Dexamethasone and olmesartan as potential antiremodelling agents of valvular interstitial cell into myofibroblast

https://doi.org/10.53730/ijhs.v6nS9.12283

Authors

  • Ardianto Nandiwardhana Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Hospital, Surabaya, Indonesia
  • Denny Suwanto Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Hospital, Surabaya, Indonesia
  • Eka Prasetya Budi Mulia Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Hospital, Surabaya, Indonesia
  • David Nugraha Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Hospital, Surabaya, Indonesia
  • Achmad Lefi Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Hospital, Surabaya, Indonesia
  • Mohammad Budiarto Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Hospital, Surabaya, Indonesia
  • Johanes Nugroho Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Hospital, Surabaya, Indonesia

Keywords:

Valvular interstitial cell, myofibroblast, α-Smooth muscle actin, dexamethasone, Olmesartan

Abstract

Rheumatic heart disease is a late complication of valvular inflammation caused by rheumatic fever. Studies have shown that the differentiation of valvular interstitial cells (VIC) into fibroblasts plays an important role in valvular remodeling and fibrosis. Various strategies to minimize valvular fibrosis has increased recently. This study aims to analyze the effect of dexamethasone, olmesartan, and its combination in inhibiting TGF-β1-induced VIC differentiation into myofibroblast. In vitro laboratory experimental-posttest only control group design was conducted. Isolated VIC of Oryctolagus cuniculus was pretreated using 2,5 ng/mL of TGF-β1 and divided into groups of dexamethasone (0.1 uM/L), olmesartan (100 nmol/L), and its combination. Inhibition of myofibroblast differentiation was quantified by the expression of α-SMA levels detected by immunofluorescence. Dexamethasone, olmesartan, and its combination administration were significantly reduced TGF-β1-induced VIC differentiation into myofibroblast expressed by α-SMA levels (dexamethasone 6823 ± 1735.3, olmesartan 6683.7 ± 2795.05). Combination of dexamethasone and olmesartan exhibit the most potent inhibition compared to control (5051.87 ± 1612.210 vs 22286.73 ± 2780.2; p < 0.000). In conclusion, dexamethasone, olmesartan, and the combination can significantly reduce the differentiation of VIC into myofibroblasts. The greatest potential is the combined effect of dexamethasone and olmesartan, while dexamethasone and olmesartan have the same potential.

Downloads

Download data is not yet available.

References

Almawi, V., Beyhum, N., & Riedert, J. (1996). of cytokine and cytokine receptor expression by glucocorticoids. 60(November), 563–572. https://doi.org/10.1002/jlb.60.5.563

Asai, K., Funaki, C., Hayashi, T., Yamada, K., Naito, M., Kuzuya, M., Yoshida, F., Yoshimine, N., & Kuzuya, F. (1993). Dexamethasone-induced suppression of aortic atherosclerosis in cholesterol-fed rabbits: Possible mechanisms. In Arteriosclerosis and Thrombosis (Vol. 13, Issue 6, pp. 892–899). https://doi.org/10.1161/01.atv.13.6.892

Baum, J., & Duffy, H. S. (2011). Fibroblasts and myofibroblasts: What are we talking about? Journal of Cardiovascular Pharmacology, 57(4), 376–379. https://doi.org/10.1097/FJC.0b013e3182116e39

Bouleti, C., Iung, B., Himbert, D., Brochet, E., Messika-Zeitoun, D., Détaint, D., Garbarz, E., Cormier, B., & Vahanian, A. (2013). Long-term efficacy of percutaneous mitral commissurotomy for restenosis after previous mitral commissurotomy. Heart, 99(18), 1336–1341. https://doi.org/10.1136/heartjnl-2013-303944

Bujak. (2001). doi_10.1016_j.cardiores.2006.10.002 _ Enhanced Reader.pdf.

Calderone, A., Murphy, R. J. L., Lavoie, J., Colombo, F., & Béliveau, L. (2001). TGF-β1 and prepro-ANP mRNAs are differentially regulated in exercise-induced cardiac hypertrophy. In Journal of Applied Physiology (Vol. 91, Issue 2, pp. 771–776). https://doi.org/10.1152/jappl.2001.91.2.771

Christian, M. M., Moy, R. L., Wagner, R. F., & Yen-Moore, A. (2001). A correlation of alpha-smooth muscle actin and invasion in micronodular basal cell carcinoma. Dermatologic Surgery : Official Publication for American Society for Dermatologic Surgery [et Al.], 27(5), 441–445. https://doi.org/10.1046/J.1524-4725.2001.00200.X

Cucoranu, I., Clempus, R., Dikalova, A., Phelan, P. J., Ariyan, S., Dikalov, S., & Sorescu, D. (2005). NAD(P)H oxidase 4 mediates transforming growth factor-β1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circulation Research, 97(9), 900–907. https://doi.org/10.1161/01.RES.0000187457.24338.3D

