A systemic correlation between wound and diabetes
An insight into mechanism of action and diabetic wound treatments
Keywords:
diabetes mellitus, wound healing, diabetic wounds, growth factorAbstract
The current article provides complete information on the association between wounding and diabetes, as well as a brief overview of Wound, Diabetic wounds as well as treatment options. The Diabetic wounds require special attention like a major clinical and societal challenge. The need of research is increased because of the delayed and compromised healing. New treatment techniques, Single growth factors, skin substitutes, interleukin stimulators, interleukin inhibitors, matrix metalloproteinase inhibitors, gene and stem cell therapies, extracellular matrix, and angiogenesis are only a few examples. stimulators, show that research on delayed healing is moving quickly. Despite the fact that multiple studies show that diabetes causes slowed wound healing, more precise mechanistic understanding into the components involved, and their parts are still being played needed. This review focuses on cytokine (with growth factors) and other molecular cascades previously unknown components that cause slowed wound healing, as well as molecular pathways and recent advancements in wound healing and treatment. Clinicians and academics working in relevant fields were given a briefing on new innovative knowledge on possible molecular targets and therapeutic techniques, including clinical trials, in this article.
Downloads
References
A, Mayer D, Goodman L, Boutros M, Armstrong DG, et al., Diabetic foot ulcer’s part I. Pathophysiology and prevention. Alevi, R.G. Sib bald. J Am Acad Dermatol. 2014:1.e1-1e16.
Abiko Y, Selimovic D. The mechanism of protracted wound healing on oral mucosa in diabetes. Review. Bosnian J Basic Med Sci. 2010;10(3):186-91. doi: 10.17305/bjbms.2010.2683.
Abu-Al-Basal MA. Healing potential of Rosmarinus officinalis L. On full-thickness excision cutaneous wounds in alloxan-induced-diabetic BALB/c mice. J Ethnopharmacol. 2010;131(2):443-50. doi: 10.1016/j.jep.2010.07.007, PMID 20633625.
Aly UF. Preparation and evaluation of novel topical gel preparations for wound healing in diabetics. Int J Pharm Pharm Sci. 2012;4:76-7.
Angelo LS, Kurzrock R. Vascular endothelial growth factor and its relationship to inflammatory mediators. Clin Cancer Res. 2007;13(10):2825-30. doi: 10.1158/1078-0432.CCR-06-2416, PMID 17504979.
Anisha BS, Biswas R, Chennazhi KP, Jayakumar R. Chitosan-hyaluronic acid/ nanosilver composite sponges for drug resistant bacteria infected diabetic wounds. Int J Biol Macromol. 2013;62:310-20. doi: 10.1016/j.ijbiomac.2013.09.011, PMID 24060281.
Armstrong DG, Jude EB. The role of matrix metalloproteinases in wound healing. Am. Podiatry. 2002;92(1):12-8. doi: 10.7547/87507315-92-1-12, PMID 11796794.
Azadi MR, Turkman G, M. Head gate, M.R. Mohajerani-Tehrani, M. Ahmadi, R.F. Gohar Dani, Angiogenic effects of low-intensity cathodal direct current on ischemic diabetic foot ulcers: a randomized controlled trial, Diabetes Res. Clin Pact. 2017;127:147-55.
Babaji S, Bayit N, Noridian M, Bayit M. Pentoxifylline improves cutaneous wound healing in streptozotocin-induced diabetic rats. Eur J Pharm. 2013;700:165-72.
Bagheri M, Jarome BM, Amirkhani H, Amirkhani Z, A Nourishing, et al. Palonidipine, a new calcium channel blocker, promotes skin wound healing in diabetic rats. J Surg Res. 2011;169:e101-7.
Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585-601. doi: 10.1111/j.1524-475X.2008.00410.x, PMID 19128254.
Beer HD, Longaker MT, Werner S. Reduced expression of PDGF and PDGF receptors during impaired wound healing. J Invest Dermatol. 1997;109(2):132-8. doi: 10.1111/1523-1747.ep12319188, PMID 9242497.
