Evaluation of some immunological markers related to immune anergy in tuberculosis patients

https://doi.org/10.53730/ijhs.v6nS2.9007

Authors

  • Israa, K. Obayes Department of Microbiology, College of Medicine, Babylon University, Babylon, Hilla, Iraq & Department of Medical Laboratory Techniques, Al-Mustaqbal University College, 51001 Hillah, Babylon, Iraq
  • Mohammad A. K. Al-Saadi Department of Microbiology, College of Medicine, Babylon University, Babylon, Hilla, Iraq
  • Hadi, F. AL-Yasari Department of Microbiology, College of Medicine, Babylon University, Babylon, Hilla, Iraq

Keywords:

pulmonary tuberculosis, extra pulmonary tuberculosis, anti ascrais lumbricoides-IgG, zinc, copper, anergy

Abstract

This study was applied on 90 tuberculosis patients admitted in the Babylon Center of Tuberculosis and Chest Diseases in Hilla, Iraq. They were divided into four   groups; 50 patients with Pulmonary, 40 patients with Extra pulmonary,20 people as healthy contact group and 20 people as healthy control group. Blood samples were collected from patients and control group to estimate Anti Ascrais lumbricoides-IgG   , also Zinc and copper level were also spectrophotometerically estimated. The ages range of all TB cases were ranged from 11 to more than 71 years; TB patients consisted of 51 males and 39 females. The mean of Anti- Ascrais lumbricoides IgG in PTB patient's sera was 0.43±0.17, while in control subjects was 0.20±0.19. The study significantly shows difference between PTB patients and controls, while The mean of anti Ascrais lumbricoides IgG in EPTB patients sera was 0.23±0.02, while in control subjects was0.20±0.19. The study significantly shows no difference between EPTB patients and controls. 

Downloads

Download data is not yet available.

References

Abdalla AE, Lambert N, Duan X, Xie J (2016) Interleukin-10 Family and Tuberculosis: An Old Story Renewed. Int J Biol Sci 2016;12(6):710-717.

Dye, C. (2006). Global epidemiology of tuberculosis. Lancet. Geneva . 367: 938-940.

Singh , M. M. (2000). Immune Response in Tuberculosis . Indian J. Allergy Appl Immunol 14(2) : 79-82.

WHO, World Health Organization. (2017). Global Tuberculosis Report 2017.

Matzinger P. The Danger Model: A Renewed Sense of Self. Science. 2002;296:301-305.

Boussiotis, V.A.; Tsai, E.Y.; Yunis, E.J.; Thim, S., and Delgado, J.C. (2000). IL-10-producing T cells suppress immune responses in anergic tuberculosis patients. Journal of Clinical Investigations 105 (9): 1317-1325.

Mishahidi, S.; Huang, CT. and Sadegh-nasseri, S. Anergy in peripheral memory CD4+T cells induced by low avidity engagement of a T cell receptor. Journal of Experimental Medicine. 2001;194:719-731.

Caraballo, L., Zakzuk, J., & Acevedo, N. (2021). Helminth-derived cystatins: the immunomodulatory properties of an Ascaris lumbricoides cystatin. Parasitology, 148(14), 1744-1756

Chico ME, Vaca MG, Rodriguez A, Cooper PJ. Soil‐transmitted helminth parasites and allergy: 345 Observations from Ecuador. Parasite immunology. 2019:e12590.

Cooper, P. J., Chico, M. E., Sandoval, C., Espinel, I., Guevara, A., Kennedy, M. W., ... & Nutman, T. B. (2000). Human infection with Ascaris lumbricoides is associated with a polarized cytokine response. The Journal of infectious diseases, 182(4), 1207-1213.

Maglione PJ, Xu J, Chan J(2007). B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterim tuberculosis. J Immunol 178(11):7222–34. doi:10.4049/jimmunol.178.11.7222

de Valliere , S.; Abate, G. and Blazevic, A. (2005). Enhancement of innate and cell-mediated immunity by antimycobacterial antibodies. Infect Immun.; 73: 6711–6720.

Wagner, D., Maser, J., Lai, B., Cai, Z., Barry, C. E., Zu Bentrup, K. H., ... & Bermudez, L. E. (2005). Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell’s endosomal system. The Journal of Immunology, 174(3), 1491-1500.

Mohamed, D., Hamza, A., & Ali, A. (2020). Estimation of Serum Copper and Zinc Levels among Tuberculosis Patients in Khartoum State. Ann Inter Cli Med CaRe: AICMCR-107 DOI, 1046715.

Haase, H. and Lothar, R. (2009). The immune system and the impact of Zinc during aging . Licensee Bio Med Central Ltd. 6:9.

Mohamed, D., Hamza, A., & Ali, A. (2020). Estimation of Serum Copper and Zinc Levels among Tuberculosis Patients in Khartoum State. Ann Inter Cli Med CaRe: AICMCR-107 DOI, 1046715

Korf, J. E., Pynaert, G., Tournoy, K., Boonefaes, T., Van Oosterhout, A., Ginneberge, D., ... & Grooten, J. (2006). Macrophage reprogramming by mycolic acid promotes a tolerogenic response in experimental asthma. American journal of respiratory and critical care medicine, 174(2), 152-160.

Tan, G., Cheng, Z., Pang, Y., Landry, A. P., Li, J., Lu, J., & Ding, H. (2014). Copper binding in IscA inhibits iron‐sulphur cluster assembly in E scherichia coli. Molecular microbiology, 93(4), 629-644.

