Antimalarial activity prediction analysis of sticophus hermanni on plasmodium falciparum hexose transporter (PfHT1)
Keywords:
bioinformatics, S. hermanni, natural productsAbstract
The objective of this study is to investigate S.hermanni's antimalarial action against PfHT1 utilizing an in silico technique. In silico method, developing a protein target database by searching and collecting the protein target structures from the Protein Data Bank (PDB) and the UNIPROT databases. PfHT1 protein (PDB ID 6m20) with glucose control. Download all ligand structures from the PubChem database. Molecular docking analysis with Molegro virtual docker predicts interactions between ligands and protein targets. The last step was docking visualization to display 3D views and their interactions with the discovery studio program. The control compound beta-D-glucopyranose binds PfHT1 at the active site GLN169, GLN305, ASN341, GLY408, ASN311, and GLN305. All active compounds of S.hermanni were able to bind to PfHT1. This indicates that all active compounds enter the cell via hexose transporter 1 (PfHT1) receptors, such as glucose. All active substances of S.hermanni have antimalaria activity through PfHT1inhibition. Almost all active substances used were similar to the control binding sites, but only quinoxaline used different binding sites. The active substance of S.hermanni has a variety of binding affinities to PfHT1.
Downloads
References
Adam M, Thahir H, Achmad H, Wahyu Putri S, Azizah A, Eka Satya D. The Potential of Golden Sea Cucumber (Stichopus hermanii) in the Regeneration of Periodontal Tissues: a Literature Review. Ann Rom Soc Cell Biol. 2021;25: 4407–4418. Available: http://annalsofrscb.ro
Alharbi NS, Kadaikunnan S, Khaled JM, Almanaa TN, Innasimuthu GM, Rajoo B, et al. Optimization of glutamic acid production by Corynebacterium glutamicum using response surface methodology. J King Saud Univ - Sci. 2020;32: 1403–1408. doi:10.1016/j.jksus.2019.11.034
Ali F, Wali H, Jan S, Zia A, Aslam M, Ahmad I, et al. Analysing the essential proteins set of Plasmodium falciparum PF3D7 for novel drug targets identification against malaria. Malar J. 2021;20: 1–11. doi:10.1186/s12936-021-03865-1
Alves A, Bassot A, Bulteau AL, Pirola L, Morio B. Glycine metabolism and its alterations in obesity and metabolic diseases. Nutrients. 2019;11: 1–28. doi:10.3390/nu11061356
Ansori AN, Kharisma VD, Parikesit AA, Dian FA, Probojati RT, Rebezov M, Scherbakov P, Burkov P, Zhdanova G, Mikhalev A, Antonius Y, Pratama MRF, Sumantri NI, Sucipto TH, Zainul R. Bioactive Compounds from Mangosteen (Garcinia mangostana L.) as an Antiviral Agent via Dual Inhibitor Mechanism against SARS-CoV- 2: An In Silico Approach. Phcog J. 2022; 14(1): 85-90. DOI: 10.5530/pj.2022.14.12
Arundina I, Yuliati Y, Soesilawati P, Damaiyanti DW, Maharani D. The effects of golden sea cucumber extract (Stichopus hermanii) on the number of lymphocytes during the healing process of traumatic ulcer on wistar rat's oral mucous. Dent J (Majalah Kedokt Gigi). 2015;48: 100. doi:10.20473/j.djmkg.v48.i2.p100-103
Awasthi V, Chauhan R, Chattopadhyay D, Das J. Effect of l-arginine on the growth of Plasmodium falciparum and immune modulation of host cells. J Vector Borne Dis. 2017;54: 139–145.