Bevan D, Gherardi E, Fan TP, Edwards D, Warn R. Diverse and potent activities of HGF/SF in skin wound repair. J Pathol. 2004;203(3):831-8. doi: 10.1002/path.1578, PMID 15221943.
Bhattacharya S, Aggarwal R, Singh VP, Ramachandran S, Datta M. Downregulation of miRNAs during delayed wound healing in diabetes: role of dicer. Mol Med. 2015;2:847-60.
Bhora FY, Dunkin BJ, Batzri S, Aly HM, Bass BL, Sidawy AN, et al. Effect of growth factors on cell proliferation and epithelialization in human skin. J Surg Res. 1995;59(2):236-44. doi: 10.1006/jsre.1995.1160, PMID 7543631.
Biswas S, Roy S, Banerjee J, Hussain SR, Khanna S, Meenakshisundaram G, et al. Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proc Natl Acad Sci U S A. 2010;107(15):6976-81. doi: 10.1073/pnas.1001653107, PMID 20308562.
Biter MS. β and insulin-like growth factor I in relation to diabetes-induced impairment of wound healing, J. Surg. Res.. Z N Lab Bad Transform Growth Factor. 1996;6:113-9.
Blayney R, Jude E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabetes. Med. 2006;23(6):594-608.
Brem H, Comic-Con M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest. 2007;117(5):1219-22. doi: 10.1172/JCI32169.
Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest. 2007;117(5):1219-22. doi: 10.1172/JCI32169, PMID 17476353.
Brown DL, Kane CD, Charmeuse SD, et al. Differential expression and localization of insulin-like growth factors I and II in cutaneous wounds of diabetic and nondiabetic mice. Am J Pathos. 1997;151:715-24.
Brown RL, Breeden MP, Greenhalgh DG. PDGF and TGFα act synergistically to improve wound healing in genetically diabetic mouse. J Surg Res. 1994;56:62-70.
Bruhn-Olszewska B, Korzon-Burakowska A, Gabig-Cimińska M, Olszewski P, Węgrzyn A, Jakóbkiewicz-Banecka J. Molecular factors involved in the development of diabetic foot syndrome. Acta Biochim Pol. 2012;59(4):507-13. doi: 10.18388/abp.2012_2085, PMID 23251910.
Burstein NL. Growth factor effects on corneal wound healing. J Ocul Pharmacol. 1987;3(3):263-77. doi: 10.1089/jop.1987.3.263, PMID 3332680.
Chan YC, Roy S, Khanna S, Sen CK. Downregulation of endothelial microRNA200b supports cutaneous wound angiogenesis by de silencing GATA binding protein 2 and vascular endothelial growth factor receptor 2, arteriosclerosis. Thrombi Vasco Biol. 2012;32:1372-82.
Cheng B, Liu HW, Fu XB, Sun TZ, Sheng ZY. Recombinant human platelet derived growth factor enhanced dermal wound healing by a pathway involving ERK and c-foes in diabetic rats. J Dermatol Sci. 2007;45(3):193-201. doi: 10.1016/j.jdermsci.2006.11.014, PMID 17270401.
Dinh T, Tecilazich F, Kafanas A, Doupis J, Gnardellis C, Leal E et al. Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes. 2012;61(11):2937-47. doi: 10.2337/db12-0227, PMID 22688339.
Dong X, Xu J, Wang W, Luo H, Liang X, Zhang L, et al. Repair effect of diabetic ulcers with recombinant human epidermal growth factor loaded by sustained-release microspheres. Sci China C Life Sci. 2008;51(11):1039-44. doi: 10.1007/s11427-008-0126-5, PMID 18989647.
Dove JV, Spiders AM, DiPietro LA. Neutrophil function in the healing wound: adding insult to injury? Thrombi Harmost. 2004;92(2):275-80.
