Forecasting political parties and candidates for Indonesia’s presidential election in 2024 using twitter

https://doi.org/10.53730/ijhs.v6nS6.10691

Authors

  • Riduan Masud Universitas Islam Negeri Mataram, West Nusa Tenggara, Indonesia
  • Muhammad Syamsurrijal Universitas Islam Negeri Mataram, West Nusa Tenggara, Indonesia
  • Tawakkal Baharuddin Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
  • Muhammad Azizurrohman Tourism Department, Akademi Pariwisata Mataram, West Nusa Tenggara, Indonesia

Keywords:

Indonesian president, candidate prediction, twitter

Abstract

The purpose of this study is to forecast the political parties and candidates running for president of Indonesia in 2024. Nvivo 12 software is used in this study's quantitative methodology for descriptive content analysis. Twitter users are the study's research subjects. The information was collected via Twitter Search, which targeted the term "Pilpres 2024." According to this analysis, Anies Baswedan, Prabowo, and Ganjar Pranowo will be the winning candidates. Political parties' geographic distribution reveals that the 2024 presidential election would see political tensions between parties with nationalist and religious ideologies.

Downloads

Download data is not yet available.

References

Abramowitz, A. (2001). The time for change model and the 2000 election. American Politics Research, 29(3). https://doi.org/10.1177/1532673X01293004

Ahmed, S., Jaidka, K., & Skoric, M. M. (2016). Tweets and votes: A four-country comparison of volumetric and sentiment analysis approaches. Proceedings of the 10th International Conference on Web and Social Media, ICWSM 2016.

Awais, M., Hassan, S. U., & Ahmed, A. (2021). Leveraging big data for politics: predicting general election of Pakistan using a novel rigged model. Journal of Ambient Intelligence and Humanized Computing, 12(4), 4305–4313. https://doi.org/10.1007/s12652-019-01378-z

Bermingham, A., & Smeaton, A. F. (2011). On Using Twitter to Monitor Political Sentiment and Predict Election Results. Psychology.

Billingsley, J., Lieberman, D., & Tybur, J. M. (2018). Sexual Disgust Trumps Pathogen Disgust in Predicting Voter Behavior During the 2016 U.S. Presidential Election. Evolutionary Psychology, 16(2), 1–15. https://doi.org/10.1177/1474704918764170

Boulianne, S. (2019). Revolution in the making? Social media effects across the globe. Information Communication and Society, 22(1), 39–54. https://doi.org/10.1080/1369118X.2017.1353641

Bourchier, D. M. (2019). Two Decades of Ideological Contestation in Indonesia: From Democratic Cosmopolitanism to Religious Nationalism. Journal of Contemporary Asia, 49(5), 713–733. https://doi.org/10.1080/00472336.2019.1590620

Buccoliero, L., Bellio, E., Crestini, G., & Arkoudas, A. (2020). Twitter and politics: Evidence from the US presidential elections 2016. Journal of Marketing Communications, 26(1), 88–114. https://doi.org/10.1080/13527266.2018.1504228

Budiharto, W., & Meiliana, M. (2018). Prediction and analysis of Indonesia Presidential election from Twitter using sentiment analysis. Journal of Big Data, 5(1), 1–10. https://doi.org/10.1186/s40537-018-0164-1

Burnap, P., Gibson, R., Sloan, L., Southern, R., & Williams, M. (2016). 140 characters to victory?: Using Twitter to predict the UK 2015 General Election. Electoral Studies, 41. https://doi.org/10.1016/j.electstud.2015.11.017

Cameron, M. P., Barrett, P., & Stewardson, B. (2016). Can Social Media Predict Election Results? Evidence From New Zealand. Journal of Political Marketing, 15(4), 416–432. https://doi.org/10.1080/15377857.2014.959690

Campbell, J. E., Cherry, L. L., & Wink, K. A. (1992). The convention bump. American Politics Research, 20(3). https://doi.org/10.1177/1532673X9202000302