Balikagala B, Fukuda N, Ikeda M, Katuro OT, Tachibana S-I, Yamauchi M, et al. Evidence of Artemisinin-Resistant Malaria in Africa. N Engl J Med. 2021;385: 1163–1171. doi:10.1056/nejmoa2101746
Bitencourt-Ferreira G, de Azevedo WFJ. Molegro Virtual Docker for Docking. Methods Mol Biol. 2019;2053: 149–167. doi:10.1007/978-1-4939-9752-7_10
Chikhale HU. Review on Nanoflowers Current Trends in Pharmacy and Pharmaceutical Chemistry. Curr Trends Pharm Pharm Chem. 2020;2: 24–32.
Das UN. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: A review. J Adv Res. 2018;11: 57–66. doi:10.1016/j.jare.2018.01.001
Fadholly A, Ansori ANM, Kharisma VD, Rahmahani J, Tacharina MR. Immunobioinformatics of Rabies Virus in Various Countries of Asia: Glycoprotein Gene. Res J Pharm Technol. 2021; 14(2): 883-886. doi: 10.5958/0974-360X.2021.00157.8
Fadlan A, Warsito T, Sarmoko S. Pendekatan In Silico Dalam Menyingkap Potensi Antikanker Meciadanol. Jurnal Kimia Riset. 2021; 6(2): 163–171. DOI: 10.20473/jkr.v6i2.31071
Fahmi M, Kharisma VD, Ansori ANM, Ito M. Retrieval and Investigation of Data on SARS-CoV-2 and COVID-19 Using Bioinformatics Approach. Adv Exp Med Biol. 2021; 1318: 839-857. DOI: 10.1007/978-3-030-63761-3_47.
Fawzya YN, Putra NA, Witarto AB, Patantis G. Golden sea cucumber: Identification and the antioxidant activity of its collagen hydrolysates. Squalen Bull Mar Fish Postharvest Biotechnol. 2020;15: 119–129. doi:10.15578/squalen.v15i3.511
Fonseca AL Da, Nunes RR, Braga VML, Comar M, Alves RJ, Varotti FDP, et al. Docking, QM/MM, and molecular dynamics simulations of the hexose transporter from Plasmodium falciparum (PfHT). J Mol Graph Model. 2016;66: 174–186. doi:10.1016/j.jmgm.2016.03.015
Ghazali FC, Edinur HA, Sirajudeen KNS, Aroyehun AQB, Razak SA. The value of geochemical signatures marine by-products, with highlights from taxonomies sea cucumbers, macroalgae and crown of thorns starfish. AIP Conf Proc. 2019;2124. doi:10.1063/1.5117081
Jagannathan P, Kakuru A. Malaria in 2022: Increasing challenges, cautious optimism. Nat Commun. 2022;13: 12–14. doi:10.1038/s41467-022-30133-w
Jiang X, Yuan Y, Huang J, Zhang S, Luo S, Wang N, et al. Structural Basis for Blocking Sugar Uptake into the Malaria Parasite Plasmodium falciparum. Cell. 2020;183: 258-268.e12. doi:10.1016/j.cell.2020.08.015
Kastritis PL, Bonvin AMJJ. to ask why proteins interact On the binding affinity of macromolecular interactions: daring References Subject collections. J R Soc Interface. 2013;10: 1–27. Available: http://rsif.royalsocietypublishing.org/content/10/79/20120835.full.html#ref-list-1
Kharisma VD, Agatha A, Ansori ANM, Widyananda MH, Rizky WC, Dings TGA, Derkho M, Lykasova I, Antonius Y, Rosadi I, Zainul R. Herbal combination from Moringa oleifera Lam. and Curcuma longa L. as SARS-CoV-2 antiviral via dual inhibitor pathway: A viroinformatics approach. J Pharm Pharmacogn Res. 2022; 10(1): 138-146.
