Determination the optimal conditions for production of nanocellulose from acetic acid bacteria
Keywords:
bacterial nanocellulose, acetic acid bacteria, optimum conditions, HS broth, glucoseAbstract
Bacteria could produce bacterial nanocellulose through a procedure steps: polymerization and crystallization, that occur in the cytoplasm of the bacteria, the residues of glucose polymerize to (β-1,4) lineal glucan chains that produced from bacterial cell extracellularly, these lineal glucan are converted to microfbrils, after that these microfbrils collected together to shape very pure three dimensional pored net. It could be obtained a pure cellulose that created by some M.O, from the one of the active producer organism like Acetic acid bacteria (AAB), that it is a gram -ve, motile and live in aerobic condition. The bacterial nanocellulose (BNC) have great consideration in many fields because of its flexible properties, features and advantages of the BNC. So in this study, the acetic acid bacteria (5AC) isolate was isolated from apple vinegar and detected the ability of this isolate to produce the nanocellulose on the Hestrin-Schramm (HS) medium, and then optimized the production condition, four parameters were investigated: temperature, pH, different carbon sources and nitrogen sources. After incubation the isolate for about (168- 192) hrs, the highest yield of BNC was identified by determining the wet weight, dry weight also the consumed sugar for each parameter.
Downloads
References
Abdul Rahman, S.S.; Vaishnavi, T.; SaiVidyasri, G.; Sathya, K.; Priyanka, p.; Venkatachalam, P. and Karuppiah, S. (2021). Production of bacterial cellulose using Gluconacetobacter kombuchae immobilized on Lufa aegyptiaca support. Scientifc Reports. 11:2912.
Abol-Fotouh, D.; Hassan, M.A.; Shokry, H.; Roig, A.; Azab, M.S. and Kashyout, A.B. (2020). Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Scientific Reports nature research. 10:3491.
Abouelkheir, S.S.; Kamara, M.S.; Atia, S.M.; Amer, S.A. et al. (2020). Novel research on nanocellulose production by a marine Bacillus velezensis strain SMR: a comparative study. Sci. Rep. 10, 14202.
Aswini, K.; Gopal, N.O. and Uthandi, S. (2020). Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnology. 20:46.
Barja, F. (2021). Bacterial nanocellulose production and biomedical applications. J Biomed Res. 35(4):310-317.
Bellankimath, A.; Katti, A.; Hemalata, V.B. and Meti, B.S. (2017). Isolation and characterization of the indigenous acetic acid bacteria from Western Ghats soil samples. Int. J. Curr. Microbiol. App.Sci. 6(9): 1255-1265.
Cacicedo, M.L.; Castro, M.C.; Servetas, I.; Bosnea, L.; Boura, K. and Tsafrakidou, P. (2016). Progress in bacterial cellulose matrices for biotechnological applications. Bioresour Technol. 213:172–80.
Cielecka, I.; Ryngajłło, M.; Maniukiewicz, W. and Bielecki, S. (2021). Highly Stretchable Bacterial Cellulose Produced by Komagataeibacter hansenii SI1. Polymers. 13(24): 4455.
Costa, A.F.S.; Almeida, F.C.G.; Vinhas, G.M. and Sarubbo, L.A. (2017). Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Frontiers in microbiology. 8:2027.
Donini, I.A.N.; De Salvi, D.T.B.; Fukumoto, F.K.; Lustri, W.R.; Barud, H.S. and Marchetto, R. (2010). Biosynthesis and recent advances in production of bacterial cellulose. Eclet Quim. 35:165-78.
Fernandes, I.A.A.; Pedro, A.C.; Ribeiro, V.R.; Bortolini, D.G.; Ozaki, M.S.C.; Maciel, G.M. and Haminiuk, C.W.I. (2020). Bacterial cellulose: From production optimization to new applications. Int J Biol Macromol. 164: 2598-2611.
Goldberg, R.N.; Schliesser, J.; Mittal, A.; Decker, S.R.; Santos, A.F.; LO, M.; Freitas, V.L.S.; Urbas, A.; Lang, B.E. and Heiss, C. (2015). A thermodynamic investigation of the cellulose allomorphs: Cellulose (am), cellulose Iβ(cr), cellulose II(cr), and cellulose III(cr). J. Chem. Thermodyn. 81: 184–226.
Gomes, R.J.; Borges, M.F.; Morsyleide de Freitas Rosa, M.F.; Jorge, R.; Castro-Gómez, H. and Spinosa, W.A. (2018). Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food Technology and Biotechnology 56 (2).
Gopu, G. and Govindan, S. (2018). Production of bacterial cellulose from Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes. Prep. Biochem. Biotechnol. 48(9): 842-852.
Holt, J.M.; Krieg, N.R.; Sneath, P.H.A.; Staley, J.Y & Williams, S.T. (1994). Genus Acetobacter and Gluconobaceter. In Bergery’s Manual of Determinative Bacteriology.9 th edn., Williams & Ilkens, Maryland, U.S.A. pp: 71-84.
Iguchi, M.; Yamanaka, S. and Budhiono, A. (2000). Bacterial cellulose —a masterpiece of nature's arts. J Mater Sci. 35(2): 261–270.
Jozala, A.; Pe´rtile, R.; dos Santos, C.; de Carvalho Santos-Ebinuma, V.; Seckler, M.; Gama, F. and Pessoa, A.J. (2015). Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol Biot. 99:1181–1190.
Klemm, D.; Kramer, F.; Moritz, S.; Lindstro¨m, T.; Ankerfors, M.; Gray, D. and Dorris, A. (2011). Nanocelluloses: a new family of nature-based materials. Angew Chem Int Edit. 50:5438– 5466.