Du, Y., Xiao, H., Wan, J., Wang, X., Li, T., Zheng, S., Feng, J., Ye, Q., Li, J., Li, G., & Fan, Z. (2020). Atorvastatin attenuates TGF-β1-induced fibrogenesis by inhibiting Smad3 and MAPK signaling in human ventricular fibroblasts. International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm.2020.4607

Frangogiannis, N. G., Michael, L. H., & Entman, M. L. (2000). Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovascular Research, 48(1), 89–100. https://doi.org/10.1016/S0008-6363(00)00158-9

Gabbiani, G. (2003). The myofibroblast in wound healing and fibrocontractive diseases. In Journal of Pathology. https://doi.org/10.1002/path.1427

Gu, Z., Rolfe, B. E., Xu, Z. P., Thomas, A. C., Campbell, J. H., & Lu, G. Q. M. (2010). Enhanced effects of low molecular weight heparin intercalated with layered double hydroxide nanoparticles on rat vascular smooth muscle cells. Biomaterials, 31(20), 5455–5462. https://doi.org/10.1016/J.BIOMATERIALS.2010.03.050

Guilherme, L., & Kalil, J. (2020). Rheumatic Fever and Rheumatic Heart Disease. In The Autoimmune Diseases (Issue May, pp. 1255–1268). Elsevier. https://doi.org/10.1016/B978-0-12-812102-3.00063-4

Guzy, R. (2020). Fibroblast Growth Factor Inhibitors in Lung Fibrosis: Friends or Foes? In American Journal of Respiratory Cell and Molecular Biology. https://doi.org/10.1165/rcmb.2020-0156ED

Heldin, C. H., Miyazono, K., & Ten Dijke, P. (1997). TGF-β signalling from cell membrane to nucleus through SMAD proteins. In Nature. https://doi.org/10.1038/37284

Isaka, Y. (2018). Targeting TGF-β signaling in kidney fibrosis. In International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19092532

Kim, S., Ohta, K., Hamaguchi, A., Yukimura, T., Miura, K., & Iwao, H. (1995). Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension, 25(6), 1252–1259. https://doi.org/10.1161/01.HYP.25.6.1252/FORMAT/EPUB

Khidoyatova, M. R., Kayumov, U. K., Inoyatova, F. K., Fozilov, K. G., Khamidullaeva, G. A., & Eshpulatov, A. S. (2022). Clinical status of patients with coronary artery disease post COVID-19. International Journal of Health & Medical Sciences, 5(1), 137-144. https://doi.org/10.21744/ijhms.v5n1.1858

Kupfahl, C., Pink, D., Friedrich, K., Zurbrügg, H. R., Neuss, M., Warnecke, C., Fielitz, J., Graf, K., Fleck, E., & Regitz-Zagrosek, V. (2000). Angiotensin II directly increases transforming growth factor beta1 and osteopontin and indirectly affects collagen mRNA expression in the human heart. Cardiovascular Research, 46(3), 463–475. https://doi.org/10.1016/S0008-6363(00)00037-7

Lijnen, P. J., Petrov, V. V., & Fagard, R. H. (2000). Induction of cardiac fibrosis by transforming growth factor-β1. Molecular Genetics and Metabolism. https://doi.org/10.1006/mgme.2000.3032

Lin, C., Zhu, D., Markby, G., Corcoran, B. M., Farquharson, C., & Macrae, V. E. (2017). Isolation and characterization of primary rat valve interstitial cells: A new model to study aortic valve calcification. Journal of Visualized Experiments, 2017(129), 3–8. https://doi.org/10.3791/56126

Lo, W. R., Rowlette, L. L., Caballero, M., Yang, P., Hernandez, M. R., & Borrás, T. (2003). Tissue differential microarray analysis of dexamethasone induction reveals potential mechanisms of steroid glaucoma. Investigative Ophthalmology & Visual Science, 44(2), 473–485. https://doi.org/10.1167/IOVS.02-0444

Makheja, A. N., Bloom, S., Muesing, R., Simon, T., & Bailey, J. M. (1989). Anti-inflammatory drugs in experimental atherosclerosis. Atherosclerosis, 76(2–3), 155–161. https://doi.org/10.1016/0021-9150(89)90099-3

Masuda, A., Nakamura, T., Abe, M., Iwamoto, H., Sakaue, T., Tanaka, T., Suzuki, H., Koga, H., & Torimura, T. (2020). Promotion of liver regeneration and anti-fibrotic effects of the TGF-β receptor kinase inhibitor galunisertib in CCl4-treated mice. International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm.2020.4594