Doxey DL, Ng MC, Dill RE, Iacopino AM. Platelet-derived growth factor levels in wounds of diabetic rats. Life Sci. 1995;57(11):1111-23. doi: 10.1016/0024-3205(95)02056-o, PMID 7658918.
Drela E, Stankowska K, Kulwas A, Rość D. Endothelial progenitor cells in diabetic foot syndrome. Adv Clin Exp Med. 2012;21(2):249-54. PMID 23214290.
Dusky M, Jankowski A, Be R, Fonfara V, Vaganova L, Sixta B, et al. Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Metabola Res Rev. 2013;29(5):369-76.
Ebaid H, Abdel-salam B, Hassan I, Al-Tamimi J, Metwalli A, Alhazza I. Alhazen. Camel milk peptide improves wound healing in diabetic rats by orchestrating the redox status and immune response. Lipids Health Dis. 2015;14(1):132-42. doi: 10.1186/s12944-015-0136-9.
Egozi EI, Ferreira AM, Burns AL, Gamelli RL, DiPietro LA. Mast cells modulate the inflammatory but not the proliferative response in healing wounds. Wound Repair Regen. 2003;11(1):46-54. doi: 10.1046/j.1524-475x.2003.11108.x, PMID 12581426.
Elechi A, Leal EC, Kabanas A, Auster ME, S Chipotle, Y. Ostrovsky, F. Teiglach, D. Baltz is, et al., Mast Cells Regulate Wound Healing in Diabetes, Diabetes 65 (2016) 2006–2019.
Fadini GP, Sartore S, Agostini C, Avogaro A. Significance of endothelial progenitor cells in subjects with diabetes. Diabetes Care. 2007;30(5):1305-13. doi: 10.2337/dc06-2305, PMID 17277037.
Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007;13(6):1299-312. doi: 10.1089/ten.2006.0278, PMID 17518741.
Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366(9498):1736-43. doi: 10.1016/S0140-6736(05)67700-8, PMID 16291068.
Frank S, Hübner G, Breier G, Longaker MT, Greenhalgh DG, Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J Biol Chem. 1995;270(21):12607-13. doi: 10.1074/jbc.270.21.12607, PMID 7759509.
G, Martinelli G, Issy M, Barone M, Guzzardi M, et al., Platelet gel for healing cutaneous chronic wounds. Corvette. Transfuse Aphex Sci. 2004;30:145-51.
Galkowska H, Wojewodzka U, Olszewski WL. Chemokines, cytokines, and growth factors in keratinocytes and dermal endothelial cells in the margin of chronic diabetic foot ulcers. Wound Repair Regen. 2006;14(5):558-65. doi: 10.1111/j.1743-6109.2006.00155.x, PMID 17014667.
Gooyit M, Peng Z, Wolter WR, Pi H, Ding D, Hesek D et al. A chemical biological strategy to facilitate diabetic wound healing. ACS Chem Biol. 2014;9(1):105-10. doi: 10.1021/cb4005468, PMID 24053680.
Gooyit M, Peng Z, Wolter WR, Pi H, Ding D, Hesek D et al. A chemical biological strategy to facilitate diabetic wound healing. ACS Chem Biol. 2014;9(1):105-10. doi: 10.1021/cb4005468, PMID 24053680.
Greenhalgh DG, Sprugel KH, Murray MJ, Ross R. PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am J Pathol. 1990;136(6):1235-46. PMID 2356856.
Grieb G, Simons D, Eckert L, Hemmrich M, Steffens G, Bernhagen JB, et al. Levels of macrophage migration inhibitory factor and glucocorticoids in chronic wound patients and their potential interactions with impaired wound endothelial progenitor cell migration. Wound Repair Regen. 2012;20(5):707-14. doi: 10.1111/j.1524-475X.2012.00817.x, PMID 22812717.
Hansen SL, Myers CA, Charboneau A, Young DM, Boudreau N. HoxD3 accelerates wound healing in diabetic mice. Am J Pathol. 2003;163(6):2421-31. doi: 10.1016/S0002-9440(10)63597-3, PMID 14633614.
