authors

  • Erizka Rivani Department of Microbiology, Faculty of Medicine, Sriwijaya University, Palembang, South Sumatera, Indonesia, Department of Clinical Microbiology, Faculty of Medicine, Airlangga University/Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
  • Muhammad Vitanata Arfijanto Department of Internal Medicine, Faculty of Medicine, Airlangga University/Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia
  • Agung Dwi Wahyu Widodo Department of Clinical Microbiology, Faculty of Medicine, Airlangga University/Dr. Soetomo General Academic Hospital, Surabaya, East Java, Indonesia

Keywords:

MRSA, biofilm eradication, vancomycin, hVISA

Abstract

Vancomycin is the first-line therapy for MRSA infections, even though the standard dose is inadequate for biofilm eradication. This study aimed to asses the efficacy of vancomycin in eradicating biofilms and the influence of exposure on the emergence of hVISA isolates. The biofilm formed by MRSA isolates was exposed to vancomycin concentrations of 1 times the MIC, 1,000 times the MIC, and 10,000 times the MIC; exposed continously for 24 hours vs intermittently for 6 hours/day for 3 days.  Measurement of the optical density of the biofilm was carried out to determine the percentage of biofilm eradication. Biofilm specimens exposed to vancomycin were subcultured onto BHIA-VC selective media to isolate hVISA. The highest biofilm eradication effect was found in isolates exposed to vancomycin at a concentration of 10,000 times the MIC. Vancomycin exposure correlated with the emergence of hVISA isolates, especially after exposure to low concentrations of vancomycin. For optimum eradication of MRSA biofilms, vancomycin concentrations exceeding 1.000 times the MIC are required. Exposure to vancomycin at a dose equal to one-times the MIC had no effect on biofilm eradication and was associated with the emergence of MRSA isolates with decreased susceptibility to vancomycin.

Downloads

Download data is not yet available.

References

Algburi, A., Comito, N., Kashtanov, D., Dicks, L. M., & Chikindas, M. L. (2017). ‘Control of biofilm formation: antibiotics and beyond. Applied and environmental microbiology’, 83(3), e02508-16.

Anchundia, M. J. L., Gámez, M. R., Quiroz, A. M. V., Miles, G. M., & Molina, L. A. V. (2022). Energy efficiency and the link with society. International Research Journal of Management, IT and Social Sciences, 9(4), 398-404. https://doi.org/10.21744/irjmis.v9n4.2094

Boakye, Y. D., Osafo, N., Danquah, C. A., Adu, F., & Agyare, C. (2019). ‘Antimicrobial agents: Antibacterial agents, anti-biofilm agents, antibacterial natural compounds, and antibacterial chemicals’. Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods, 75.

Cascioferro, S., Carbone, D., Parrino, B., Pecoraro, C., Giovannetti, E., Cirrincione, G., & Diana, P. (2021). ‘Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm‐associated infections’. ChemMedChem, 16(1), 65-80.

Ciofu, O., Rojo‐Molinero, E., Macià, M. D., & Oliver, A. (2017). Antibiotic treatment of biofilm infections. Apmis, 125(4), 304-319.

El-Hamid, A., Marwa, I., Y El-Naenaeey, E. S., Hegazy, W. A., Mosbah, R. A., Nassar, M. S., ... & Bendary, M. M. (2020). ‘Promising antibiofilm agents: Recent breakthrough against biofilm producing methicillin-resistant Staphylococcus aureus’. Antibiotics, 9(10), 667.

Haas, L. E., & Schultz, M. J. (2010). ‘Selective decontamination of the digestive tract reduces pneumonia and mortality’. Critical care research and practice, 2010.

Hanaki, H., Yamaguchi, Y., Yanagisawa, C., Uehara, K., Matsui, H., Yamaguchi, Y., ... & Nagayama, A. (2005). ‘Investigation of β-lactam antibiotic-induced vancomycin-resistant MRSA (BIVR)’. Journal of infection and chemotherapy, 11(2), 104-106.