Ordunez, P., Martinez, R., Soliz, P., Giraldo, G., Mujica, O. J., & Nordet, P. (2019). Rheumatic heart disease burden, trends, and inequalities in the Americas, 1990–2017: a population-based study. The Lancet Global Health, 7(10), e1388–e1397. https://doi.org/10.1016/S2214-109X(19)30360-2

Parichatikanond, W., Luangmonkong, T., Mangmool, S., & Kurose, H. (2020). Therapeutic targets for the treatment of cardiac fibrosis and cancer: Focusing on tgf-β Signaling. In Frontiers in Cardiovascular Medicine. https://doi.org/10.3389/fcvm.2020.00034

Peng, H., Carretero, O. A., Peterson, E. L., & Rhaleb, N. E. (2010). Ac-SDKP inhibits transforming growth factor-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts. American Journal of Physiology - Heart and Circulatory Physiology. https://doi.org/10.1152/ajpheart.00464.2009

Petrov, V. V., Fagard, R. H., & Lijnen, P. J. (2002). Stimulation of collagen production by transforming growth factor-β1 during differentiation of cardiac fibroblasts to myofibroblasts. Hypertension, 39(2 I), 258–263. https://doi.org/10.1161/hy0202.103268

Suh, S. H., Choi, H. S., Kim, C. S., Kim, I. J., Ma, S. K., Scholey, J. W., Kim, S. W., & Bae, E. H. (2019). Olmesartan Attenuates Kidney Fibrosis in a Murine Model of Alport Syndrome by Suppressing Tubular Expression of TGFβ. International Journal of Molecular Sciences, 20(15). https://doi.org/10.3390/IJMS20153843

Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2022). Post-pandemic health and its sustainability: Educational situation. International Journal of Health Sciences, 6(1), i-v. https://doi.org/10.53730/ijhs.v6n1.5949

Thourani, V. H., Weintraub, W. S., Guyton, R. A., Jones, E. L., Williams, W. H., Elkabbani, S., & Craver, J. M. (2003). Outcomes and long-term survival for patients undergoing mitral valve repair versus replacement: Effect of age and concomitant coronary artery bypass grafting. Circulation. https://doi.org/10.1161/01.CIR.0000079169.15862.13

Tsai, W. C., Tang, F. T., Wong, M. K., & Pang, J. H. S. (2003). Inhibition of tendon cell migration by dexamethasone is correlated with reduced alpha-smooth muscle actin gene expression: a potential mechanism of delayed tendon healing. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 21(2), 265–271. https://doi.org/10.1016/S0736-0266(02)00151-1

Vaideeswar, P., & Butany, J. (2016). Valvular Heart Disease. In Cardiovascular Pathology: Fourth Edition (4th ed.). Elsevier Inc. https://doi.org/10.1016/B978-0-12-420219-1.00012-4

Watkins, D. A., Johnson, C. O., Colquhoun, S. M., Karthikeyan, G., Beaton, A., Bukhman, G., Forouzanfar, M. H., Longenecker, C. T., Mayosi, B. M., Mensah, G. A., Nascimento, B. R., Ribeiro, A. L. P., Sable, C. A., Steer, A. C., Naghavi, M., Mokdad, A. H., Murray, C. J. L., Vos, T., Carapetis, J. R., & Roth, G. A. (2017). Global, Regional, and National Burden of Rheumatic Heart Disease, 1990–2015. New England Journal of Medicine. https://doi.org/10.1056/nejmoa1603693

Yang, L., Bataller, R., Dulyx, J., Coffman, T. M., Ginès, P., Rippe, R. A., & Brenner, D. A. (2005). Attenuated hepatic inflammation and fibrosis in angiotensin type 1a receptor deficient mice. Journal of Hepatology, 43(2), 317–323. https://doi.org/10.1016/j.jhep.2005.02.034

Yankah, C. A., Siniawski, H., Detschades, C., Stein, J., & Hetzer, R. (2011). Rheumatic mitral valve repair: 22-Year clinical results. Journal of Heart Valve Disease.

Zhou, J., Jiang, K., Ding, X., Fu, M., Wang, S., Zhu, L., He, T., Wang, J., Sun, A., Hu, K., Chen, L., Zou, Y., & Ge, J. (2015). Qiliqiangxin inhibits angiotensin II-induced transdifferentiation of rat cardiac fibroblasts through suppressing interleukin-6. Journal of Cellular and Molecular Medicine. https://doi.org/10.1111/jcmm.12512

Published

29-08-2022

How to Cite

Nandiwardhana, A., Suwanto, D., Mulia, E. P. B., Nugraha, D., Lefi, A., Budiarto, M., & Nugroho, J. (2022). Dexamethasone and olmesartan as potential antiremodelling agents of valvular interstitial cell into myofibroblast. International Journal of Health Sciences, 6(S9), 379–391. https://doi.org/10.53730/ijhs.v6nS9.12283

Issue

Section

Peer Review Articles