Hardwicke JT, Hart J, Bell A, Duncan R, Thomas DW, Moseley R. The effect of dextrin-reef on the healing of full-thickness, excisional wounds. J Control Release. 2011;152(3):411-7. doi: 10.1016/j.jconrel.2011.03.016, PMID 21435363.
Heinlein H, Bader A, Geri S. Preclinical and clinical evidence for stem cell therapies as treatment for diabetic wounds, Drug Disco. Today; 2015. 20:6.
Herman, H., Ardani, I. G. A. I., Aryani, L. N. A., Windiani, I. G. A. T., Adnyana, I. G. N. S., & Setiawati, Y. (2022). Signs and symptoms of depression in children and adolescents with type 1 diabetes mellitus: A case report. International Journal of Health & Medical Sciences, 5(1), 150-153. https://doi.org/10.21744/ijhms.v5n1.1861
Hosokawa R, Kikuzaki K, Kimoto T, Matsuura T, Chiba D, Wadamoto M et al.. Wada moto, et al. Controlled local application of basic fibroblast growth factor (FGF-2) accelerates the healing of GBR. An experimental study in beagle dogs. Clin Oral Implants Res. 2000;11(4):345-53. doi: 10.1034/j.1600-0501.2000.011004345.x, PMID 11168227.
Hossein WN, Bard G, Hamdi AAAl, Sayed A, Al-Wail NS, Giraud O. Topical application of Propolis Enhances cutaneous wound healing by promoting TGF-beta/Shad-Mediated collagen production in a streptozotocin-induced type I diabetic mouse model, Cell. Physiol Beachem. 2015;37:940-54.
Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC. Autologous transplantation of granulocyte colony stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care. 2005;28(9):2155-60. doi: 10.2337/diacare.28.9.2155, PMID 16123483.
Humpert PM, Bärtsch U, Konrade I, Hammes HP, Morcos M, Kasper M, et al. Locally applied mononuclear bone marrow cells restore angiogenesis and promote wound healing in a type 2 diabetic patient. Exp Clin Endocrinol Diabetes. 2005;113(9):538-40. doi: 10.1055/s-2005-872886, PMID 16235157.
Ili B. C.S. Nano Med, J.L. Hernandez, M. Cahill, M.E. Auster, et al., Regulation of impaired angiogenesis in diabetic dermal wound healing by microRNA-26a, J. Mol. Cell Cardio. 91 (2016) 151–159.
Inpanya P, Faikrua A, Ounaroon A, Sittichokechaiwut A, Viyoch J. Effects of the blended fibroin/aloe gel film on wound healing in streptozotocin-induced diabetic rats. Biomed Mater. 2012;7(3):035008. doi: 10.1088/1748-6041/7/3/035008, PMID 22418946.
J.P, Correa JA, Pinnal MAS, Baptista MS, A clinical trial testing the efficacy of PDT in preventing amputation in diabetic patients, Photo diagnosis Photon. There. Tardive, F. Adamic. 2014;11(3):342-50.
Jacobi J, Jang JJ, Sundram U, Dayoub H, Fajardo LF, Cooke JP. Nicotine accelerates angiogenesis and wound healing in genetically diabetic mice. Am J Pathol. 2002;161(1):97-104. doi: 10.1016/S0002-9440(10)64161-2, PMID 12107094.
Javazon EH, Keswani SG, Badillo AT, Crombleholme TM, Zoltick PW, Radu AP et al. Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells. Wound Repair Regen. 2007;15(3):350-9. doi: 10.1111/j.1524-475X.2007.00237.x, PMID 17537122.
Jude EB, Blakytny R, Bulmer J, Boulton AJ, Ferguson MW. Transforming growth factor-beta 1, 2, 3 and receptor type I and II in diabetic foot ulcers. Diabet Med. 2002;19(6):440-7. doi: 10.1046/j.1464-5491.2002.00692.x, PMID 12060054.