Campbell, J. E., & Wink, K. A. (1990). Trial-heat forecasts of the presidential vote. American Politics Research, 18(3). https://doi.org/10.1177/1532673X9001800301

Ceron, A., Curini, L., Iacus, S. M., & Porro, G. (2014). Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens’ political preferences with an application to Italy and France. New Media and Society, 16(2). https://doi.org/10.1177/1461444813480466

Chauhan, P., Sharma, N., & Sikka, G. (2021). The emergence of social media data and sentiment analysis in election prediction. Journal of Ambient Intelligence and Humanized Computing, 12(2), 2601–2627. https://doi.org/10.1007/s12652-020-02423-y

Chung, J., & Mustafaraj, E. (2011). Can collective sentiment expressed on twitter predict political elections? Proceedings of the National Conference on Artificial Intelligence, 2.

Feezell, J. T. (2018). Agenda Setting through Social Media: The Importance of Incidental News Exposure and Social Filtering in the Digital Era. Political Research Quarterly, 71(2), 482–494. https://doi.org/10.1177/1065912917744895

Gayo-Avello, D. (2011). Don’t turn social media into another “literary digest” poll. Communications of the ACM, 54(10). https://doi.org/10.1145/2001269.2001297

Gayo-Avello, D. (2013). A Meta-Analysis of State-of-the-Art Electoral Prediction From Twitter Data. Social Science Computer Review, 31(6). https://doi.org/10.1177/0894439313493979

Grover, P., Kar, A. K., Dwivedi, Y. K., & Janssen, M. (2019a). Polarization and acculturation in US Election 2016 outcomes – Can twitter analytics predict changes in voting preferences. Technological Forecasting and Social Change, 145, 438–460. https://doi.org/10.1016/j.techfore.2018.09.009

Grover, P., Kar, A. K., Dwivedi, Y. K., & Janssen, M. (2019b). Polarization and acculturation in US Election 2016 outcomes – Can twitter analytics predict changes in voting preferences. Technological Forecasting and Social Change, 145. https://doi.org/10.1016/j.techfore.2018.09.009

Heredia, B., Prusa, J. D., & Khoshgoftaar, T. M. (2018). Social media for polling and predicting United States election outcome. Social Network Analysis and Mining, 8(1), 1–16. https://doi.org/10.1007/s13278-018-0525-y

Holbrook, T. M., & Desart, J. A. (1999). Using state polls to forecast presidential election outcomes in the American states. International Journal of Forecasting, 15(2). https://doi.org/10.1016/S0169-2070(98)00060-0

Jaidka, K., Ahmed, S., Skoric, M., & Hilbert, M. (2019). Predicting elections from social media: a three-country, three-method comparative study. Asian Journal of Communication, 29(3), 252–273. https://doi.org/10.1080/01292986.2018.1453849

Kušen, E., & Strembeck, M. (2018). Politics, sentiments, and misinformation: An analysis of the Twitter discussion on the 2016 Austrian Presidential Elections. Online Social Networks and Media, 5, 37–50. https://doi.org/10.1016/j.osnem.2017.12.002

Le, H., Boynton, G. R., Mejova, Y., Shafiq, Z., & Srinivasan, P. (2017). Bumps and bruises: Mining presidential campaign announcements on Twitter. HT 2017 - Proceedings of the 28th ACM Conference on Hypertext and Social Media. https://doi.org/10.1145/3078714.3078736

Lewis-beck, M. S., & Rice, T. W. (1982). Presidential popularity and presidential vote. Public Opinion Quarterly, 46(4). https://doi.org/10.1086/268750

Liu, R., Yao, X., Guo, C., & Wei, X. (2021). Can We Forecast Presidential Election Using Twitter Data? An Integrative Modelling Approach. Annals of GIS, 27(1), 43–56. https://doi.org/10.1080/19475683.2020.1829704

