A comparison of cephalometric measurements with conventional lateral cephalic 2D and reconstructed lateral cephalic of CBCT
Keywords:
cephalometric, conventional, lateral cephalicAbstract
Lateral cephalic radiography is mainly used to describe the morphology and growth of the craniofacial skeleton. It is considered a valuable diagnostic aid in orthodontics to plan treatment and evaluate the results. (1)(2) Cephalometric analyses requires identifying specific reference points and calculating various angular and linear dimensions. (3) Because cephalometry has been one of the most important diagnostic tools available to orthodontists for more than seven decades, different cephalometric norms have been published by leading physicians and researchers and it is used for: diagnosis, treatment progress, post-treatment evaluation, and research. (4) According to the orthodontic literature, other reconstructions such as lateral cephalic are known from more recent 3D cone beam computed tomography images. The attempt to develop 3D analysis and diagnosis is more interesting today. (4) (15) (23) Lateral cephalic radiographs are two-dimensional (2D) images that are used to represent three-dimensional (3D) structures. (5) Due to the different disadvantages of a 2D lateral cephalic X-ray: geometric distortion and the superposition of anatomical structures, 3D imaging has overcome the hurdle of 2D imaging by allowing orthodontists to visualize craniofacial structures without overlap or distortion.(6)(7)
Downloads
References
Enoki C, Telles C de S, Matsumoto MAN. Dental-skeletal dimensions in growing individuals with variations in the lower facial height. Braz Dent J [Internet]. 2004 [citado el 21 de enero de 2022];15(1):68–74.
Cook AH, Sellke TA, BeGole EA. Control of the vertical dimension in Class II correction using a cervical headgear and lower utility arch in growing patients. Part I. Am J Orthod Dentofacial Orthop [Internet]. 1994 [citado el 21 de enero de 2022];106(4):376–88.
Kumar V, Ludlow JB, Mol A, Cevidanes L. Comparison of conventional and cone beam CT synthesized cephalograms. Dentomaxillofac Radiol [Internet]. 2007;36(5):263–9.
Yitschaky O, Redlich M, Abed Y, Faerman M, Casap N, Hiller N. Comparison of common hard tissue cephalometric measurements between computed tomography 3D reconstruction and conventional 2D cephalometric images. Angle Orthod [Internet]. 2011 [citado el 24 de enero de 2022];81(1):11–6.
Schulze D, Heiland M, Thurmann H, Adam G. Radiation exposure during midfacial imaging using 4- and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofac Radiol [Internet]. 2004;33(2):83–6.
Pittayapat P, Bornstein MM, Imada TSN, Coucke W, Lambrichts I, Jacobs R. Accuracy of linear measurements using three imaging modalities: two lateral cephalograms and one 3D model from CBCT data. Eur J Orthod [Internet]. 2015 [citado el 24 de enero de 2022];37(2):202–8.
Ramírez Huerta JV, Oropeza Sosa JG, Flores Ledesma A. Estudio comparativo entre mediciones cefalométricas en cone-beam y radiografía lateral digital. Rev mex ortod [Internet]. 2015;3(2):84–7.
Oh S, Kim C-Y, Hong J. A comparative study between data obtained from conventional lateral cephalometry and reconstructed three-dimensional computed tomography images. J Korean Assoc Oral Maxillofac Surg [Internet]. 2014 [cited 2022 Jan 14];40(3):123–9.
Afrashtehfar KI, Profesor A. Comparación entre radiografía tradicional y tridimensional en Odontología [Internet]. Medigraphic.com. [citado el 21 de enero de 2022].
Patel S, Harvey S. Guidelines for reporting on CBCT scans. Int Endod J [Internet]. 2021;54(4):628–33
Wen J, Liu S, Ye X, Xie X, Li J, Li H, et al. Comparative study of cephalometric measurements using 3 imaging modalities. J Am Dent Assoc [Internet]. 2017 [citado el 14 de enero de 2022];148(12):913–21.
Abraira V. Desviación estándar y error estándar. Semergen [Internet]. 2002 [citado 2022 Jan 14];28(11):621–3.
Afrashtehfar KI, Profesor A. Comparación entre radiografía tradicional y tridimensional en Odontología [Internet]. Medigraphic.com. [citado el 21 de enero de 2022].
van Vlijmen OJC, Maal T, Bergé SJ, Bronkhorst EM, Katsaros C, Kuijpers-Jagtman AM. A comparison between 2D and 3D cephalometry on CBCT scans of human skulls. Int J Oral Maxillofac Surg [Internet]. 2010 [citado el 24 de enero de 2022];39(2):156–60.