Kavitha KV, Tiwari S. Pura dare, S. Khedekar;V.B, S.S. Bhosale, A.G. Unnikrishnan, Choice of wound care in diabetic foot ulcer: a practical approach, World J. Diabetes 5 (2014) 546–556.
Kawakami T, Satomi Y, Shimada S, Soma Y, Sphingosine 1- phosphate accelerates wound healing in diabetic mice, J. Comet. Dermatol. Sci. Appl. T. Kawana be. 2007;48:53-60.
Kazemi-Darabadi S, Sarrafzadeh-Rezaei F, Farshid AA, Dalir-Naghadeh B. Allogenous skin fibroblast transplantation enhances excisional wound healing following alloxan diabetes in sheep, a randomized controlled trial. Int J Surg. 2014;12(8):751-6. doi: 10.1016/j.ijsu.2014.06.007, PMID 24969829.
Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13:e23. doi: 10.1017/S1462399411001943, PMID 21740602.
Komarcević A. The modern approach to wound treatment. Med Pregl. 2000;53(7-8):363-8. PMID 11214479.
Koria P, Yagi H, Kitagawa Y, Megeed Z, Nahmias Y, Sheridan R, et al. Self- assembling elastin-like peptides growth factor chimeric nanoparticles for the treatment of chronic wounds. Proc Natl Acad Sci U S A. 2011;108(3):1034-9. doi: 10.1073/pnas.1009881108, PMID 21193639.
Laing T, Hanson R, Chan F, Bouchier-Hayes D. Effect of pravastatin on experimental diabetic wound healing. J Surg Res. 2010;161(2):336-40. doi: 10.1016/j.jss.2009.01.024, PMID 20031169.
Lee KB, Choi J, Cho SB, Chung JY, Moon ES, Kim NS, et al. Topical embryonic stem cells enhance wound healing in diabetic rats. J Orthop Res. 2011;29(10):1554-62. doi: 10.1002/jor.21385, PMID 21469178.
Li H, Fu X, Zhang L, Huang Q, Wu Z, Sun T. Research of PDGF-BB gel on the wound healing of diabetic rats and its pharmacodynamics. J Surg Res. 2008;145(1):41-8. doi: 10.1016/j.jss.2007.02.044, PMID 18082770.
Li Z, Guo S, Yao F, Zhang Y, Li T. Increased ratio of serum matrix metalloproteinase-9 against TIMP-1 predicts poor wound healing in diabetic foot ulcers. J Diabetes Complications. 2013;27(4):380-2. doi: 10.1016/j.jdiacomp.2012.12.007, PMID 23357650.
Lobmann R, Schultz G, Lehnert H. Proteases and the diabetic foot syndrome: mechanisms and therapeutic implications. Diabetes Care. 2005;28(2):461-71. doi: 10.2337/diacare.28.2.461, PMID 15677818.
Lohmann R, Pap TT, Am Brosch A, Waldman K, König W, Lehnert H. Differential effects of PDGF-BB on matrix metalloproteases and cytokine release in fibroblasts of Type 2 diabetic patients and normal controls in vitro, J. Diabetes Comp. 2006;20:105-12.
Luong M, Zhang Y, Chamberlain T, Zhou T, Wright JF, Dower K, et al. Stimulation of TLR4 by recombinant HSP70 requires structural integrity of the HSP70 protein itself. J Inflamm (Lond). 2012;9:11. doi: 10.1186/1476-9255-9-11, PMID 22448747.
Macaroni MK, Bagheri M, Amirkhani Z, Jarome BM, Akami M, et al. Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats, Diabetes Res. Clin Pact. 2001;93:228-34.
Mallik SB, Jayashree BS, Shenoy RR. Epigenetic modulation of macrophage polarization- perspectives in diabetic wounds. J Diabetes Complicate. 2018.
