Molecular screening the emergence of vancomycin and gentamycin resistant enterococcus species in burn' patients in basrah government, Iraq

https://doi.org/10.53730/ijhs.v6n7.11067

Authors

  • Hanan A. Abd Al-Kareem AL-Maliki Biology Department, College of Science, University of Basrah, Basrah, Iraq
  • Yasin Y. Y. AL-Luaibi Biology Department, College of Science, University of Basrah, Basrah, Iraq
  • Ahmad D. Chiad Basrah directorate, Al-Fayha Teaching Hospital, General surgery department

Keywords:

Burn infection, Enterococcus sp, vancomycin and gentamycin resistance genes.

Abstract

Emergence of multidrug resistance bacteria (MDR) in burn infections including Enterococcus yet to be managed and highlighted in most of hospitals in our region. This study included 200 clinical samples collected from wound, urine, stool and blood of 75 burn patients in Al-Faiha Teaching Hospital in Basrah, Iraq, between 2020 -2021. Based on Enterococci chromo agar, biochemical test and PCR for 16S rRNA gene, 50 isolates were identified as Enterococcus spp., involving 20 (40%) E. faecium, 14 (28%) E. faecalis, 7 (14%) E. gallinarum, 6 (12%) E. gilvus, 2 (4%) E. casseliflavus and 1 (2%) E. avium. All detected Enterococci were reported worldly as pathogenic bacteria to human. Six new local strains of Enterococcus were recorded in NCBI and the Gene bank as follow; Enterococcus gallinarum strain IraqYaHa5 and IraqYaHa19, Enterococcus faecium strain IraqYaHa23, IraqYaHa48 and IraqYaHa60, Enterococcus gilvus strain IraqYaHa50. Phylogenetic tree was constructed to all isolated Enterococci. The clinical isolates showed resistance up to nine antibiotics. However, enterococci isolated from healthy people during this study were 100% sensitive to six of those antibiotics. Duplex PCR was applied to detect vancomycin and gentamicin resistance genes. All resistant Enterococcus to gentamicin had harboured aph (3’)

Downloads

Download data is not yet available.

References

Alhamdani, R. J. M., & Al-Luaibi, Y. Y. (2020). Detection of exoA, nan1 genes, the biofilm production with the effect of Oyster shell and two plant extracts on Pseudomonas aeruginosa isolated from burn’ patient and their surrounding environment. Syst. Rev. Pharm, 11(11).‏

Al-Hamdy, R. A. N. (2015). Antibacterial resistance of burn infections in Al-Hussain Teaching Hospital/Thi-Qar Province. University of Thi-Qar Journal of Medicine, 10(2), 68-82.‏

Aljanaby, A. A. J., & Aljanaby, I. A. J. (2018). Prevalence of aerobic pathogenic bacteria isolated from patients with burn infection and their antimicrobial susceptibility patterns in Al-Najaf City, Iraq-a three-year cross-sectional study. F1000Research, 7(1157), 1157.‏

Aun, E., Kisand, V., Laht, M., Telling, K., Kalmus, P., Väli, Ü. & Tenson, T. (2021). Molecular Characterization of Enterococcus Isolates From Different Sources in Estonia Reveals Potential Transmission of Resistance Genes Among Different Reservoirs. Frontiers in microbiology, 12, 585.‏

Barbosa-Ribeiro, M., De-Jesus-Soares, A., Zaia, A. A., Ferraz, C. C., Almeida, J. F., & Gomes, B. P. (2016). Antimicrobial susceptibility and characterization of virulence genes of Enterococcus faecalis isolates from teeth with failure of the endodontic treatment. Journal of endodontics, 42(7), 1022-1028.‏

Bondi, M., Laukova, A., de Niederhausern, S., Messi, P., Papadopoulou, C., & Economou, V. (2020). Controversial aspects displayed by enterococci: probiotics or pathogens? ‏Biomed. Res. Int. 2020:9816185.

Byappanahalli, M. N., Nevers, M. B., Korajkic, A., Staley, Z. R., & Harwood, V. J. (2012). Enterococci in the environment. Microbiology and Molecular Biology Reviews, 76(4), 685-706.‏

Chaudhary, N. A., Munawar, M. D., Khan, M. T., Rehan, K., & Sadiq, A. (2019). Epidemiology, bacteriological profile, and antibiotic sensitivity pattern of burn wounds in the burn unit of a tertiary care hospital. Cureus, 11(6).‏

Chmagh, A. A. (2018). Genetic Study of Coagulases (Coa and vWbp) Detected in Different Bacterial Species Isolated from Patients in Basrah City. A thesis PhD, Iraq, University of Basrah College of Science-Department of Biology, 219.