Lahiri, D.; Nag, M.; Dutta, B.; Dey, A.; Sarkar, T.; Pati, S.; Edinur, H.A.; Abdul Kari, Z.; Mohd Noor, N.H. and Ray, R.R. (2021). Bacterial Cellulose: Production, Characterization, and Application as Antimicrobial Agent. Int. J. Mol. Sci. 22, 12984. https://doi.org/10.3390/ ijms222312984.
Lee, K.Y.; Tammelin, T.; Kiiskinen, H.; Samela, J.; Schlufter, K. and Bismarck, A. (2012). Nano-fibrillated cellulose vs bacterial cellulose: reinforcing ability of nanocellulose obtained topdown or bottom-up. ECCM15-15th European conference on composite materials, venice, Italy.
Molina-Ramírez, C.; Castro, M.; Osorio, M.; Torres-Taborda, M.; Gómez, B.; Zuluaga, R.; Gómez, C.; Gañán, P.; Rojas, O. J. and Castro, C. (2017). Effect of different carbon sources on bacterial nanocellulose production and structure using the low ph resistant strain Komagataeibacter medellinensis. Materials (Basel, Switzerland). 10(6): 639.
Prashant, R., Bajaj, I.B., Shrikant, A. S. and Rekha, S. S. (2008). Fermentative production of microbial cellulose. Food technology biotechnol. (2): 107-124.
Ramli, R. M., Sinrang, A. W., & Aminuddin. (2021). Levels of alpha-1 acid glycoprotein (AGP) in stunting and non stunting tolls age 36-60 months . International Journal of Health & Medical Sciences, 4(1), 145-149. https://doi.org/10.31295/ijhms.v4n1.1666
Revin, V.; Liyaskina, E.; Nazarkina, M.; Bogatyreva, A. and M. Shchankin, M. (2018). Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazilian J. Microbiol. 49: 151–159.
Ross, P.; Mayer, R. and Benziman, M. (1991). Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55 (1): 35–58.
Ross, P.; Mayer, R. and Benziman, M. (1991). Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55 (1): 35–58.
Ross, P.; Weinhouse, H. and Aloni, Y. (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature. 325(6101): 279–281.
Saichana, N.; Matsushita, K.; Adachi, O.; Frébort, I. and Frebortova, J. (2015). Acetic acid bacteria: A group of bacteria with versatile biotechnological applications. Biotechnol. Adv. 33: 1260–1271.
Salari, M.; Khiabani, M.S.; Mokarram, R.R.; Ghanbarzadeh, B. and Kafil, H.S. (2019). Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media, Int. J. Biol. Macromol. 122: 280–288.
Santos, S.M.; Carbajo, J.M.; Villar, J.C. (2013). The Effect of Carbon and Nitrogen Sources on Bacterial Cellulose Production and Properties from Gluconacetobacter sucrofermentans CECT 7291 Focused on Its Use in Degraded Paper Restoration. BioResources. 8(3): 3630-3645.
Sathar, J. (2012). Optimization of bacterial cellulose production from Acetobacter xylinum by using response surface methodology (Rsm). Thesis of the degree of Bachelor of Chemical Engineering (Biotechnology). University Malaysia Pahang.
Sijabat, E.K.; Nuruddin, A.; Aditiawati, P. and Purwasasmita, B.S. (2020). Optimization on the synthesis of bacterial nano cellulose (BNC) from banana peel waste for water filter membrane applications. Materials Research Express. 7(5): 055010.
Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2021). Health and treatment of diabetes mellitus. International Journal of Health Sciences, 5(1), i-v. https://doi.org/10.53730/ijhs.v5n1.2864
Teoh, A.L.; Heard, G. and Cox, J. (2004). Yeast ecology of Kombucha fermentation. Int J Food Microbiol. 95:119–126.
Thongwai, N.; Futui, W.; Ladpala, N.; Sirichai, B.; Weechan, A.; Kanklai, J. and Rungsirivanich, P. (2022). Characterization of Bacterial Cellulose Produced by Komagataeibacter maltaceti P285 Isolated from Contaminated Honey Wine. Microorganisms. 10, 528.
Trinh, N.T.N.; Masniyom, P. and Maneesri, J. (2016). 0ptimization of culture condition for Acetobacter aceti TISTR 102 in coconut water with supplementary banana juice. International Food Research Journal. 23(3): 1300-1307.
Yodsuwan, N.; Owatworakit, A.; Ngaokla, A.; Tawichai, N. and Soykeabkaew, N. (2012). Effect of carbon and nitrogen sources on bacterial cellulose production for bionanocomposite materials. Conference Paper. Research Gate. The 1st MFUIC 2012 At: Mae Fah Luang University, Chiang Rai, Thailand. https://www.researchgate.net/publication/280730054.
Zieli´nska, S.; Matkowski, A.; Dydak, K.; Czerwi ´nska, M.E.; Dzi ˛agwa-Becker, M.; Kucharski, M.; Wójciak, M.; Sowa, I.; Pli ´nska, S.; Fijałkowski, K. and Gorczyca, D. (2022). Bacterial Nanocellulose Fortified with Antimicrobial and Anti-Inflammatory Natural Products from Chelidonium majus Plant Cell Cultures. Materials. 15, 16.
Zuppolini, S.; Salama, A.; Cruz-Maya, I.; Guarino, V. and Borriello, A. (2022). Cellulose Amphiphilic Materials: Chemistry, Process and Applications. Pharmaceutics. 14, 386.
Published
How to Cite
Issue
Section
Copyright (c) 2022 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.