Exploring the impact and applications of artificial intelligence in advancing modern medical diagnostic practices-role of healthcare providers
Review article
Keywords:
Artificial Intelligence, Healthcare, Medical Diagnostics, Machine Learning, Natural Language Processing, Patient CareAbstract
Introduction: Since its inception in 1956, artificial intelligence (AI) has advanced significantly, especially in the past decade. AI's integration into healthcare has revolutionized medical diagnostic practices, enabling faster and more accurate analysis of medical records. By mimicking human intelligence, AI facilitates the processing of vast amounts of data, thus improving diagnosis, treatment, and patient care. Aim: This review article aims to explore the impact and applications of AI in modern medical diagnostics and evaluate its role across various healthcare providers, including physicians, pharmacists, nurses, radiologists, and pathologists. Methods: The article reviews recent advancements in AI technologies and their implementation in healthcare. It examines the benefits of AI across different medical domains and its impact on improving diagnostic accuracy, patient management, and treatment outcomes. Results: AI has demonstrated significant benefits in healthcare by enhancing diagnostic accuracy, personalizing treatment plans, and improving patient outcomes. Key technologies such as machine learning, artificial neural networks, and natural language processing have been pivotal in advancing medical diagnostics and patient care. Conclusion: AI is increasingly vital in modern medicine, offering solutions to complex diagnostic and treatment challenges. Its applications improve healthcare efficiency, accuracy, and patient satisfaction.
Downloads
References
Haleem, A., Vaishya, R., & Javaid, M. K. I. (2019). Artificial intelligence (AI) applications in orthopaedics: An innovative technology to embrace. Journal of Clinical Orthopaedics and Trauma. https://doi.org/10.1016/j.jcot.2019.06.012 DOI: https://doi.org/10.1016/j.jcot.2019.06.012
Jha, S., & Topol, E. J. (2018). Information and artificial intelligence. Journal of the American College of Radiology, 15(3 Pt B), 509–511. DOI: https://doi.org/10.1016/j.jacr.2017.12.025
Lupton, M. (2018). Some ethical and legal consequences of the application of artificial intelligence in the field of medicine. Trends in Medicine, 18(4), 1-7. DOI: https://doi.org/10.15761/TiM.1000147
Murdch, T. B., & Detsky, A. S. (2013). The inevitable application of big data to health care. JAMA, 309(13), 1351–1352. DOI: https://doi.org/10.1001/jama.2013.393
Misawa, M., Kudo, S. E., Mori, Y., et al. (2018). Artificial intelligence-assisted polyp detection for colonoscopy: Initial experience. Gastroenterology, 154, 2027–2029. DOI: https://doi.org/10.1053/j.gastro.2018.04.003
Caocci, G., Baccoli, R., Vacca, A., Mastronuzzi, A., Bertaina, A., Piras, E., Littera, R., Locatelli, F., Carcassi, C., & La Nasa, G. (2010). Comparison between an artificial neural network and logistic regression in predicting acute graft-vs-host disease after unrelated donor hematopoietic stem cell transplantation in thalassemia patients. Experimental Hematology, 38, 426–433. DOI: https://doi.org/10.1016/j.exphem.2010.02.012
Haleem, A., Javaid, M., & Vaishya, R. (2019). Industry 4.0 and its applications in orthopaedics. Journal of Clinical Orthopaedics and Trauma, 10(3), 615-616. DOI: https://doi.org/10.1016/j.jcot.2018.09.015
Guo, J., & Li, B. (2018). The application of medical artificial intelligence technology in rural areas of developing countries. Health Equity, 2(1), 174–181. DOI: https://doi.org/10.1089/heq.2018.0037
Atasoy, H., Greenwood, B. N., & McCullough, J. S. (2018). The digitization of patient care: A review of the effects of electronic health records on health care quality and utilization. Annual Review of Public Health, 40, 1. https://doi.org/10.1146/annurev-publhealth-040218-044206 DOI: https://doi.org/10.1146/annurev-publhealth-040218-044206