Maruyama K, Asai J, Ii M, Thorne T, Losordo DW, D’Amore PA. Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol. 2007;170(4):1178-91. doi: 10.2353/ajpath.2007.060018, PMID 17392158.
Matsumoto Y, Korangi Y. Development of a wound dressing composed of hyaluronic acid sponge containing arginine and epidermal growth factor, J. Biomatter. Sci. Polyp. 21st ed 2010 715-26.
McLennan SV, Min D, Yue DK. Matrix metalloproteinases and their roles in poor wound healing in diabetes, Wound Pact. Res. 2008;16:116-21.
Merrell JG, McLaughlin SW, Tie L, Laurencin CT, Chen AF, Nair LS. Curcumin loaded poly(e-caprolactone) nanofibers: diabetic wound dressing with antioxidant and anti-inflammatory properties, Clin. Exp. Pharm Physiol Suppl. 2009;36:1149-56.
Mirza RE, Fang MM, Ennis WJ, Koh TJ. Blocking interleukin-1beta induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes. 2013;62(7):2579-87. doi: 10.2337/db12-1450, PMID 23493576.
Mohandas A, Anisha BS, Chennai KP, Jayakumar R. Chitosan-hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancing angiogenesis in wounds, Colloids Surf: B Bio interface 27 (2015) 105-13.
Moon KC, Lee JS, Han SK, Lee HW, Dhong ES. Effects of human umbilical cord blood–derived mesenchymal stromal cells and dermal fibroblasts on diabetic wound healing, Cryotherapy. Cytotherapy. 2017;19(7):821-8. doi: 10.1016/j.jcyt.2017.03.074, PMID 28462822.
Morimoto N, Yoshimura K, Niimi M, Ito T, Tada H, Teramukai ST, et al. An exploratory clinical trial for combination wound therapy with a novel medical matrix and fibroblast growth factor in patients with chronic skin ulcers: a study protocol. Am J Transl Res. 2012;4(1):52-9. PMID 22347522.
Moura J, Børsheim E, Carvalho E. The role of microRNAs in diabetic complications-special emphasis on wound healing. Genes Basel. 2014;5(4):926-56. doi: 10.3390/genes5040926, PMID 25268390.
Moura J, Rodrigues J, Gonçalves M, Amaral C, Lima M, Carvalho E. Impaired T-cell differentiation in diabetic foot ulceration. Cell Mol Immunol. 2016;21.
Mulder G, Tallis AJ, Marshall VT, Mozingo D, Phillips L, Pierce GF, et al. Treatment of nonhealing diabetic foot ulcers with a platelet derived growth factor gene-activated matrix (GAM501): results of a phase 1/2 trial. Wound Repair Regen. 2009;17(6):772-9. doi: 10.1111/j.1524-475X.2009.00541.x, PMID 19821960.
Nass N, Vogel K, Hofmann B, Presek P, Silber RE, Simm A. Glycation of PDGF results in decreased biological activity. Int J Biochem Cell Biol. 2010;42(5):749-54. doi: 10.1016/j.biocel.2010.01.012, PMID 20083221.
Nishikori Y, Shiota N, Okunishi H. The role of mast cells in cutaneous wound healing in streptozotocin-induced diabetic mice. Arch Dermatol Res. 2014;306(9):823-35. doi: 10.1007/s00403-014-1496-0, PMID 25218083.
Park KW, Han SH, Hong JP, Han S, Lee D, Kim BS et al. Topical epidermal growth factor spray for the treatment of chronic diabetic foot ulcers: a phase III multicentre, double-blind, randomized, placebo-controlled trial, Diabetes Res. Clin Pact. 2018;142:335-44.
Parkar MH, Kuru L, Giouzeli M, Olsen I. Expression of growth-factor receptors in normal and regenerating human periodontal cells. Arch Oral Biol. 2001;46(3):275-84. doi: 10.1016/s0003-9969(00)00099-6, PMID 11165574.
