Plasmidic content of certain virulence factors of Escherichia coli bacteria isolated from different organisms in Kirkuk City

https://doi.org/10.53730/ijhs.v6nS6.12020

Authors

  • Mohammed Jasim Mohammed Department of Biology, College of Education for Pure Sciences, University of Kirkuk, Kirkuk, Iraq
  • Najdat Bahjat Mahdi Department of Biology, College of Education for Pure Sciences, University of Kirkuk, Kirkuk, Iraq

Keywords:

escherichia coli, virulent factors, plasmid curing, plasmid isolation, bacterial isolates

Abstract

The study included isolation and diagnosis of Escherichia coli from clinical and animal sources (humans, cows, sheep, birds, chickens, fish, and gecko). It collected 275 samples distributed to 125 clinical samples taken from urine and 150 samples distributed to other organisms with 25 samples per organism. The isolates used in the study were diagnosed on the appearance, microscopy, and chemical tests, as well as confirmatory testing of isolations through the use of the Api 20 E tape, where 41 isolations of E. coli bacteria were obtained from the clinical source and 89 isolation from other organisms. Some fertility factors of bacterial isolates were studied, all bacterial isolates were found to be Capsule productive, while all were non-Hemolysin enzymes, and Extended Spectrum β-lactamase enzymes were 41% (53/130), and isolates' ability to form biofilm was investigated where isolates were producers 60% (77/130). Three isolates were selected for each source to study their plasmid content, Electrically phased isolators on agarose gels have shown a different variety in their plasmid content. 

Downloads

Download data is not yet available.

References

Aworh, M. K., Kwaga, J. K., Hendriksen, R. S., Okolocha, E. C., & Thakur, S. (2021). Genetic relatedness of multidrug resistant Escherichia coli isolated from humans, chickens and poultry environments. Antimicrobial Resistance & Infection Control, 10(1), 1-13.‏ https://doi.org/10.1186/s13756-021-00930-x

Bharathan, S., Sundaramoorthy, N. S., Chandrasekaran, H., Rangappa, G., ArunKumar, G., Subramaniyan, S. B., ... & Nagarajan, S. (2019). Sub lethal levels of platinum nanoparticle cures plasmid and in combination with carbapenem, curtails carbapenem resistant Escherichia coli. Scientific reports, 9(1), 1-13.‏ https://doi.org/10.1038/s41598-019-41489-3

Cornelissen ,C.N.;Hobbs,M.M.(2020).Microbiology .Wolters Kluwer.4th ed. P(110).

Denamur, E., Clermont, O., Bonacorsi, S., & Gordon, D. (2021). The population genetics of pathogenic Escherichia coli. Nature Reviews Microbiology, 19(1), 37-54.‏ https://doi.org/10.1038/s41579-020-0416-x

Garrec, H., Drieux-Rouzet, L., Golmard, J. L., Jarlier, V., & Robert, J. (2011). Comparison of nine phenotypic methods for detection of extended-spectrum β-lactamase production by Enterobacteriaceae. Journal of clinical microbiology, 49(3), 1048-1057.‏ https://doi.org/10.1128/JCM.02130-10

He, Y. Z., Xu, Y., Sun, J., Gao, B. L., Li, G., Zhou, Y. F., ... & Liu, Y. H. (2021). Novel Plasmid-Borne Fimbriae-Associated Gene Cluster Participates in Biofilm Formation in Escherichia coli. Microbial Drug Resistance, 27(12), 1624-1632.‏ https://doi.org/10.1089/mdr.2020.0512

Ineta, B. E., Madu, E. P., Abdulhadi, A. S., & Ibrahim, H. I. (2018). Antibiotic susceptibility and plasmid profile of clinical isolates of Escherichia coli. Biomedical Research, 29(17), 3303-3310.‏ http://dx.doi.org/10.4066/biomedicalresearch.29-18-927

