PCR detection of genes encoded antibiotic resistance in Stenotrophomonas maltophilia that isolated from clinical infections
Keywords:
PCR detection, genes encoded antibiotic resistance, Stenotrophomonas maltophilia, clinical infectionsAbstract
Background: Stenotrophomonas maltophilia is an aerobic, Gram-negative, no fermentative bacteria. It is an uncommon bacteria that is difficult to treat in people. The initial term was Bacterium bookeri, however it was eventually renamed to Pseudomonas maltophilia. It was resistant to multiple antibiotics, and its mechanisms also include acquired and intrinsic resistance. It is innately multi drug resistant (MDR) and found in watery and humid environments in the environment. Aim of study: The study amid to see if there were any antibiotic resistance genes in specimens that were found in S. maltophilia. Materials and methods: The S. maltophilia isolates were isolated and identified from 250 of clinical specimens, biochemically analyzed, susceptibility test by using Kirby-Bauer disk diffusion method and genetically screened for antibiotic resistance genes using a traditional (PCR). Results: The molecular profile revealed that (L1Q gene) was identified in 20 (100 %) of S. maltophilia isolates and (L2Q gene) was found in 20 (90 %) of S. maltophilia isolates for β- lactamase antibiotics, and (Aph gene) was found in 20 (15 %) of S. maltophilia isolates for aminoglycoside.
Downloads
References
Al-Anazi, K. A., and Al-Jasser, A. M. (2014). Infections caused by Stenotrophomonas maltophilia in recipients of hematopoietic stem cell transplantation. Front. Oncol. 4:232. doi: 10.3389/fonc.2014.00232
Botana-Rial, M., Leiro-Fernandez, V., Nunez-Delgado, M., Alvarez-Fernandez, M., Otero-Fernandez, S., Bello-Rodriguez, H., et al. (2016). A pseudooutbreak of Pseudomonas putida and Stenotrophomonas maltophilia in a bronchoscopy unit. Respiration 92, 274–278. doi: 10.1159/0004 49137.
Brooke, J. S. (2012). Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin. Microbiol. Rev. 25, 2–41. doi: 10.1128/CMR.00019-11.
Brooke, J.S. (2014). New strategies against Stenotrophomonas maltophilia: a serious worldwide intrinsically drug-resistant opportunistic pathogen. 12, 1–4. doi: 10.1586/14787210.2014.864553.
Calvopina, K., Avison, M.B., (2018). Disruption of mpl activates beta-lactamase production in Stenotrophomonas maltophilia and Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 62 (8), e00638–e00718.
Chang, L. L., Lin, H. H., Chang, C. Y., and Lu, P. L. (2007). Increased incidence of class 1 integrons in trimethoprim/sulfamethoxazole-resistant clinical isolates of Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 59, 1038–1039. doi: 10.1093/jac/dkm034.
Crossman, L. C., Gould, V. C., Dow, J. M., Vernikos, G. S., Okazaki, A., Sebaihia, M., et al. (2008). The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol. 9:R74. doi: 10.1186/gb-2008-9-4-r74.
Cruz-Córdova, A., Mancilla-Rojano, J., Luna-Pineda, V. M., Escalona-Venegas, G., Cázares-Domínguez, V., Ormsby, C., ... & Xicohtencatl-Cortes, J. (2020). Molecular epidemiology, antibiotic resistance, and virulence traits of Stenotrophomonas maltophilia strains associated with an outbreak in a Mexican tertiary care hospital. Frontiers in cellular and infection microbiology, 10, 50.
Falagas, M. E., Kastoris, A. C., Vouloumanou, E. K., Rafailidis, P. I., Kapaskelis, A. M. & Dimopoulos, G. (2009). Attributable mortality of Stenotrophomonas maltophilia infections: a systematic review of the literature. Future Microbiol 4, 1103–1109.
Flores-Treviño, S., Gutierrez-Ferman, J. L., Morfín-Otero, R., Rodríguez-Noriega, E., Estrada-Rivadeneyra, D., Rivas-Morales, C., ... & Garza-Gonzalez, E. (2014). Stenotrophomonas maltophilia in Mexico: antimicrobial resistance, biofilm formation and clonal diversity. Journal of medical microbiology, 63(11), 1524-1530.
Gulcan, H., Kuzucu, C., and Durmaz, R. (2004). Nosocomial Stenotrophomonas maltophilia cross-infection: three cases in newborns. Am. J. Infect. Control 32, 365–368. doi: 10.1016/j.ajic.2004.07.003.
Guyot, A., Turton, J. F., and Garner, D. (2013). Outbreak of Stenotrophomonas maltophilia on an intensive care unit. J. Hosp. Infect. 85, 303–307. doi: 10.1016/j.jhin.2013.09.007.