Jodeh DS, Kuykendall LV, Ford JM, Ruso S, Decker SJ, Rottgers SA. Adding depth to cephalometric analysis: Comparing two- and three-dimensional angular cephalometric measurements: Comparing two- and three-dimensional angular cephalometric measurements. J Craniofac Surg [Internet]. 2019 [citado el 21 de enero de 2022];30(5):1568–71.
Cassetta M, Altieri F, Di Giorgio R, Silvestri A. Two-dimensional and three-dimensional cephalometry using cone beam computed tomography scans. J Craniofac Surg [Internet]. 2015 [cited 2022 Jan 24];26(4):e311-5.
Roque-Torres GD, Meneses-López A, Bóscolo N, De Almeida SM, Neto FH. La tomografía computarizada cone beam en la ortodoncia, ortopedia facial y funcional Cone beam computed tomography use in orthodontics, functional facial orthopedics [Internet]. Org.pe. [cited 2022 Jan 21].
Damstra J, Fourie Z, Huddleston Slater JJR, Ren Y. Accuracy of linear measurements from cone-beam computed tomography-derived surface models of different voxel sizes. Am J Orthod Dentofacial Orthop [Internet]. 2010;137(1):16.e1-6; discussion 16-7.
Lagravère MO, Carey J, Toogood RW, Major PW. Three-dimensional accuracy of measurements made with software on cone-beam computed tomography images. Am J Orthod Dentofacial Orthop [Internet]. 2008;134(1):112–6.
Baumgaertel S, Palomo JM, Palomo L, Hans MG. Reliability and accuracy of cone-beam computed tomography dental measurements. Am J Orthod Dentofacial Orthop [Internet]. 2009;136(1):19–25; discussion 25-8.
Original T. Revista Mexicana de Ortodoncia [Internet]. Medigraphic.com.
Cattaneo PM, Bloch CB, Calmar D, Hjortshøj M, Melsen B. Comparison between conventional and cone-beam computed tomography-generated cephalograms. Am J Orthod Dentofacial Orthop [Internet]. 2008;134(6):798–802.
Cook AH, Sellke TA, BeGole EA. Control of the vertical dimension in Class II correction using a cervical headgear and lower utility arch in growing patients. Part I. Am J Orthod Dentofacial Orthop [Internet]. 1994;106(4):376–88.
Athanasiou AE, Miethke R, Van Der Meij AJ. Random errors in localization of landmarks in postero-anterior cephalograms. Br J Orthod [Internet]. 1999 [citado el 21 de enero de 2022];26(4):273–84.
Ludlow JB, Laster WS, See M, Bailey LJ, Hershey HG. Accuracy of measurements of mandibular anatomy in cone beam computed tomography images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod [Internet]. 2007;103(4):534–42.
Chien PC, Parks ET, Eraso F, Hartsfield JK, Roberts WE, Ofner S. Comparison of reliability in anatomical landmark identification using two-dimensional digital cephalometrics and three-dimensional cone beam computed tomography in vivo. Dentomaxillofac Radiol [Internet]. 2009;38(5):262–73.
Enoki C, Telles C de S, Matsumoto MAN. Dental-skeletal dimensions in growing individuals with variations in the lower facial height. Braz Dent J [Internet]. 2004 [citado el 21 de enero de 2022];15(1):68–74.
Cook AH, Sellke TA, BeGole EA. Control of the vertical dimension in Class II correction using a cervical headgear and lower utility arch in growing patients. Part I. Am J Orthod Dentofacial Orthop [Internet]. 1994 [citado el 21 de enero de 2022];106(4):376–88.
View of A comparative study of digital lateral radiography and virtual cone-beam computed assisted cephalogram in cephalometric measurements [Internet]. Joralres.com. [citado el 21 de enero de 2022].
Chan CK, Tng TH, Hägg U, Cooke MS. Effects of cephalometric landmark validity on incisor angulation. Am J Orthod Dentofacial Orthop [Internet]. 1994;106(5):487–95
Suryasa, W., Sudipa, I. N., Puspani, I. A. M., & Netra, I. (2019). Towards a Change of Emotion in Translation of Kṛṣṇa Text. Journal of Advanced Research in Dynamical and Control Systems, 11(2), 1221-1231.
Suwija, N., Suarta, M., Suparsa, N., Alit Geria, A.A.G., Suryasa, W. (2019). Balinese speech system towards speaker social behavior. Humanities & Social Sciences Reviews, 7(5), 32-40. https://doi.org/10.18510/hssr.2019.754
Gandamayu, I. B. M., Antari, N. W. S., & Strisanti, I. A. S. (2022). The level of community compliance in implementing health protocols to prevent the spread of COVID-19. International Journal of Health & Medical Sciences, 5(2), 177-182. https://doi.org/10.21744/ijhms.v5n2.1897
Published
How to Cite
Issue
Section
Copyright (c) 2022 International journal of health sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.