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., & Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2, 230–243. DOI: https://doi.org/10.1136/svn-2017-000101
Haleem, A., & Javaid, M. (2019). Industry 5.0 and its expected applications in the medical field. Current Medicine Research and Practice, 9(4), 167-169. DOI: https://doi.org/10.1016/j.cmrp.2019.07.002
Buch, V. H., Ahmed, I., & Maruthappu, M. (2018). Artificial intelligence in medicine: Current trends and future possibilities. British Journal of General Practice, 68(668), 143-144. DOI: https://doi.org/10.3399/bjgp18X695213
Kulikowski, C. A. (2019). Beginnings of artificial intelligence in medicine (AIM): Computational artifice assisting scientific inquiry and clinical art - with reflections on present AIM challenges. Yearbook of Medical Informatics. https://doi.org/10.1055/s-0039-1677895 DOI: https://doi.org/10.1055/s-0039-1677895
Upadhyay, A. K., & Khandelwal, K. (2019). Artificial intelligence-based training learning from application. Development and Learning in Organizations: An International Journal, 33(2), 20-23. DOI: https://doi.org/10.1108/DLO-05-2018-0058
Hashmi, S. (2015). ‘Coming of age’ of artificial intelligence: Evolution of survivorship care through information technology. Bone Marrow Transplantation, 51, 41–42. DOI: https://doi.org/10.1038/bmt.2015.271
Mintz, Y., & Brodie, R. (2019). Introduction to artificial intelligence in medicine. Minimally Invasive Therapy & Allied Technologies, 28(2), 73-81. DOI: https://doi.org/10.1080/13645706.2019.1575882
Javaid, M., & Haleem, A. (2019). Industry 4.0 applications in the medical field: A brief review. Current Medicine Research and Practice, 9(3), 102-109. DOI: https://doi.org/10.1016/j.cmrp.2019.04.001
Lee, E. J., Kim, Y. H., Kim, N., et al. (2017). Deep into the brain: Artificial intelligence in stroke imaging. Journal of Stroke, 19, 277–285. DOI: https://doi.org/10.5853/jos.2017.02054
Muhsen, I. N., El Hassan, T., & Hashmi, S. K. (2018). Artificial intelligence approaches in hematopoietic cell transplantation: A review of the current status and future directions. Turkish Journal of Haematology, 35(3), 152-157. DOI: https://doi.org/10.4274/tjh.2018.0123
Miller, D. D., & Brown, E. W. (2018). Artificial intelligence in medical practice: The question to the answer? American Journal of Medicine, 131, 129–133. DOI: https://doi.org/10.1016/j.amjmed.2017.10.035
Xu, J., Yang, P., Xue, S., Sharma, B., Sanchez-Martin, M., Wang, F., Beaty, K. A., Dehan, E., & Parikh, B. (2019). Translating cancer genomics into precision medicine with artificial intelligence: Applications, challenges, and future perspectives. Human Genetics, 138(2), 109-124. DOI: https://doi.org/10.1007/s00439-019-01970-5
Kinnings, S. L., Liu, N., Tonge, P. J., Jackson, R. M., Xie, L., & Bourne, P. E. (2011). A machine learning-based method to improve docking scoring functions and its application to drug repurposing. Journal of Chemical Information and Modeling, 51, 408–419. DOI: https://doi.org/10.1021/ci100369f
Varnek, A., & Baskin, I. (2012). Machine learning methods for property prediction in chemoinformatics: Quo Vadis? Journal of Chemical Information and Modeling, 52, 1413–1437. DOI: https://doi.org/10.1021/ci200409x
Ain, Q. U., Aleksandrova, A., Roessler, F. D., & Ballester, P. J. (2015). Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdisciplinary Reviews: Computational Molecular Science, 5(6), 405-424. DOI: https://doi.org/10.1002/wcms.1225
Erickson, B. J., Korfiatis, P., Akkus, Z., & Kline, T. L. (2017). Machine learning for medical imaging. Radiographics, 37(2), 505-515. DOI: https://doi.org/10.1148/rg.2017160130
Zeng, X., & Luo, G. (2017). Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection. Health Information Science and Systems, 5(1), 2. https://doi.org/10.1007/s13755-017-0023-z DOI: https://doi.org/10.1007/s13755-017-0023-z
Li, D., Madden, A., Liu, C., Ding, Y., Qian, L., & Zhou, E. (2018). Modelling online user behaviour for medical knowledge learning. Industrial Management & Data Systems, 118(4), 889-911. DOI: https://doi.org/10.1108/IMDS-07-2017-0309
