Effect of x- ray on the treatment of breast cancer combined with amygdalin and doxorubicin separately
Keywords:
Radiotherapy, x-ray, MCF-7, Amygdalin, DoxorubicinAbstract
Background: Radiation therapy has the ability to destroy healthy cells in addition to cancer cells in the area being treated. However, when radiation combines with doxorubicin, it becomes more effective on breast cancer treatment. Objective: This study aims to clarify the effect of X-ray from LINAC combined with amygdalin and doxorubicin on breast cancer treatment, and the possibility of using amygdalin with X-ray instead of doxorubicin for the breast cancer treatment. Method: Two cell lines were used in this study, the first one was MCF-7 cell line and second one was WRL- 68 normal cell line. These cells were preserved in liquid nitrogen, prepared, developed and tested in the (place). The effect of three x-ray doses combined with amygdalin and with doxorubicin was studied on these strains. Results: Combination of radiation with amygdalin and with doxorubicin, separately, exam revealed no statistically significant difference between x-rays doses (1Gy, 3Gy and 5 Gy) combined with amygdalin and x-rays doses (1Gy, 3Gy and 5 Gy) combined with doxorubicin for MCF-7 and WRL-68.In conclusion: there is possible to be considered amygdalin as a promise breast cancer treatment instead of doxorubicin combined with x-ray.
Downloads
References
Aghaee, F., Islamian, J. P., Baradaran, B., Mesbahi, A., Mohammadzadeh, M., & Jafarabadi, M. A. (2013). Enhancing the Effects of Low Dose Doxorubicin Treatment by the Radiation in T47D and SKBR3 Breast Cancer Cells. Journal of breast cancer, 16(2), 164–170. https://doi.org/10.4048/jbc.2013.16.2.164).
AJCC (American Joint Committee on Cancer) Cancer Staging Manual; 8th edition, 3rd printing, Amin MB, Edge SB, Greene FL, et al (Eds), Springer, Chicago 2018).
Alpay M., Backman L.R.F., Cheng X.D., Dukel M., Kim W.J., Ai L.B., Brown K.D. Oxidative stress shapes breast cancer phenotype through chronic activation of ATM-dependent signaling. Breast Cancer Res. Treat. 2015; 151:75–87. Doi: 10.1007/s10549-015-3368-5. [PubMed] [CrossRef] [Google Scholar).
Biol. Pharm. Bull. 2006; 29:1597–1602. Doi: 10.1248/bpb.29.1597. [PubMed] [CrossRef] [Google Scholar]).
Bray, F.; Ferla, J.; Soerjomatarm, I.; Siegel, R.; Torre, L.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence).
Chang H.-K., Shin M.-S., Yang H.-Y., Lee J.-W., Kim Y.-S., Lee M.-H., Kim J., Kim K.-H., Kim C.-J.
Christowitz C, Davis T, Isaacs A, van Niekerk G, Hattingh S, Engelbrecht AM. Mechanisms of doxorubicin-induced drug resistance and drug resistant tumour growth in a murine breast tumour model. BMC Cancer. 2019;19(1):757. Published 2019 Aug 1. Doi:10.1186/s12885-019-5939-z].
Christowitz C, Davis T, Isaacs A, van Niekerk G, Hattingh S, Engelbrecht AM. Mechanisms of doxorubicin-induced drug resistance and drug resistant tumour growth in a murine breast tumour model. BMC Cancer. 2019;19(1):757. Published 2019 Aug 1. Doi:10.1186/s12885-019-5939-z]) and ((Lee HM, Moon A. Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells. Biomol Ther (Seoul). 2016;24(1):62-66. Doi:10.4062/biomolther.2015.172).
Coutts AS, Adams CJ, La Thangue NB. p53 ubiquitination by Mdm2: a never-ending tail? DNA Repair (Amst) 2009; 8:483–90. [PubMed] [Google Scholar]. [Cremona CA, Behrens A. ATM signalling and cancer. Oncogene. 2013 Doi: 10.1038/onc.2013.275. [PubMed] [Google Scholar], Biankin AV, Waddell N, Kassahn KS, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012; 491:399–405. [PMC free article] [PubMed] [Google Scholar]].
Darmayanti, P. A. R. ., & Armayanti, L. Y. . (2020). The differences between gross motor, fine motor and language development on toddler based on the age of breast milk weaning. International Journal of Health & Medical Sciences, 3(1), 123-129. https://doi.org/10.31295/ijhms.v3n1.191
Flies E.J., Mavoa S., Zosky G.R., Mantzioris E., Williams C., Eri R., Brook B.W., Buettel J.C. Urban-associated diseases: Candidate diseases, environmental risk factors, and a path forward. Environ. Int. 2019; 133:105187. Doi: 10.1016/j.envint.2019.105187. [PubMed] [CrossRef] [Google Scholar]].
Folkes LK, O'Neill P. Modification of DNA damage mechanisms by nitric oxide during ionizing radiation. Free Radical Biol Med. 2013;58(0):14–25. Doi: 10.1016/j.freeradbiomed.2013.01.014.).
Forcados G.E., Chinyere C.N., Shu M.L. Acalypha wilkesiana: Therapeutic and toxic potential. J. Med. Surg. Pathol. 2016; 1:122. [Google Scholar]
Forcados G.E., James D.B., Sallau A.B., Muhammad A., Mabeta P. Oxidative stress and carcinogenesis: Potential of phytochemicals in breast cancer therapy. Nutr. Cancer. 2017; 69:365–374. Doi: 10.1080/01635581.2017.1267777. [PubMed] [CrossRef] [Google Scholar].
Gong L, Zhang Y, Liu C, Zhang M, Han S. Application of Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine. 2021; 16:1083-1102).