Kharisma VD, Kharisma SD, Ansori ANM, Kurniawan HP, Witaningrum AM, Fadholly A, Tacharina MR. Antiretroviral Effect Simulation from Black Tea (Camellia sinensis) via Dual Inhibitors Mechanism in HIV-1 and its Social Perspective in Indonesia. Res J Pharm Technol. 2021; 14(1): 455-460. doi: 10.5958/0974-360X.2021.00083.4
Kharisma VD, Probojati RT, Murtadlo AAA, Ansori ANM, Antonius Y, Tamam MB. Revealing Potency of Bioactive Compounds as Inhibitor of Dengue Virus (DENV) NS2B/NS3 Protease from Sweet Potato (Ipomoea batatas L.) Leaves. Indian J Forensic Med Toxicol. 2020; 15(1): 1627–1632. DOI: 10.37506/ijfmt.v15i1.13644
Kharisma VD, Widyananda MH, Ansori ANM, Nege AS, Naw SW, Nugraha AP Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism against HIV-1 infection: A bioinformatics approach. J Pharm Pharmacogn Res. 9(4): 435-445.
Khotimchenko Y. Pharmacological potential of sea cucumbers. Int J Mol Sci. 2018;19: 1–42. doi:10.3390/ijms19051342
Kraft TE, Armstrong C, Heitmeier MR, Odom AR, Hruz PW. The glucose transporter PfHT1 is an antimalarial target of the HIV protease inhibitor lopinavir. Antimicrob Agents Chemother. 2015;59: 6203–6209. doi:10.1128/AAC.00899-15
Masre SF, Yip GW, Sirajudeen KNS, Ghazali FC. Quantitative analysis of sulphated glycosaminoglycans content of Malaysian sea cucumber Stichopus hermanni and Stichopus vastus. Nat Prod Res. 2012;26: 684–689. doi:10.1080/14786419.2010.545354
Naik RS, Krishnegowda G, Gowda DC. Glucosamine inhibits inositol acylation of the glycosylphosphatidylinositol anchors in intraerythrocytic Plasmodium falciparum. J Biol Chem. 2003;278: 2036–2042. doi:10.1074/jbc.M208976200
Nugraha RYB, Faratisha IFD, Mardhiyyah K, Ariel DG, Putri FF, Nafisatuzzamrudah, et al. Antimalarial Properties of Isoquinoline Derivative from Streptomyces hygroscopicus subsp. Hygroscopicus: An in Silico Approach. Biomed Res Int. 2020;2020. doi:10.1155/2020/6135696
Parisihni K, Revianti S. Antifungal effect of Sticophus hermanii and Holothuria atra extract and its cytotoxicity on gingiva-derived mesenchymal stem cell. Dent J (Majalah Kedokt Gigi). 2013;46: 218. doi:10.20473/j.djmkg.v46.i4.p218-223
Pereira JA, Pessoa AM, Cordeiro MNDS, Fernandes R, Prudêncio C, Noronha JP, et al. Quinoxaline, its derivatives and applications: A State of the Art review. Eur J Med Chem. 2015;97: 664–672. doi:10.1016/j.ejmech.2014.06.058
Pringgenies D, Rudiyanti S, Yudiati E. Exploration of Sea Cucumbers Stichopus hermanii from Karimunjawa Islands as Production of Marine Biological Resources. IOP Conf Ser Earth Environ Sci. 2018;116. doi:10.1088/1755-1315/116/1/012039
Proboningrat A, Kharisma VD, Ansori ANM, Rahmawati R, Fadholly A, Posa GAV, Sudjarwo SA, Rantam FA, Achmad AB. In silico Study of Natural inhibitors for Human papillomavirus-18 E6 protein. Res J Pharm Technol. 2022; 15(3):1251-6. doi: 10.52711/0974-360X.2022.00209
Ridhowati S, Chasanah E, Syah D, Zakaria F. A study on the nutrient substances of sea cucumber Stichopus variegatus flour using vacuum oven. Int Food Res J. 2018;25: 1419–1426.