Ambler, J. M., Potgieter, M. G., Klopper, M., Grobbelaar, M., De Vos, M., Sampson, S., ... & Mulder, N. (2021). The role of copper resistance in Mycobacterium tuberculosis pathogenesis. bioRxiv.

Abate E, Belayneh M, Idh J, Diro E, Elias D, Britton S, et al. Asymptomatic helminth infection in active tuberculosis is associated with increased regulatory and Th-2 responses and a lower sputum smear positivity. PLoS Negl Trop Dis. 2015 Aug; 9(8): e0003994.

van den Biggelaar, A. H., van Ree, R., Rodrigues, L. C., Lell, B., Deelder, A. M., Kremsner, P. G., & Yazdanbakhsh, M. (2000). Decreased atopy in children infected with Schistosoma haematobium: a role for parasite-induced interleukin-10. The Lancet, 356(9243), 1723-1727.

Lienhardt C, Azurri A, Amedei A et al. (2002) Active tuberculosis in Africa is associated with reduced Th1 and increased Th2 activity in vivo. European Journal of Immunology 32, 1032.

Fincham JE, Markus MB & Adams VJ (2003) Could control of soil-transmitted helminthic infection influence the HIV/AIDS pandemic? Acta Tropica 86, 315–333

Talreja J, Bhatnagar A, Jindal SK & Ganguly NK (2003) Influence of M.tuberculosis on differential activation of helper T cells. Clinical and Experimental Immunology 13, 292–298.

Kumar NP, Kathamuthu GR, Moideen K, Banurekha VV, Nair D, Fay MP, et al. Strongyloides stercoralis coinfection is associated with greater disease severity, higher bacterial burden, and elevated plasma matrix metalloproteinases in pulmonary tuberculosis. J Infect Dis. 2020 Aug; 222(6): 1021–6.

Mohamed, D., Hamza, A., & Ali, A. (2020). Estimation of Serum Copper and Zinc Levels among Tuberculosis Patients in Khartoum State. Ann Inter Cli Med CaRe: AICMCR-107 DOI, 1046715.

Ramakrishnan , K. ; Rajaiah, S. ; Karuppusamy , K. ; Uma, A.and Ramakrishnan , B. (2008). Serum zinc and albumim levels in pulmonary tuberculosis patients with and without HIV. J. Infect Dis. 61: 202-204.

Boloorsaz, M.R.; Soheila , K.; Ail, R.M.; Safavi , A. and Ail , A.V. (2007). Impact of anti-tuberculosis therapy on plasma zinc status in childhood tuberculosis . J. Eastern Med. Health. 13(5): 1078-1084 . Iran.

Rafi, A.; Amir , G. and John , S. (2010). Copper and zinc Status serum in childhood pulmonary tuberculosis. Research center for TB and pulmonary disease of Tabriz University , Iran.

Reza, B. M . ; Khalilzadeh, S. ; Milanifar , A.R.; Hakimi , S.S. and Khodayari, A.A. (2007). Evaluation of copper , zinc and copper/zinc ratio in serum of pulmonary tuberculosis children . Pediatric pulmonary ward, national research in statute of tuberculosis and lung disease , Shaheed Beheshti University of Medical Sciences, Iran.

Karyadi, E.; Clive, E.W.; Werner, S.;Ronald , HH.N. and Rainer , G. (2002). A double-blind, placebo-controlled study of vitamin A and zinc supplementation in persons with tuberculosis in Indonesia: effects on clinical response and nutritional status. J. clin. Nutri. 75(4): 720-727.

Zolfaghari, B., Ghanbari, M., Musavi, H., Bavandpour Baghshahi, P., Taghikhani, M., & Pourfallah, F. (2021). Investigation of Zinc Supplement Impact on the Serum Biochemical Parameters in Pulmonary Tuberculosis: A Double Blinded Placebo Control Trial. Reports of biochemistry & molecular biology, 10(2), 173–182.

Nizamani, P., Afridi, H. I., Kazi, T. G., Talpur, F. N., & Baig, J. A. (2019). Essential trace elemental levels (zinc, iron and copper) in the biological samples of smoker referent and pulmonary tuberculosis patients. Toxicology reports, 6, 1230-1239.

Muhsin, M. A., Al-Sa’adi, M. A., & Al-Jubouri, A. M. S. (2011). Studying The Effect of Zinc and copper on Cellular Immunity in Tuberculosis Patients. Medical Journal of Babylon, 8(3).

Koyanagi A, Kuffo D, Gresely L, Shenkin A, Cuevas LE. Relationships between serum concentrations of Creactive protein and micronutrients, in patients with tuberculosis. Ann Trop Med Parasitol. 2004 ;98(4):391-9.

Ward, S. K. ; Elizabeth , A.H. and Adel , M.T. (2008). The Global responses of Mycobacterium tuberculosis to physiological levels of copper. J. Bacteriol. 190(8): 2939-2946.

Widana, I.K., Sumetri, N.W., Sutapa, I.K., Suryasa, W. (2021). Anthropometric measures for better cardiovascular and musculoskeletal health. Computer Applications in Engineering Education, 29(3), 550–561. https://doi.org/10.1002/cae.22202

Published

15-06-2022

How to Cite

Obayes, I. K., Al-Saadi, M. A. K., & AL-Yasari, H. F. (2022). Evaluation of some immunological markers related to immune anergy in tuberculosis patients. International Journal of Health Sciences, 6(S2), 15169–15177. https://doi.org/10.53730/ijhs.v6nS2.9007

Issue

Section

Peer Review Articles