Biochemical study of lipoprotein lipase enzyme and apo-lipoprotein-C2 in patients with and without type 2 diabetes mellitus
Keywords:
type 2 diabetes mellitus, apo-lipoprotein C2, lipaseAbstract
Type two diabetes mellitus (T2DM) is the most common type of diabetes; it is characterized by hyperglycemia in the presence of hyperinsulinemia which is produced from beta cell insulin secretory malfunction and insulin resistance. This study was designed as a case-control study and was constructed to study the effect of type 2 diabetes mellitus on lipoprotein lipase and Apo lipoprotein C2 levels among lipid profiles in type 2 diabetes. The patient's ages ranged from (40-60) years. The serum sample of all groups was collected and used to measure the level of lipoprotein lipase and Apo lipoprotein C2 by using the ELISA method and to measure lipid profile by spectrophotometer technique. All samples were collected from Merjan Medical City at Babylon/ Hilla city. The study revealed that there was a significant decrease in the levels of lipoprotein lipase in patients with type 2 diabetes mellitus compared with the control group ( P < 0.001), also there was a significant increase in the levels of Apo lipoprotein C2 in the patient’s group compared with the control group ( P= 0.02).
Downloads
References
Alam, S., Hasan, M. K., Neaz, S., Hussain, N., Hossain, M. F., & Rahman, T. (2021). Diabetes Mellitus: insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management. Diabetology, 2(2), 36-50. doi: 10.3390/diabetology2020004.
Albuquerque, M. N. D. L., Diniz, A. D. S., & Arruda, I. K. G. D. (2015). Apolipoproteínas y su asociación con biomarcadores de riesgo cardiometabólico en adolescentes. Nutrición Hospitalaria, 32(6), 2674-2683.
Amundson, D. M., & Zhou, M. (1999). Fluorometric method for the enzymatic determination of cholesterol. Journal of biochemical and biophysical methods, 38(1), 43-52.
Beliard, S., Nogueira, J. P., Maraninchi, M., Lairon, D., Nicolay, A., Giral, P., ... & Valero, R. (2009). Parallel increase of plasma apoproteins C‐II and C‐III in Type 2 diabetic patients. Diabetic medicine, 26(7), 736-739. doi: 10.1111/j.1464-5491.2009.02757.x.
Bhowmik, B., Siddiquee, T., Mujumder, A., Afsana, F., Ahmed, T., Mdala, I. A., ... & Omsland, T. K. (2018). Serum lipid profile and its association with diabetes and prediabetes in a rural Bangladeshi population. International journal of environmental research and public health, 15(9), 1944.
Cerqueira, N. M., Oliveira, E. F., Gesto, D. S., Santos-Martins, D., Moreira, C., Moorthy, H. N., ... & Fernandes, P. A. (2016). Cholesterol biosynthesis: a mechanistic overview. Biochemistry, 55(39), 5483-5506.
Davies, B. S., Beigneux, A. P., Barnes II, R. H., Tu, Y., Gin, P., Weinstein, M. M., ... & Fong, L. G. (2010). GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell metabolism, 12(1), 42-52. doi: 10.1016/j.cmet.2010.04.016.
Díaz-Aragón, A., Ruiz-Gastélum, E., & Álvarez-López, H. (2021). Knowing the basic mechanisms of lipid metabolism. Cardiovascular and Metabolic Science, 32(S3), 147-152.
Dilworth, L., Facey, A., & Omoruyi, F. (2021). Diabetes mellitus and its metabolic complications: the role of adipose tissues. International Journal of Molecular Sciences, 22(14), 7644.
Ferrier, D. R. (2014). Lippincott’s illustrated reviews. USA: Lippincott Williams & Wilkins.
Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., ... & Martín, C. (2020). Pathophysiology of type 2 diabetes mellitus. International journal of molecular sciences, 21(17), 6275.
Gutgsell, A. R., Ghodge, S. V., Bowers, A. A., & Neher, S. B. (2019). Mapping the sites of the lipoprotein lipase (LPL)–angiopoietin-like protein 4 (ANGPTL4) interaction provides mechanistic insight into LPL inhibition. Journal of Biological Chemistry, 294(8), 2678-5366.
Hafiane, A., & Genest, J. (2015). High density lipoproteins: measurement techniques and potential biomarkers of cardiovascular risk. BBA clinical, 3, 175-188.