Rosenthal PJ. Artemisinin resistance outside of Southeast Asia. Am J Trop Med Hyg. 2018;99: 1357–1359. doi:10.4269/ajtmh.18-0845
Rosenthal PJ. Malaria in 2022: Challenges and Progress. Am J Trop Med Hyg. 2022;106: 1565–1567. doi:10.4269/ajtmh.22-0128
Salahudeen MS, Nishtala PS. An overview of pharmacodynamic modelling, ligand-binding approach and its application in clinical practice. Saudi Pharm J. 2017;25: 165–175. doi:10.1016/j.jsps.2016.07.002
Shibeshi MA, Kifle ZD, Atnafie SA. Antimalarial drug resistance and novel targets for antimalarial drug discovery. Infect Drug Resist. 2020;13: 4047–4060. doi:10.2147/IDR.S279433
Sinha S, Chakrabarti A, Singh G, Kumar KK, Gaur NA, Arora A, et al. Correction to: Isolation and identification of carotenoid-producing yeast and evaluation of antimalarial activity of the extracted carotenoid(s) against P. falciparum (Biologia Futura, (2021), 72, 3, (325-337), 10.1007/s42977-021-00081-5). Biol Futur. 2021;72: 339. doi:10.1007/s42977-021-00082-4
Suner SS, Sahiner M, Ayyala RS, Sahiner N. Degradable and Non-Degradable Chondroitin Sulfate Particles with the Controlled Antibiotic Release for Bacterial Infections. Pharmaceutics. 2022;14: 1739. doi:10.3390/pharmaceutics14081739
Talib S, Ahmed N, Khan D, Majid GK, Asim UR. Chitosan-chondroitin based artemether loaded nanoparticles for transdermal drug delivery system. J Drug Deliv Sci Technol. 2021;61.
Ugwuja DI, Okoro U, Soman S, Ibezim A, Ugwu D, Soni R, et al. New glycine derived peptides bearing benzenesulphonamide as an antiplasmodial agent. New J Chem. 2021;45: 3660–3674. doi:10.1039/d0nj04387g
Utami PD, Yudho V. High Antiplasmodial Activity of Golden Gamat (S.hermanni) Extract Through In Vitro Study. Eur J Biol Biotechnol. 2021;2: 19–23. doi:10.24018/ejbio.2021.2.5.260
Uwimana A, Legrand E, Stokes BH, Ndikumana JLM, Warsame M, Umulisa N, et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med. 2020;26: 1602–1608. doi:10.1038/s41591-020-1005-2
Uzor PF, Ishiwu BU, Nwodo NJ. In vivo antimalarial effect of Ananas comosus (L) Merr (Bromeliaceae) fruit peel, and gas chromatography-mass spectroscopy profiling: A possible role for polyunsaturated fatty acid. Trop J Pharm Res. 2020;19: 137–145. doi:10.4314/tjpr.v19i1.21
Wedam J, Tacoli C, Gai PP, Siegert K, Kulkarni SS, Rasalkar R, et al. Molecular evidence for Plasmodium falciparum resistance to sulfadoxine–pyrimethamine but absence of K13 mutations in Mangaluru, Southwestern India. Am J Trop Med Hyg. 2018;99: 1508–1510. doi:10.4269/ajtmh.18-0549
WHO. Word Malaria Report 2021. Word Malaria report Geneva: World Health Organization. (2021). Licence: CC. 2021.
Widyananda MH, Pratama SK, Samoedra RS, Sari FN, Kharisma VD, Ansori ANM, Antonius Y (2021) Molecular docking study of sea urchin (Arbacia lixula) peptides as multi-target inhibitor for non-small cell lung cancer (NSCLC) associated proteins. J Pharm Pharmacogn Res 9(4): 484–496.
Wijaya RM, Hafidzhah MA, Kharisma VD, Ansori ANM, Parikesit AP. COVID-19 In Silico Drug with Zingiber officinale Natural Product Compound Library Targeting the Mpro Protein. Makara J Sci. 2021; 25(3): 5. DOI: 10.7454/mss.v25i3.1244
Published
How to Cite
Issue
Section
Copyright (c) 2022 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.