Wesolowski, M., & Suchacz, B. (2012). Artificial neural networks: Theoretical background and pharmaceutical applications: A review. Journal of AOAC International, 95, 652–668. DOI: https://doi.org/10.5740/jaoacint.SGE_Wesolowski_ANN
Saravanan, K., & Sasithra, S. (2014). Review on classification based on artificial neural networks. International Journal of Ambient Systems and Applications (IJASA), 2(4), 11–18. DOI: https://doi.org/10.5121/ijasa.2014.2402
Pastur-Romay, L. A., Cedrón, F., Pazos, A., & Porto-Pazos, A. B. (2016). Deep artificial neural networks and neuromorphic chips for big data analysis: Pharmaceutical and bioinformatics applications. International Journal of Molecular Sciences, 17(8), 1313. https://doi.org/10.3390/ijms17081313 DOI: https://doi.org/10.3390/ijms17081313
Li, H., Zhang, Z., & Liu, Z. (2017). Application of artificial neural networks for catalysis: A review. Catalysts, 7(10), 306. DOI: https://doi.org/10.3390/catal7100306
Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938. https://doi.org/10.1016/j.heliyon.2018.e00938 DOI: https://doi.org/10.1016/j.heliyon.2018.e00938
Shahid, N., Rappon, T., & Berta, W. (2019). Applications of artificial neural networks in health care organizational decision-making: A scoping review. PLoS One, 14(2), e0212356. https://doi.org/10.1371/journal.pone.0212356 DOI: https://doi.org/10.1371/journal.pone.0212356
Dutta, S., Long, W. J., Brown, D. F., & Reisner, A. T. (2013). Automated detection using natural language processing of radiologists' recommendations for additional imaging of incidental findings. Annals of Emergency Medicine, 62(2), 162–169. DOI: https://doi.org/10.1016/j.annemergmed.2013.02.001
Heintzelman, N. H., Taylor, R. J., Simonsen, L., Lustig, R., Anderko, D., Haythornthwaite, J. A., Childs, L. C., & Bova, G. S. (2013). Longitudinal analysis of pain in patients with metastatic prostate cancer using natural language processing of medical record text. Journal of the American Medical Informatics Association, 20(5), 898-905. DOI: https://doi.org/10.1136/amiajnl-2012-001076
Cai, T., Giannopoulos, A. A., Yu, S., Kelil, T., Ripley, B., Kumamaru, K. K., Rybicki, F. J., & Mitsouras, D. (2016). Natural language processing technologies in radiology research and clinical applications. Radiographics, 36(1), 176–191. DOI: https://doi.org/10.1148/rg.2016150080
Savova, G. K., Tseytlin, E., Finan, S., Castine, M., Miller, T., Medvedeva, O., Harris, D., Hochheiser, H., Lin, C., Chavan, G., & Jacobson, R. S. (2017). DeepPhe: A natural language processing system for extracting cancer phenotypes from clinical records. Cancer Research, 77(21), e115–e118. DOI: https://doi.org/10.1158/0008-5472.CAN-17-0615
Verma, R., & Melcher, U. (2012). A support vector machine based method to distinguish proteobacterial proteins from eukaryotic plant proteins. BMC Bioinformatics, 13(Suppl 15), S9. https://doi.org/10.1186/1471-2105-13-S15-S9 DOI: https://doi.org/10.1186/1471-2105-13-S15-S9
Zhu, B., Chen, H., Chen, B., Xu, Y., & Zhang, K. (2014). Support vector machine model for diagnosing pneumoconiosis based on wavelet texture features of digital chest radiographs. Journal of Digital Imaging, 27(1), 90–97. https://doi.org/10.1007/s10278-013-9620-9 DOI: https://doi.org/10.1007/s10278-013-9620-9
Gu, X., Ni, T., & Wang, H. (2014). New fuzzy support vector machine for the class imbalance problem in medical datasets classification. Scientific World Journal. https://doi.org/10.1155/2014/536434 DOI: https://doi.org/10.1155/2014/536434
Retico, A., Bosco, P., Cerello, P., Fiorina, E., Chincarini, A., & Fantacci, M. E. (2015). Predictive models based on support vector machines: Whole-brain versus regional analysis of structural MRI in Alzheimer's disease. Journal of Neuroimaging, 25(4), 552–563. DOI: https://doi.org/10.1111/jon.12163