Han, L., Zhang, R. M., Jia, L., Bai, S. C., Liu, X. W., Wei, R., ... & Sun, J. (2020). Diversity of L1/L2 genes and molecular epidemiology of high-level carbapenem resistance Stenotrophomonas maltophilia isolates from animal production environment in China. Infection, Genetics and Evolution, 86, 104531.
Hu, R.-M., Huang, K.-J., Wu, L.-T., Hsiao, Y.-J., and Yang, T.-C. (2008). Induction of L1 and L2 β-lactamases of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 52, 1198–1200. doi: 10.1128/AAC.00682-07.
Huang, Y. W., Lin, C. W., Hu, R. M., Lin, Y. T., Chung, T. C., & Yang, T. C. (2010). AmpN-AmpG operon is essential for expression of L1 and L2 β-lactamases in Stenotrophomonas maltophilia. Antimicrobial agents and chemotherapy, 54(6), 2583-2589.
Huang, Y.-W., Liou, R.-S., Lin, Y.-T., Huang, H.-H., and Yang, T.-C. (2014). A linkage between SmeIJK efflux pump, cell envelope integrity, and σEmediated envelope stress response in Stenotrophomonas maltophilia. PLoS One 9:e111784. doi: 10.1371/journal.pone.0115743.
Li, X. Z., Zhang, L., Mckay, G. A., and Poole, K. (2003). Role of the acetyltransferase AAC(6’)-Iz modifying enzyme in aminoglycoside resistance in Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 51, 803–811. doi: 10.1093/jac/dkg148.
Mercier-Darty, M., Royer, G., Lamy, B., Charron, C., Lemenand, O., Gomart, C., ... & Decousser, J. W. (2020). Comparative whole-genome phylogeny of animal, environmental, and human strains confirms the genogroup organization and diversity of the Stenotrophomonas maltophilia complex. Applied and environmental microbiology, 86(10), e02919-19.
Mojica, M. F., Rutter, J. D., Taracila, M., Abriata, L. A., Fouts, D. E., PappWallace, K. M., et al. (2019). Population structure, molecular epidemiology, and beta-lactamase diversity among Stenotrophomonas maltophilia isolates in the United States. MBio 10, e00405–00419. doi: 10.1128/mBio.00405-19.
Okazaki, A., and Avison, M. B. (2007). Aph(3′ )-IIc, an aminoglycoside resistance determinant from Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 51, 359–360. doi: 10.1128/AAC.00795-06.
Paez, J. I. & Costa, S. F. (2008). Risk factors associated with mortality of infections caused by Stenotrophomonas maltophilia: a systematic review. J Hosp Infect 70, 101–108.
Pedrosa-Silva, F., Matteoli, F. P., Passarelli-Araujo, H., Olivares, F. L., & Venancio, T. M. (2022). Genome sequencing of the vermicompost strain Stenotrophomonas maltophilia UENF-4GII and population structure analysis of the S. maltophilia Sm3 genogroup. Microbiological Research, 255, 126923.
Sanchez, M. B. (2015). Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia. Front. Microbiol. 6:658. doi: 10.3389/fmicb.2015.00658.
Sanchez, P., Alonso, A., and Martinez, J. L. (2002). Cloning and characterization of SmeT, a repressor of the Stenotrophomonas maltophilia multidrug efflux pump SmeDEF. Antimicrob. Agents Chemother. 46, 3386–3393. doi: 10.1128/AAC.46.11.3386-3393.2002.
Vu-Thien, H., Dulot, C., Moissenet, D., Fauroux, B., & Garbarg-Chenon, A. (1999). Comparison of randomly amplified polymorphic DNA analysis and pulsed-field gel electrophoresis for typing of Moraxella catarrhalis strains. Journal of Clinical Microbiology, 37(2), 450-452.
Waite, T. D., Georgiou, A., Abrishami, M., and Beck, C. R. (2016). Pseudooutbreaks of Stenotrophomonas maltophilia on an intensive care unit in England. J. Hosp. Infect. 92, 392–396. doi: 10.1016/j.jhin.2015.12.014.
Wang, Y., He, T., Shen, Z., & Wu, C. (2018). Antimicrobial resistance in Stenotrophomonas spp. Microbiology Spectrum, 6(1), 6-1.
Wu, P. S., Lu, C. Y., Chang, L. Y., Hsueh, P. R., Lee, P. I., Chen, J. M., et al. (2006). Stenotrophomonas maltophilia bacteremia in pediatric patients–a 10- year analysis. J. Microbiol. Immunol. Infect. 39, 144–149.
Yu, D., Yin, Z., Li, B., Jin, Y., Ren, H., Zhou, J., Zhou, W., Liang, L., Yue, J., (2016). Gene flow, recombination, and positive selection in Stenotrophomonas maltophilia: mechanisms underlying the diversity of the widespread opportunistic pathogen. Genome 59, 1063–1075.
Published
How to Cite
Issue
Section
Copyright (c) 2022 International journal of health sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.