Juraschek, K., Malekzadah, J., Malorny, B., Käsbohrer, A., Schwarz, S., Meemken, D., & Hammerl, J. A. (2022). Characterization of qnrB-carrying plasmids from ESBL-and non-ESBL-producing Escherichia coli. BMC genomics, 23(1), 1-16.‏ https://doi.org/10.1186/s12864-022-08564-y

Karam, M. R. A., Habibi, M., & Bouzari, S. (2018). Relationships between virulence factors and antimicrobial resistance among Escherichia coli isolated from urinary tract infections and commensal isolates in Tehran, Iran. Osong public health and research perspectives, 9(5), 217. https://doi.org/10.24171%2Fj.phrp.2018.9.5.02

Laxminarayan, R., Van Boeckel, T., Frost, I., Kariuki, S., Khan, E. A., Limmathurotsakul, D., ... & Zhu, Y. G. (2020). The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. The Lancet Infectious Diseases, 20(4), e51-e60.‏ https://doi.org/10.1016/S1473-3099(20)30003-7

Li, Q., Chang, W., Zhang, H., Hu, D., & Wang, X. (2019). The role of plasmids in the multiple antibiotic resistance transfer in ESBLs-producing Escherichia coli isolated from wastewater treatment plants. Frontiers in microbiology, 10, 633.‏ https://doi.org/10.3389/fmicb.2019.00633

Lopatkin, A. J., Meredith, H. R., Srimani, J. K., Pfeiffer, C., Durrett, R., & You, L. (2017). Persistence and reversal of plasmid-mediated antibiotic resistance. Nature communications, 8(1), 1-10.‏ https://doi.org/10.1038/s41467-017-01532-1

Masoud, S. M., El-Baky, A., Mahmoud, R., Aly, S. A., & Ibrahem, R. A. (2021). Co-existence of certain ESBLs, MBLs and plasmid mediated quinolone resistance genes among MDR E. coli isolated from different clinical specimens in Egypt. Antibiotics, 10(7), 835.‏ https://doi.org/10.3390/antibiotics10070835

Mathur, T.; S. Singhal; S. Khan; D.J. Upadhyay; T. Fatma; and A. Rattan. (2006). Detection of Biofilm Formation among The Clinical Isolates of Staphylococci: An Evaluation of Three Different Screening Methods. Indian J. Med. Microbiol. .24, 1.25-29. https://doi.org/10.1016/S0255-0857(21)02466-X

Murray ,D.R. ; Rosenthal,K.S.;Pealler,M.A. (2021). Medical Microbiology .ELSEVIER. 9 ed th . p(261- 262). http://evolve.elsevier.com/Murray/microbiology/

Nascimento, J. A., Santos, F. F., Valiatti, T. B., Santos-Neto, J. F., M Santos, A. C., Cayô, R., ... & AT Gomes, T. (2021). Frequency and Diversity of Hybrid Escherichia coli Strains Isolated from Urinary Tract Infections. Microorganisms, 9(4), 693. https://doi.org/10.3390/microorganisms9040693

Nji, E., Kazibwe, J., Hambridge, T., Joko, C. A., Larbi, A. A., Damptey, L. A. O., ... & Lien, L. T. Q. (2021). High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings. Scientific reports, 11(1), 1-11.‏ https://doi.org/10.1038/s41598-021-82693-4

Osuntokun, O. T., Mayowa, A., Thonda, O. A., & Aladejana, O. M. (2019). Pre/Post Plasmid Curing and Killing Kinetic Reactivity of Discorea Bulbifera Linn Against Multiple Antibiotics Resistant Clinical Isolates, Using Escherichia Coli as A Case Study. Int J Cell Sci Mol Biol, 6(2), 46-56.‏ http://dx.doi.org/10.19080/IJCSMB.2019.06.555685

Pormohammad, A., Nasiri, M. J., & Azimi, T. (2019). Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: a systematic review and meta-analysis. Infection and drug resistance, 12, 1181.‏ https://doi.org/10.2147%2FIDR.S201324