Wang, Z. L., Zhou, Z. G., Chen, Y., Li, X. T., & Sun, Y. S. (2017). Support vector machines model of computed tomography for assessing lymph node metastasis in esophageal cancer with neoadjuvant chemotherapy. Journal of Computer Assisted Tomography, 41(3), 455–460. DOI: https://doi.org/10.1097/RCT.0000000000000555
Davies, N., Manthorpe, J., Sampson, E. L., & Iliffe, S. (2015). After the Liverpool Care Pathway—development of heuristics to guide end of life care for people with dementia: Protocol of the ALCP study. BMJ Open, 5(9), e008832. DOI: https://doi.org/10.1136/bmjopen-2015-008832
Davies, N., Mathew, R., Wilcock, J., Manthorpe, J., Sampson, E. L., Lamahewa, K., & Iliffe, S. (2016). A co-design process developing heuristics for practitioners providing end of life care for people with dementia. BMC Palliative Care, 15, 68. https://doi.org/10.1186/s12904-016-0146-z DOI: https://doi.org/10.1186/s12904-016-0146-z
Mohan, D., Rosengart, M. R., Fischhoff, B., Angus, D. C., Farris, C., Yealy, D. M., Wallace, D. J., & Barnato, A. E. (2016). Testing a videogame intervention to recalibrate physician heuristics in trauma triage: Study protocol for a randomized controlled trial. BMC Emergency Medicine, 16(1), 44. https://doi.org/10.1186/s12873-016-0108-z DOI: https://doi.org/10.1186/s12873-016-0108-z
Davies, N., Manthorpe, J., Sampson, E. L., Lamahewa, K., Wilcock, J., Mathew, R., & Iliffe, S. (2018). Guiding practitioners through the end of life care for people with dementia: The use of heuristics. PLoS One, 13(11), e0206422. DOI: https://doi.org/10.1371/journal.pone.0206422
Patel, V. L., Shortliffe, E. H., Stefanelli, M., Szolovits, P., Berthold, M. R., Bellazzi, R., & Abu-Hanna, A. (2009). The coming of age of artificial intelligence in medicine. Artificial Intelligence in Medicine, 46, 5–17. DOI: https://doi.org/10.1016/j.artmed.2008.07.017
Wahl, B., Cossy-Gantner, A., Germann, S., & Schwalbe, N. R. (2018). Artificial intelligence (AI) and global health: How can AI contribute to health in resource-poor settings? BMJ Global Health, 3(4), e000798. DOI: https://doi.org/10.1136/bmjgh-2018-000798
Bashiri, A., Ghazisaeedi, M., Safdari, R., Shahmoradi, L., & Ehtesham, H. (2017). Improving the prediction of survival in cancer patients by using machine learning techniques: Experience of gene expression data: A narrative review. Iranian Journal of Public Health, 46(2), 165–172. DOI: https://doi.org/10.19082/ah136
Long, E., Lin, H., Liu, Z., Wu, X., Wang, L., Jiang, J., An, Y., Lin, Z., Li, X., Chen, J., et al. (2017). An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nature Biomedical Engineering, 1, 24. DOI: https://doi.org/10.1038/s41551-016-0024
Yi, P. H., Hui, F. K., & Ting, D. S. W. (2018). Artificial intelligence and radiology: Collaboration is key. Journal of the American College of Radiology, 15(5), 781–783. DOI: https://doi.org/10.1016/j.jacr.2017.12.037
Winter, J. S., & Davidson, E. (2019). Governance of artificial intelligence and personal health information. Digital Policy, Regulation and Governance. https://doi.org/10.1108/DPRG-08-2018-0048 DOI: https://doi.org/10.1108/DPRG-08-2018-0048
Hai, T. S., & Thuy, N. T. (2012). Image classification using support vector machine and artificial neural network. International Journal of Information Technology and Computer Science, 4, 32–38. DOI: https://doi.org/10.5815/ijitcs.2012.05.05
Balkanyi, L., & Cornet, R. (2019). The interplay of knowledge representation with various fields of artificial intelligence in medicine. Yearbook of Medical Informatics. https://doi.org/10.1055/s-0039-1677899 DOI: https://doi.org/10.1055/s-0039-1677899
Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452–459. DOI: https://doi.org/10.1038/nature14541
Weidlich, V., & Weidlich, G. A. (2018). Artificial intelligence in medicine and radiation oncology. Cureus, 10(4), e2475. https://doi.org/10.7759/cureus.2475 DOI: https://doi.org/10.7759/cureus.2475
Kantarjian, H., & Yu, P. P. (2015). Artificial intelligence, big data, and cancer. JAMA Oncology, 1, 573–574. DOI: https://doi.org/10.1001/jamaoncol.2015.1203