Haney, E. F., Trimble, M. J., & Hancock, R. E. (2021). ‘Microtiter plate assays to assess antibiofilm activity against bacteria’. Nature Protocols, 16(5), 2615-2632.

He, X., Yuan, F., Lu, F., Yin, Y., & Cao, J. (2017). ‘Vancomycin-induced biofilm formation by methicillin-resistant Staphylococcus aureus is associated with the secretion of membrane vesicles’. Microbial pathogenesis, 110, 225-231.

Howden, B. P., Davies, J. K., Johnson, P. D., Stinear, T. P., & Grayson, M. L. (2010). ‘Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications.’ Clinical microbiology reviews, 23(1), 99-139.

Hsu, C. Y., Lin, M. H., Chen, C. C., Chien, S. C., Cheng, Y. H., Su, I. N., & Shu, J. C. (2011). ‘Vancomycin promotes the bacterial autolysis, release of extracellular DNA, and biofilm formation in vancomycin-non-susceptible Staphylococcus aureus’. FEMS Immunology & Medical Microbiology, 63(2), 236-247.

Kaneko, H., Nakaminami, H., Ozawa, K., Wajima, T., & Noguchi, N. (2021). ‘In vitro anti-biofilm effect of anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) agents against the USA300 clone’. Journal of Global Antimicrobial Resistance, 24, 63-71.

Matsuo, M., Cui, L., Kim, J., & Hiramatsu, K. (2013). ‘Comprehensive identification of mutations responsible for heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA)-to-VISA conversion in laboratory-generated VISA strains derived from hVISA clinical strain Mu3’. Antimicrobial agents and chemotherapy, 57(12), 5843-5853.

Merta, I. N., & Suderana, I. W. (2020). COVID-19 pandemic handling community social and cultural sector stimulus efforts. International Journal of Social Sciences and Humanities, 4(3), 1–12. https://doi.org/10.29332/ijssh.v4n3.434

Mirani, Z. A., & Jamil, N. (2011). ‘Effect of sub‐lethal doses of vancomycin and oxacillin on biofilm formation by vancomycin intermediate resistant Staphylococcus aureus’. Journal of basic microbiology, 51(2), 191-195.

Post, V., Wahl, P., Richards, R. G., & Moriarty, T. F. (2017). ‘Vancomycin displays time‐dependent eradication of mature Staphylococcus aureus biofilms’. Journal of Orthopaedic Research, 35(2), 381-388.

Satola, S. W., Farley, M. M., Anderson, K. F., & Patel, J. B. (2011). Comparison of detection methods for heteroresistant vancomycin-intermediate Staphylococcus aureus, with the population analysis profile method as the reference method. Journal of clinical microbiology, 49(1), 177-183.

Sharma, D., Misba, L., & Khan, A. U. (2019). ‘Antibiotics versus biofilm: an emerging battleground in microbial communities’. Antimicrobial Resistance & Infection Control, 8(1), 1-10.

Silva, V., Almeida, L., Gaio, V., Cerca, N., Manageiro, V., Caniça, M., ... & Poeta, P. (2021). ‘Biofilm formation of multidrug-resistant MRSA strains isolated from different types of human infections’. Pathogens, 10(8), 970.

Singh, R., Ray, P., Das, A., & Sharma, M. (2010). ‘Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms’. Journal of antimicrobial chemotherapy, 65(9), 1955-1958.

Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2021). Get vaccinated when it is your turn and follow the local guidelines. International Journal of Health Sciences, 5(3), x-xv. https://doi.org/10.53730/ijhs.v5n3.2938

Published

06-09-2022

How to Cite

Rivani, E., Arfijanto, M. V., & Widodo, A. D. W. (2022). Vancomycin for methicillin-resistant staphylococcus aureus biofilm eradication is associated with the emergence of heterogeneous vancomycin intermediate staphylococcus aureus. International Journal of Health Sciences, 6(S9), 811–818. https://doi.org/10.53730/ijhs.v6nS9.12536

Issue

Section

Peer Review Articles