Collee, J. C., Dugmid, J. P., Fraser, A. G., & Marmion, B. P. (1996). Practical medical microbiology.‏ 14 th ed. Churchill Livingstone, New York, pp: 263-298

Dapkevicius, M. D. L. E., Sgardioli, B., Câmara, S., Poeta, P., & Malcata, F. X. (2021). Current Trends of Enterococci in Dairy Products: A Comprehensive Review of Their Multiple Roles. Foods, 10(4), 821.‏

Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., & Knight, R. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences, 107(26), 11971-11975.‏

Dutka-Malen, S., Evers, S., & Courvalin, P. (1995). Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. Journal of clinical microbiology, 33(1), 24-27.

Elmanama, A. A., Al Laham, N. A., & Tayh, G. A. (2013). Antimicrobial susceptibility of bacterial isolates from burn units in Gaza. Burns, 39(8), 1612-1618.‏

Facklam, R.R., & Sahm, D.F. 1995. In Manual of Clinical Microbiol. 6th ed., Washington, D.C., 308-314.

Facklm, R. R. & Teixeira, L. M. (1997). Enterococcus. In: Collier, A.; Balow, S. & Sussman, M. (Eds.). "Microbiology & Microbial Infections". Topiey & Wilson. 9th edition. Edward Arnold, London: 669-682.

García-Solache, M., & Rice, L. B. (2019). The Enterococcus: a model of adaptability to its environment. Clinical microbiology reviews, 32(2), e00058-18.‏

Gardete, S., & Tomasz, A. (2014). Mechanisms of vancomycin resistance in Staphylococcus aureus. The Journal of clinical investigation, 124(7), 2836-2840.‏

Gawryszewska, I., Żabicka, D., Bojarska, K., Malinowska, K., Hryniewicz, W., & Sadowy, E. (2016). Invasive enterococcal infections in Poland: the current epidemiological situation. European Journal of Clinical Microbiology & Infectious Diseases, 35(5), 847-856.‏

Hashem, Y. A., Amin, H. M., Essam, T. M., Yassin, A. S., & Aziz, R. K. (2017). Biofilm formation in enterococci: genotype-phenotype correlations and inhibition by vancomycin. Scientific reports, 7(1), 1-12.‏

Heidari, H., Emaneini, M., Dabiri, H., & Jabalameli, F. (2016). Virulence factors, antimicrobial resistance pattern and molecular analysis of Enterococcal strains isolated from burn patients. Microbial pathogenesis, 90, 93-97.

Hollenbeck, B. L., & Rice, L. B. (2012). Intrinsic and acquired resistance mechanisms in enterococcus. Virulence, 3(5), 421-569.‏

Hricová, K., Štosová, T., Kučová, P., Fišerová, K., Bardoň, J., & Kolář, M. (2020). Analysis of Vancomycin-Resistant Enterococci in Hemato-Oncological Patients. Antibiotics, 9(11), 785.‏

Iwuafor, A. A., Abraka, B. A., Mbu, P. N., Ide, C., Erengwa, P. C., & Ekeng, B. E. (2021). Use of Doxycycline in a Renal Impaired Patient with Enterococcal Sepsis. International Journal of Medical and Pharmaceutical Case Reports, 1-4.‏

Jasem, M. A., Mahmood, A. E., Shanyoor, G. J., Al-Newani, H. R., & Al-Bahadly, A. B. (2018). The most frequent bacterial infections in burn injuries at burn units of two hospitals in Baghdad. Iraqi Journal of Public Health, 2(1), 12-15.‏

Kadhem S. A. (2015). Molecular Genetics Study of Enterococcus faecalis Isolated from Root canal Infection of Human in Bagdad, A thesis Submitted to the College of Education for Pure Sciences / Ibn Al-Haitham of the University of Baghdad.174.

Kajihara, T., Nakamura, S., Iwanaga, N., Oshima, K., Takazono, T., Miyazaki, T., & Kohno, S. (2015). Clinical characteristics and risk factors of enterococcal infections in Nagasaki, Japan: a retrospective study. BMC infectious diseases, 15(1), 1-8.‏

Kerbauy, G., Perugini, M. R. E., Yamauchi, L. M., & Yamada-Ogatta, S. F. (2011). Vancomycin-dependent Enterococcus faecium characterization of the first case isolated in a university hospital in Brazil. (3), 253-257.