Wartman, S. A., & Combs, C. D. (2018). Medical education must move from the information age to the age of artificial intelligence. Academic Medicine, 93(8), 1107–1109. DOI: https://doi.org/10.1097/ACM.0000000000002044
Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology, 69, 2657–2664. DOI: https://doi.org/10.1016/j.jacc.2017.03.571
Hamet, P., & Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism, 69, 36–40. DOI: https://doi.org/10.1016/j.metabol.2017.01.011
Sachs, P. B., Gassert, G., Cain, M., Rubinstein, D., Davey, M., & Decoteau, D. (2013). Imaging study protocol selection in the electronic medical record. Journal of the American College of Radiology, 10, 220–22. DOI: https://doi.org/10.1016/j.jacr.2012.11.004
Luxton, D. D. (2014). Recommendations for the ethical use and design of artificial intelligent care providers. Artificial Intelligence in Medicine, 62(1), 1–10. DOI: https://doi.org/10.1016/j.artmed.2014.06.004
Jha, S., & Topol, E. J. (2016). Adapting to artificial intelligence: Radiologists and pathologists as information specialists. JAMA, 316, 2353–2354. DOI: https://doi.org/10.1001/jama.2016.17438
Noorbakhsh-Sabet, N., Zand, R., Zhang, Y., & Abedi, V. (2019). Artificial intelligence transforms the future of health care. American Journal of Medicine. https://doi.org/10.1016/j.amjmed.2019.03.020 DOI: https://doi.org/10.1016/j.amjmed.2019.01.017
Tran, B. X., Vu, G. T., Ha, G. H., Vuong, Q. H., Ho, M. T., Vuong, T. T., La, V. P., Ho, M. T., Nghiem, K. P., Nguyen, H. L. T., Latkin, C. A., Tam, W. W. S., Cheung, N. M., Nguyen, H. T., Ho, C. S. H., & Ho, R. C. M. (2019). Global evolution of research in artificial intelligence in health and medicine: A bibliometric study. Journal of Clinical Medicine, 8(3), 360. https://doi.org/10.3390/jcm8030360 DOI: https://doi.org/10.3390/jcm8030360
Chouard, T., & Venema, L. (2015). Machine intelligence. Nature, 521(7553), 435. DOI: https://doi.org/10.1038/521435a
Scherer, M. U. (2016). Regulating artificial intelligence systems: Risks, challenges, competencies, and strategies. Harvard Journal of Law & Technology, 29, 354–400. DOI: https://doi.org/10.2139/ssrn.2609777
Patel, J. L., & Goyal, R. K. (2007). Applications of artificial neural networks in medical science. Current Clinical Pharmacology, 2, 217–226. DOI: https://doi.org/10.2174/157488407781668811
Fernandez-Luque, L., & Imran, M. (2018). Humanitarian health computing using artificial intelligence and social media: A narrative literature review. International Journal of Medical Informatics, 114, 136–142. DOI: https://doi.org/10.1016/j.ijmedinf.2018.01.015
Ramesh, A. N., Kambhampati, C., Monson, J. R. T., & Drew, P. J. (2004). Artificial intelligence in medicine. Annals of the Royal College of Surgeons of England, 86(5), 334–338. DOI: https://doi.org/10.1308/147870804290
He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30–36. DOI: https://doi.org/10.1038/s41591-018-0307-0
Yu, K. H., & Kohane, I. S. (2019). Framing the challenges of artificial intelligence in medicine. BMJ Quality & Safety, 28(3), 238–241. DOI: https://doi.org/10.1136/bmjqs-2018-008551
Dilsizian, S. E., & Siegel, E. L. (2014). Artificial intelligence in medicine and cardiac imaging: Harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Current Cardiology Reports, 16(12), 441. DOI: https://doi.org/10.1007/s11886-013-0441-8
Pesapane, F., Volonté, C., Codari, M., & Sardanelli, F. (2018). Artificial intelligence as a medical device in radiology: Ethical and regulatory issues in Europe and the United States. Insights into Imaging, 9(6), 745–753. DOI: https://doi.org/10.1007/s13244-018-0645-y
Buzeav, I. V., Plechev, V., Nikolaeva, I. E., et al. (2016). Artificial intelligence: Neural network model as the multidisciplinary team member in clinical decision support to avoid medical mistakes. Chronic Diseases Translational Medicine, 2(4), 166–172. DOI: https://doi.org/10.1016/j.cdtm.2016.09.007