Peleg AY, Weerawansa T, McCarthy JS, Davis TM. Common infections in diabetes: pathogenesis, management and relationship to glycaemic control, Diabetes Meta. Respir Res. 2007;23:13.
Ponrasu T, Suguna L. Efficacy of Annona squamosa on wound healing in streptozotocin-induced diabetic rats. Int Wound J. 2012;9(6):613-23. doi: 10.1111/j.1742-481X.2011.00924.x, PMID 22233431.
Pradhan L, Cai X, Wu S, Andersen ND, Martin M, Malek J, et al. Gene expression of pro-inflammatory cytokines and neuropeptides in diabetic wound healing. J Surg Res. 2011;167(2):336-42. doi: 10.1016/j.jss.2009.09.012, PMID 20070982.
Pradhan L, Nabzdyk C, Andersen ND, LoGerfo FW, Veves A. Nano Med C. Expert Rev Mol Med. 2009;11:e2. doi: 10.1017/S1462399409000945, PMID 19138453.
R.G. Sib bald, K.Y. Woo, The biology of chronic foot ulcers in persons with DM. Diabetes Metab Res Rev. 2008;24:S25-30.
Roberts AB. Transforming growth factor-β: activity and efficacy in animal models of wound healing. Wound Repair Regen. 1995;3(4):408-18. doi: 10.1046/j.1524-475X.1995.30405.x, PMID 17147652.
Romana-Souza B, Nascimento AP, A. Monte-Alto-Costa, propranolol improves cutaneous wound healing in streptozotocin-induced diabetic rats. Eur J Pharm. 2009;6(11):77-84.
Schuurman C, Goren I, Linked A, J. Festschriften, S. Frank, Deregulated unfolded protein response in chronic wounds of diabetic ob./ob. mice: a potential connection to inflammatory and angiogenic disorders in diabetes-impaired wound healing, Beachem. Biopsy’s. Res. Common. 446 (2014) 195–200.
Sharp A, Clark J. Diabetes and its impact on wound healing, Nur’s. Standard. 2011;25:41-7.
Singh D, Singh MR, Saraf S, Saraf S. Development of delivery cargoes for debriding enzymes effective in wound healing. Trends Appl Sci Res. 2011;6(8):863-76. doi: 10.3923/tasr.2011.863.876.
Singh K, Agrawal NK, Gupta SK, Mohan G, Chaturvedi S, Singh K. Decreased expression of heat shock proteins may lead to compromised wound healing in type 2 diabetes mellitus patients. J Diabetes Complications. 2015;29(4):578-88. doi: 10.1016/j.jdiacomp.2015.01.007, PMID 25746357.
Singh K, Agrawal NK, Gupta SK, Mohan G, Chaturvedi S, Singh K. Genetic and epigenetic alterations in Toll like receptor 2 and wound healing impairment in type 2 diabetes patients. J Diabetes Complications. 2015;29(2):222-9. doi: 10.1016/j.jdiacomp.2014.11.015, PMID 25541252.
Singh MR, Saraf S, Vyas A, Jain V, Singh D. Innovative approaches in wound healing: trajectory and advances. Cell Nano Biotechnol. 2013;41(3):202-12. doi: 10.3109/21691401.2012.716065.
Smith K, Collier A, Townsend EM, O’Donnell LE, Bal AM, Butcher J, et al. One step closer to understanding the role of bacteria in diabetic foot ulcers: characterising the microbiome of ulcers, BMC Microbial. 2016;16:54-66.
Soleimani Z, Hashimoto F, Bahmani F, Aghazadeh M, Rezazadeh M, Asim Z. Clinical and metabolic response to flaxseed oil omega-3 fatty acids supplementation in patients with diabetic foot ulcer: a randomized, double-blind, placebo-controlled trial. J Diabetes Complicate. 2017;31(9):1394-400.
Stefanovic O, Pastor I, Gordon KA, Comic-Con M. Physiology and pathophysiology of wound healing in diabetes. Diabet Foot. 2000:127-49.
Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2021). Health and treatment of diabetes mellitus. International Journal of Health Sciences, 5(1), i-v. https://doi.org/10.53730/ijhs.v5n1.2864
Tam JCW, Lau KM, Liu CL, To MH, Kwok HF, Lai KK, et al. The in vivo and in vitro diabetic wound healing effects of a 2-herb formula and its mechanisms of action. J Ethnopharmacol. 2011;134(3):831-8. doi: 10.1016/j.jep.2011.01.032, PMID 21291991.
Tie L, An Y, Han J, Xiao Y, Xiaokaiti Y, Fan S et al. Genistein accelerates refractory wound healing by suppressing superoxide and FoxO1/ins pathway in type 1 diabetes. The Journal of Nutritional Biochemistry. 2013;24(1):88-96. doi: 10.1016/j.jnutbio.2012.02.011.
Tsang MW, Wong WKR, Hung CS, Lai KM, Tang W, Cheung EY, et al. Human epidermal growth factor enhances healing of diabetic foot ulcers. Diabetes Care. 2003;26(6):1856-61. doi: 10.2337/diacare.26.6.1856, PMID 12766123.
Verlie CJN. J J T.H. Roelf’s, S.R. Havok, J.C.M. Meijer’s, P.F. Marx, The role of thrombin-activatable fibrinolysis inhibitor in diabetic wound healing, Thrombi. Res. 126 (2010) 442–446.
Wall SJ, Bevan D, Thomas DW, Keith G, Harding KG, et al. Differential expression of matrix metalloproteinase during impaired wound healing of the diabetes mouse. J Invest Dermatol. 2002 98;119(1):(91-8). doi: 10.1046/j.1523-1747.2002.01779.x, PMID 12164930.
Weller K, Foitzik K, Paus R, Syska W, Maurer M. Mast cells are required for normal healing of skin wounds in mice. FASEB J. 2006;20(13):2366-8. doi: 10.1096/fj.06-5837fje, PMID 16966487.
Werner S, Breeden M, Hübner G, Greenhalgh DG, Longaker MT. Induction of keratinocyte growth factor expression is reduced and delayed during wound healing in the genetically diabetic mouse. J Invest Dermatol. 1994;103(4):469-73. doi: 10.1111/1523-1747.ep12395564, PMID 7930669.
Yan X, Chen B, Lin Y, Li Y, Xiao Z, Hou X, et al. Acceleration of diabetic wound healing by collagen-binding vascular endothelial growth factor in diabetic rat model. Diabetes Res Clin Pract. 2010;90(1):66-72. doi: 10.1016/j.diabres.2010.07.001, PMID 20667614.
Yang Y, Xia T, Zhi W, Wei L, Weng J, Zhang C, et al. Promotion of skin regeneration in diabetic rats by electro spun core-sheath fibres loaded with basic fibroblast growth factor. Biomaterials. 2011;32(18):4243-54. doi: 10.1016/j.biomaterials.2011.02.042, PMID 21402405.
Zhang X, Ma Z, Wang Y, Li Y, Sun B, Guo X et al. the four-herb Chinese medicine formula Too-Li-Xiao-Du-San accelerates cutaneous wound healing in streptozotocin-induced diabetic rats through reducing inflammation and increasing angiogenesis. J Diabetes Res 5. 2016;11:639129.
Zhou K, Ma Y, Brogan MS. Chronic and non-healing wounds: the story of vascular endothelial growth factor. Med Hypotheses. 2015;85(4):399-404. doi: 10.1016/j.mehy.2015.06.017, PMID 26138626.
Zuber M, Rajesh V, Anusha K, Reddy CR, Tirupati A. Wound healing activity of ethanolic extract of Allium sativum on alloxan induced diabetic rats. Int J Sci Invent Today. 2013;2:40-57.
Published
How to Cite
Issue
Section
Copyright (c) 2022 International journal of health sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.