Metaxas, P. T., Mustafaraj, E., & Gayo-Avello, D. (2011). How (Not) to predict elections. Proceedings - 2011 IEEE International Conference on Privacy, Security, Risk and Trust and IEEE International Conference on Social Computing, PASSAT/SocialCom 2011. https://doi.org/10.1109/PASSAT/SocialCom.2011.98

Nasukawa, T., & Yi, J. (2003). Sentiment analysis: Capturing favorability using natural language processing. Proceedings of the 2nd International Conference on Knowledge Capture, K-CAP 2003. https://doi.org/10.1145/945645.945658

Paul, D., Li, F., Teja, M. K., Yu, X., & Frost, R. (2017). Compass: Spatio temporal sentiment analysis of US election what twitter says! Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Part F129685. https://doi.org/10.1145/3097983.3098053

Postill, J. (2018). Populism and social media: a global perspective. Media, Culture and Society, 40(5), 754–765. https://doi.org/10.1177/0163443718772186

Rasyid, S. B. A., Nurmandi, A., Suswanta, Mutiarin, D., & Salahudin. (2021). Public Communication of Local Government Leaders: A Case Study of Three Major Governors in Indonesia. In Advances in Digital Science (pp. 487–497). Springer, Cham. https://doi.org/https://doi.org/10.1007/978-3-030-71782-7_43

Sang, E., & Bos, J. (2012). Predicting the 2011 dutch senate election results with twitter. Proceedings of the Workshop on Semantic Analysis in …, 53.

Singh, P., Sawhney, R. S., & Kahlon, K. S. (2017). Predicting the outcome of spanish general elections 2016 using twitter as a tool. International Conference on Advanced Informatics for Computing Research, 73–83. https://doi.org/10.1007/978-981-10-5780-9_7

Sung, Y. M., Park, J., Kim, S., Kim, J., Park, J., Ha, H., Bae, J. Y., Kim, S., & Baek, D. (2016). A Balanced Survey on Election Prediction using Twitter Data. Nature Genetics, 48(12).

Swamy, S., Ritter, A., & de Marneffe, M. C. (2017). “I have a feeling trump will win..................”: Forecasting winners and losers from user predictions on twitter. EMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings. https://doi.org/10.18653/v1/d17-1166

Wang, H., Can, D., Kazemzadeh, A., Bar, F., & Narayanan, S. (2012). A System for Real-time Twitter Sentiment Analysis of 2012 U.S. Presidential Election Cycle. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, July. https://doi.org/10.1145/1935826.1935854

Wang, L., & Gan, J. Q. (2017). Prediction of the 2017 French election based on Twitter data analysis. 2017 9th Computer Science and Electronic Engineering Conference, CEEC 2017 - Proceedings. https://doi.org/10.1109/CEEC.2017.8101605

Yaqub, U., Chun, S. A., Atluri, V., & Vaidya, J. (2017). Analysis of political discourse on twitter in the context of the 2016 US presidential elections. Government Information Quarterly, 34(4). https://doi.org/10.1016/j.giq.2017.11.001

Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2021). Health and treatment of diabetes mellitus. International Journal of Health Sciences, 5(1), i-v. https://doi.org/10.53730/ijhs.v5n1.2864

Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2021). The COVID-19 pandemic. International Journal of Health Sciences, 5(2), vi-ix. https://doi.org/10.53730/ijhs.v5n2.2937

Mediastari, A. A. P. A. (2020). Local wisdom traditional medicine for the health and beauty of postpartum mother in Denpasar City, Bali Province, Indonesia. International Journal of Health & Medical Sciences, 3(1), 65-71. https://doi.org/10.31295/ijhms.v3n1.149

Published

14-07-2022

How to Cite

Masud, R., Syamsurrijal, M., Baharuddin, T., & Azizurrohman, M. (2022). Forecasting political parties and candidates for Indonesia’s presidential election in 2024 using twitter. International Journal of Health Sciences, 6(S6), 1323–1333. https://doi.org/10.53730/ijhs.v6nS6.10691

Issue

Section

Peer Review Articles