Rodríguez-Medina, N., Martínez-Romero, E., la Cruz, D., Angel, M., Ares, M. A., Valdovinos-Torres, H., ... & Garza-Ramos, U. (2020). A Klebsiella variicola plasmid confers hypermucoviscosity-like phenotype and alters capsule production and virulence. Frontiers in microbiology, 11, 3053. https://doi.org/10.3389/fmicb.2020.579612

Sabença, C., Igrejas, G., Poeta, P., Robin, F., Bonnet, R., & Beyrouthy, R. (2021). Multidrug resistance dissemination in Escherichia coli Isolated from wild animals: bacterial clones and plasmid complicity. Microbiology Research, 12(1), 123-137.‏ https://doi.org/10.3390/microbiolres12010009

San Millan, A. (2018). Evolution of plasmid-mediated antibiotic resistance in the clinical context. Trends in microbiology, 26(12), 978-985.‏ https://doi.org/10.1016/j.tim.2018.06.007

Sastry ,A.S. ; Bhat ,S.(2019).Essentialso of Medical Microbiology . Jaypee Brothers Medical Publishers .6 ed th .p(312).

Sultan, I., Rahman, S., Jan, A. T., Siddiqui, M. T., Mondal, A. H., & Haq, Q. M. R. (2018). Antibiotics, resistome and resistance mechanisms: a bacterial perspective. Frontiers in microbiology, 9, 2066.‏ https://doi.org/10.3389/fmicb.2018.02066

Sun, J., Chen, C., Cui, C. Y., Zhang, Y., Liu, X., Cui, Z. H., ... & Liu, Y. H. (2019). Plasmid-encoded tet (X) genes that confer high-level tigecycline resistance in Escherichia coli. Nature microbiology, 4(9), 1457-1464.‏ https://doi.org/10.1038/s41564-019-0496-4

Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2021). Get vaccinated when it is your turn and follow the local guidelines. International Journal of Health Sciences, 5(3), x-xv. https://doi.org/10.53730/ijhs.v5n3.2938

Vogwill, T., & MacLean, R. C. (2015). The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach. Evol Appl 8 (3): 284–295.‏ https://doi.org/10.1111/eva.12202

Wangkheimayum, J., Paul, D., Chanda, D. D., Singha, K. M., & Bhattacharjee, A. (2022). Elevated expression of rsmI can act as a reporter of aminoglycoside resistance in Escherichia coli using kanamycin as signal molecule. Infection, Genetics and Evolution, 98, 105229.‏ https://doi.org/10.1016/j.meegid.2022.105229

Widjaja, G. (2021). Impact of human resource management on health workers during pandemics COVID-19: systematic review. International Journal of Health & Medical Sciences, 4(1), 61-68. https://doi.org/10.31295/ijhms.v4n1.850

Zaman ,M.; Akther,M. Pasha ,M. (2010). Plasmid curing of Escherichia Coli cells with Ethidium Bromide, Sodium dodecyl sulfate and acridine orange. Bangladesh Journal Microbial.1:28-31. https://doi.org/10.3329/bjm.v27i1.9165

Zhang, Y., Shan, P. E. N. G., Jinge, X. U., Yafei, L. I., Ling, P. U., Xue, H. A. N., & Yulong, F. E. N. G. (2022). Genetic Context Diversity of Plasmid-Borne blaCTX-M-55 in Escherichia coli Isolated from Waterfowl. Journal of Global Antimicrobial Resistance.‏https://doi.org/10.1016/j.jgar.2022.01.015

Published

23-08-2022

How to Cite

Mohammed, M. J., & Mahdi, N. B. (2022). Plasmidic content of certain virulence factors of Escherichia coli bacteria isolated from different organisms in Kirkuk City. International Journal of Health Sciences, 6(S6), 7204–7214. https://doi.org/10.53730/ijhs.v6nS6.12020

Issue

Section

Peer Review Articles