Henderson, H. E., Kastelein, J. J., Zwinderman, A. H., Gagné, E., Jukema, J. W., Reymer, P. W., ... & Jansen, H. (1999). Lipoprotein lipase activity is decreased in a large cohort of patients with coronary artery disease and is associated with changes in lipids and lipoproteins. Journal of lipid research, 40(4), 735-743.
Herman, H., Ardani, I. G. A. I., Aryani, L. N. A., Windiani, I. G. A. T., Adnyana, I. G. N. S., & Setiawati, Y. (2022). Signs and symptoms of depression in children and adolescents with type 1 diabetes mellitus: A case report. International Journal of Health & Medical Sciences, 5(1), 150-153. https://doi.org/10.21744/ijhms.v5n1.1861
Huang, Y., Li, X., Wang, M., Ning, H., Li, Y., & Sun, C. (2013). Lipoprotein lipase links vitamin D, insulin resistance, and type 2 diabetes: a cross-sectional epidemiological study. Cardiovascular diabetology, 12(1), 1-8.
Kei, A. A., Filippatos, T. D., Tsimihodimos, V., & Elisaf, M. S. (2012). A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease. Metabolism, 61(7), 906-921.
Kirkman, M. S., Briscoe, V. J., Clark, N., Florez, H., Haas, L. B., Halter, J. B., ... & Swift, C. S. (2012). Diabetes in older adults: consensus report. Journal of the American Geriatrics Society, 60(12), 2342.
Kirkpatrick, S. I., Dodd, K. W., Reedy, J., & Krebs-Smith, S. M. (2012). Income and race/ethnicity are associated with adherence to food-based dietary guidance among US adults and children. Journal of the Academy of Nutrition and Dietetics, 112(5), 624-635.
Li, J., Li, L., Guo, D., Li, S., Zeng, Y., Liu, C., ... & Xie, W. (2020). Triglyceride metabolism and angiopoietin-like proteins in lipoprotein lipase regulation. Clinica Chimica Acta, 503, 19-34.
Panarotto, D., Remillard, P., Bouffard, L., & Maheux, P. (2002). Insulin resistance affects the regulation of lipoprotein lipase in the postprandial period and in an adipose tissue‐specific manner. European journal of clinical investigation, 32(2), 84-92.
Saydah, S. H., Fradkin, J., & Cowie, C. C. (2004). Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. Jama, 291(3), 335-342.
Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2021). Get vaccinated when it is your turn and follow the local guidelines. International Journal of Health Sciences, 5(3), x-xv. https://doi.org/10.53730/ijhs.v5n3.2938
Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2021). Health and treatment of diabetes mellitus. International Journal of Health Sciences, 5(1), i-v. https://doi.org/10.53730/ijhs.v5n1.2864
Taxiarchis, A. (2019). Identification and Functional Characterization of Proteins Involved in Hepatic Triglyceride Metabolism (Doctoral dissertation, Karolinska Institutet (Sweden)).
Vergès, Bruno, et al. "Liraglutide Increases the Catabolism of Apolipoprotein B100–Containing Lipoproteins in Patients With Type 2 Diabetes and Reduces Proprotein Convertase Subtilisin/Kexin Type 9 Expression." Diabetes Care 44.4 (2021): 1027-1037.
Vijayaraghavan, K. (2010). Treatment of dyslipidemia in patients with type 2 diabetes. Lipids in health and disease, 9(1), 1-12.
Windler, E., Schöffauer, M., & Zyriax, B. C. (2007). The significance of low HDL-cholesterol levels in an ageing society at increased risk for cardiovascular disease. Diabetes and Vascular Disease Research, 4(2), 136-142.
Wolska, A., Dunbar, R. L., Freeman, L. A., Ueda, M., Amar, M. J., Sviridov, D. O., & Remaley, A. T. (2017). Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis, 267, 49-60.
Wu, L., & Parhofer, K. G. (2014). Diabetic dyslipidemia. Metabolism, 63(12), 1469-1479.
Wu, S. A., Kersten, S., & Qi, L. (2021). Lipoprotein lipase and its regulators: an unfolding story. Trends in Endocrinology & Metabolism, 32(1), 48-61.
Zhang, P., Gao, J., Pu, C., & Zhang, Y. (2017). Apolipoprotein status in type 2 diabetes mellitus and its complications. Molecular Medicine Reports, 16(6), 9279-9286. doi: 10.3892/mmr.2017.7831.
Published
How to Cite
Issue
Section
Copyright (c) 2022 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.