Kim, M. H., Moon, D. C., Kim, S. J., Mechesso, A. F., Song, H. J., Kang, H. Y., ... & Lim, S. K. (2021). Nationwide Surveillance on Antimicrobial Resistance Profiles of Enterococcus faecium and Enterococcus faecalis Isolated from Healthy Food Animals in South Korea, 2010 to 2019. Microorganisms, 9(5), 925.‏

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547.

Labibzadeh M., Kaydani G., Savar M. & Ekrami A. (2018). Emergence of High-level Gentamicin Resistance among Enterococci Clinical Isolate from Burn Patients in South-west of Iran: Vancomycin Still Working. Journal of Microbiology, Vol. 67, No 4, 401–406.

Lebreton F., Willems R.J.L., Gilmore M.S. (2014). Enterococcus Diversity, Origins in Nature, and Gut Colonization, In Gilmore M.S., Clewell D.B., Ike Y., Shankar N. (eds.), Enterococci: From Commensals to Leading Causes of Drug Resistant Infection, , Massachusetts Eye and Ear Infirmary, Boston, 159.

Li, L., Dai, J. X., Xu, L., Chen, Z. H., Li, X. Y., Liu, M., ... & Chen, X. D. (2018). Antimicrobial resistance and pathogen distribution in hospitalized burn patients: a multicenter study in Southeast China. Medicine, 97(34).‏

MacFaddin, J. F. (2000). Biochemical tests for identification of medical bacteria.‏ 3th ed. Lippincott Williams Wilkins, London. pp: 57-424.

Maugeri, G., Lychko, I., Sobral, R., & Roque, A. C. (2019). Identification and antibiotic‐susceptibility profiling of infectious bacterial agents: a review of current and future trends. Biotechnology journal, 14(1), 1700750.

Miller, W. R., Munita, J. M., & Arias, C. A. (2014). Mechanisms of antibiotic resistance in enterococci. Expert review of anti-infective therapy, 12(10), 1221-1236.‏

Miyoshi, T., Iwatsuki, T., & Naganuma, T. (2005). Phylogenetic characterization of 16S rRNA gene clones from deep-groundwater microorganisms that pass through 0.2-micrometer-pore-size filters. Applied and environmental microbiology, 71(2), 1084-1088.‏

Miyoshi, T., Iwatsuki, T., & Naganuma, T. (2005). Phylogenetic characterization of 16S rRNA gene clones from deep-groundwater microorganisms that pass through 0.2-micrometer-pore-size filters. Applied and environmental microbiology, 71(2), 1084-1088.

Mustafa, E. A., Hamdoon, S. M., & Shehab, E. Y. (2021). Molecular detection and identification of Enterococcus faecium isolated from dental root canals. Iraqi Journal of Science, 1447-1451.‏

Naqvi, S. Z. A., Naqvi, S. A., Usman, M., & Naqvi, S. B. S. (2014). Burn wound infection; sig¬nificance of rule of nine in microbial surveillance. The Professional Medical Journal, 21(05), 869-873.‏

Nichollas, C., (2000). Aromatic medicine in the treatment of infections British Journal of Phytotherapy, 5 (1), 22- 24.

Niveditha, S., Pramodhini, S., Umadevi, S., Kumar, S. and Stephen, S., (2012). The isolation and the biofilm formation of uropathogens in the patients with catheter associated urinary tract infections (UTIs). Journal of clinical and diagnostic research: JCDR, 6(9), 1478.

Norbury W., Herndon D.N., Tanksley J., Jeschke M.G., & Finnerty C.C. (2016). Infection in Burns. Surgical Infect. 17:250–255.

Pirbonyeh, N., Bazargani, A., Emami, A., Anvar, Z., Mohsen Hosseini, S., Zardosht, M., & Derakhshan, B. (2017). Cross sectional study of burn infections and antibiotic susceptibility pattern for the improvement of treatment policy. Journal of Patient Safety & Quality Improvement, 5(2), 535-541.‏

Rahim Hateet, R. (2021). Isolation and Identification of Some Bacteria Contemn in Burn Wounds in Misan, Iraq. Archives of Razi Institute, 76(6), 1665-1670.‏

Ribeiro, L. M., Vieira, L. G., Sousa, J. M., & Guerra, A. S. (2019). Seasonal impact in burn profiles in a dedicated burn unit. Burns, 45(5), 1189-1198.‏

Ryu, H., Henson, M., Elk, M., Toledo-Hernandez, C., Griffith, J., Blackwood, D. & Santo Domingo, J. W. (2013). Development of quantitative PCR assays targeting the 16S rRNA genes of Enterococcus spp. and their application to the identification of Enterococcus species in environmental samples. Applied and environmental microbiology, 79(1), 196-204.‏