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol. 2020 May;94(5):1511-1549. Doi: 10.1007/s00204-020-02752-z. Epub 2020 May 13. PMID: 32399610; PMCID: PMC7261741.).
Jaroonwitchawan T., Chaicharoenaudomrung N., Natnkaew J., Noisa P. Curcumin attenuates paraquat-induced cell death in human neuroblastoma cells through modulating oxidative stress and autophagy. Neurosci. Lett. 2017; 636:40–47. Doi: 10.1016/j.neulet.2016.10.050. [PubMed] [CrossRef] [Google Scholar].
Kadhim M, Salomaa S, Wright E, Hildebrandt G, Belyakov OV, Prise KM, Little MP. Non-targeted effects of ionising radiation--implications for low dose risk. Mutat Res. 2013 Apr-Jun;752(2):84-98).
Kempner, E.S. (2011) Direct Effects of Ionizing Radiation on Macromolecules. Journal of Polymer Science Part B: Polymer Physics, 49, 827-831. http://dx.doi.org/10.1002/polb.22250).
Lee HM, Moon A. Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells. Biomol Ther (Seoul). 2016;24(1):62-66. Doi:10.4062/biomolther.2015.172).
Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008; 100:672–679. [PubMed] [Google Scholar].
Liu, C. L., Chen, M. J., Lin, J. C., Lin, C. H., Huang, W. C., Cheng, S. P., Chen, S. N., & Chang, Y. C. (2019). Doxorubicin Promotes Migration and Invasion of Breast Cancer Cells through the Upregulation of the RhoA/MLC Pathway. Journal of breast cancer, 22(2), 185–195. https://doi.org/10.4048/jbc.2019.22.e22]
Liu, C. L., Chen, M. J., Lin, J. C., Lin, C. H., Huang, W. C., Cheng, S. P., Chen, S. N., & Chang, Y. C. (2019). Doxorubicin Promotes Migration and Invasion of Breast Cancer Cells through the Upregulation of the RhoA/MLC Pathway. Journal of breast cancer, 22(2), 185–195. https://doi.org/10.4048/jbc.2019.22.e22].
Pang B, Qiao X, Janssen L, Velds A, Groothuis T, Kerkhoven R, Nieuwland M, Ovaa H, Rottenberg S, van Tellingen O, Janssen J, Huijgens P, Zwart W, Neefjes J. Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin. Nature communications. 2013; 4:1908].
Qadir M., Fatima K. Review on Pharmacological Activity of Amygdalin. Arch. Cancer Res. 2017; 5:10–12. Doi: 10.21767/2254-6081.100160. [CrossRef] [Google Scholar]].
Qadir M., Fatima K. Review on Pharmacological Activity of Amygdalin. Arch. Cancer Res. 2017; 5:10–12. Doi: 10.21767/2254-6081.100160. [CrossRef] [Google Scholar]
Ríos-Arrabal, S., Artacho-Cordón, F., León, J., Román-Marinetto, E., Del Mar Salinas-Asensio, M., Calvente, I., & Núñez, M. I. (2013). Involvement of free radicals in breast cancer. SpringerPlus, 2, 404. https://doi.org/10.1186/2193-1801-2-404).
Santos S.B., Sousa Lobo J.M., Silva A.C. Biosimilar medicines used for cancer therapy in Europe: A review. Drug Discov. Today. 2018; 24:293–299. Doi: 10.1016/j.drudis.2018.09.011. [PubMed] [CrossRef] [Google Scholar], Jaszczak-Wilke, E., Polkowska, Ż., Koprowski, M., Owsianik, K., Mitchell, A. E., & Bałczewski, P. (2021). Amygdalin: Toxicity, Anticancer Activity and Analytical Procedures for Its Determination in Plant Seeds. Molecules (Basel, Switzerland), 26(8), 2253. https://doi.org/10.3390/molecules260822537].
Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2021). Get vaccinated when it is your turn and follow the local guidelines. International Journal of Health Sciences, 5(3), x-xv. https://doi.org/10.53730/ijhs.v5n3.2938
Tanaka T. Role of apoptosis in the chemoprevention of cancer. J Exp Clin Med. 2013; 5:89–91) and (Lee, H. M., & Moon, A. (2016). Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells. Biomolecules & therapeutics, 24(1), 62–66.).
Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes. 2015; 6:456–480. Doi: 10.4239/wjd. v6.i3.456. [PMC free article] [PubMed] [CrossRef] [Google Scholar].
Wurz GT, DeGregorio MW. Activating adaptive cellular mechanisms of resistance following sublethal cytotoxic chemotherapy: implications for diagnostic microdosing. Int J Cancer. 2015; 136:1485–1493. [PubMed] [Google Scholar]).
Yang, Fan et al. “Doxorubicin, DNA torsion, and chromatin dynamics.” Biochimica et biophysica acta vol. 1845,1 (2014): 84-9. Doi: 10.1016/j.bbcan.2013.12.002].
Zhuang HQ, Wang J, Yuan ZY, Zhao LJ, Wang P, Wang CL. The drug-resistance to gefitinib in PTEN low expression cancer cells is reversed by irradiation in vitro. J Exp Clin Cancer Res. 2009; 28:123. [PMC free article] [PubMed] [Google Scholar).
Ziech D, Franco R, Georgakilas AG, Georgakila S, Malamou-Mitsi V, Schoneveld O, Pappa A, Panayiotidis MI. The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development. Chemico-biological interactions. 2010;188(2):334–339. Doi: 10.1016/j.cbi.2010.07.010. [PubMed] [CrossRef] [Google Scholar]).
Published
How to Cite
Issue
Section
Copyright (c) 2022 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.