Shaban-Nejad, A., Michalowski, M., & Buckeridge, D. L. (2018). Health intelligence: How artificial intelligence transforms population and personalized health. NPJ Digital Medicine, 1, 53. https://doi.org/10.1038/s41746-018-0058-9 DOI: https://doi.org/10.1038/s41746-018-0058-9
Vuong, Q. H., Ho, M. T., Vuong, T. T., La, V. P., Ho, M. T., Nghiem, K. P., Tran, B. X., Giang, H. H., Giang, T. V., Latkin, C., Nguyen, H. T., Ho, C. S. H., & Ho, R. C. M. (2019). Artificial Intelligence vs Natural Stupidity: Evaluating AI readiness for the Vietnamese Medical Information System. Journal of Clinical Medicine, 8(2), 168. https://doi.org/10.3390/jcm8020168 DOI: https://doi.org/10.3390/jcm8020168
Douali, N., Csaba, H., De Roo, J., Papageorgiou, E. I., & Jaulent, M. C. (2014). Diagnosis support system based on clinical guidelines: Comparison between case-based fuzzy cognitive maps and Bayesian networks. Computers in Biology and Medicine, 113, 133–143. DOI: https://doi.org/10.1016/j.cmpb.2013.09.012
Mayo, R. C., & Leung, J. (2018). Artificial intelligence and deep learning – Radiology’s next frontier? Clinical Imaging, 49, 87–88. DOI: https://doi.org/10.1016/j.clinimag.2017.11.007
Shortliffe, E. H. (2019). Artificial Intelligence in Medicine: Weighing the accomplishments, hype, and promise. Yearbook of Medical Informatics. https://doi.org/10.1055/s-0039-1677891 DOI: https://doi.org/10.1055/s-0039-1677891
Pomprapa, A., MuangKhong, D., Köny, M., Leonhardt, S., Pickerodt, P., Tjarks, O., Schwaiberger, D., & Lachmann, B. (2015). Artificial intelligence for closed-loop ventilation therapy with hemodynamic control using the open lung concept. International Journal of Intelligent Computing and Cybernetics, 8(1), 50–68. DOI: https://doi.org/10.1108/IJICC-05-2014-0025
Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C., & Faisal, A. A. (2018). The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nature Medicine, 24(11), 1716–1720. DOI: https://doi.org/10.1038/s41591-018-0213-5
Tien, B. D., Bui, Q. T., Nguyen, Q. P., Pradhan, B., Nampak, H., & Trinh, P. T. (2017). A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modelling at a tropical area. Agricultural and Forest Meteorology, 233, 32–44. DOI: https://doi.org/10.1016/j.agrformet.2016.11.002
Vellido, A. (2019). Societal issues concerning the application of artificial intelligence in medicine. Kidney Diseases (Basel), 5(1), 11–17. DOI: https://doi.org/10.1159/000492428
Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44–56. DOI: https://doi.org/10.1038/s41591-018-0300-7
Bur, A. M., Shew, M., & New, J. (2019). Artificial intelligence for the otolaryngologist: A state of the art review. Otolaryngology–Head and Neck Surgery, 160(4), 603–611. DOI: https://doi.org/10.1177/0194599819827507
Additive Manufacturing Applications in Industry 4.0: A Review. (2019). Journal of Industrial Integration and Management, 4(2). https://doi.org/10.1142/S2424862219300011 DOI: https://doi.org/10.1142/S2424862219300011
Van Hartskamp, M., Consoli, S., Verhaegh, W., Petkovic, M., & van de Stolpe, A. (2019). Artificial intelligence in clinical health care applications: Viewpoint. Interactive Journal of Medical Research, 8(2), e12100. https://doi.org/10.2196/12100 DOI: https://doi.org/10.2196/12100
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. DOI: https://doi.org/10.1038/nature21056
Wang, R., Pan, W., Jin, L., Li, Y., Geng, Y., Gao, C., Chen, G., Wang, H., Ma, D., & Liao, S. (2019). Artificial intelligence in reproductive medicine. Reproduction. https://doi.org/10.1530/REP-18-0523 DOI: https://doi.org/10.1530/REP-18-0523
Hashimoto, D. A., Rosman, G., Rus, D., & Meireles, O. R. (2018). Artificial intelligence in surgery: Promises and perils. Annals of Surgery, 268(1), 70–76. DOI: https://doi.org/10.1097/SLA.0000000000002693
Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. J. W. L. (2018). Artificial intelligence in radiology. Nature Reviews Cancer, 18(8), 500–510. DOI: https://doi.org/10.1038/s41568-018-0016-5
Published
How to Cite
Issue
Section
Copyright (c) 2020 International journal of health sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.