Samad, M. A., Sagor, M. S., Hossain, M. S., Karim, M. R., Mahmud, M. A., Sarker, M. S., & Johanna, L. (2022). High prevalence of vancomycin non-susceptible and multi-drug resistant enterococci in farmed animals and fresh retail meats in Bangladesh. Veterinary Research Communications, 1-12.‏

Sattari-Maraji, A., Jabalameli, F., Farahani, N. N., Beigverdi, R., & Emaneini, M. (2019). Antimicrobial resistance pattern, virulence determinants and molecular analysis of Enterococcus faecium isolated from children infections in Iran. BMC microbiology, 19(1), 1-8.

Seguel, N., Quezada-Aguiluz, M., González-Rocha, G., Bello-Toledo, H., Sánchez-Sanhueza, G., SEGUEL, N., ... & SÁNCHEZ-SANHUEZA, G. (2020). Antibiotic resistance of Enterococcus faecalis from persistent endodontic infections. Int. j. odontostomatol.(Print), 448-456.‏

Shahi, F., Hamidi, H., Khoshnood, S., Mehdipour, G., Dezfouli, A. A., & Sheikh, A. F. (2020). Virulence determinants and biofilm formation in clinical isolates of Enterococcus: a cross-sectional study. Journal of Acute Disease, 9(1), 27.‏

Shariati, A., Moradabadi, A., Ghaznavi-Rad, E., Dadmanesh, M., Komijani, M., & Nojoomi, F. (2021). Investigation into antibacterial and wound healing properties of platelets lysate against Acinetobacter baumannii and Klebsiella pneumoniae burn wound infections. Annals of Clinical Microbiology and Antimicrobials, 20(1), 1-9.‏

Shridhar, S., & Dhanashree, B. (2019). Antibiotic susceptibility pattern and biofilm formation in clinical isolates of enterococcus spp. Interdisciplinary perspectives on infectious diseases, 2019.‏

Tancheva, D., & Hadjiiski, O. (2005). Effect of early nutritional support on clinical course and septic complications in patients with severe burns. Annals of burns and fire disasters, 18(2), 74.‏

Vakulenko, S. B., Donabedian, S. M., Voskresenskiy, A. M., Zervos, M. J., Lerner, S. A., & Chow, J. W. (2003). Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrobial agents and chemotherapy, 47(4), 1423-1426.‏

Varshochi, M., Hasani, A., Pour Shahverdi, P., Ravanbakhsh Ghavghani, F., & Matin, S. (2020). Risk Factors for the Antibiotic Resistant Gram-Negative Bacilli Associated Infections in Burn Patients and the In-Vitro Susceptibility of Colistin. Archives of Clinical Infectious Diseases, 15(3).‏

Werner, G., Coque, T. M., Hammerum, A. M., Hope, R., Hryniewicz, W., Johnson, A. & Woodford, N. (2008). Emergence and spread of vancomycin resistance among enterococci in Europe. Eurosurveillance, 13(47), 19046.‏

Willinger, B., & Manafi, M. (1995). Evaluation of a new chromogenic agar medium for the identification of urinary tract pathogens. Letters in applied microbiology, 20(5), 300-302.

Zhang, F., Jiang, M., Wan, C., Chen, X., Chen, X., Tao, X., & Wei, H. (2016). Screening probiotic strains for safety: evaluation of virulence and antimicrobial susceptibility of enterococci from healthy Chinese infants. Journal of Dairy Science, 99(6), 4282-4290.

Zhong, Z., Kwok, L. Y., Hou, Q., Sun, Y., Li, W., Zhang, H., & Sun, Z. (2019). Comparative genomic analysis revealed great plasticity and environmental adaptation of the genomes of Enterococcus faecium. BMC genomics, 20

Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2022). Post-pandemic health and its sustainability: Educational situation. International Journal of Health Sciences, 6(1), i-v. https://doi.org/10.53730/ijhs.v6n1.5949

Published

25-07-2022

How to Cite

AL-Maliki, H. A. A. A.-K., AL-Luaibi, Y. Y. Y., & Chiad, A. D. (2022). Molecular screening the emergence of vancomycin and gentamycin resistant enterococcus species in burn’ patients in basrah government, Iraq. International Journal of Health Sciences, 6(S7), 500–516. https://doi.org/10.53730/ijhs.v6n7.11067

Issue

Section

Peer Review Articles