PCR detection of genes encoded antibiotic resistance in Stenotrophomonas maltophilia that isolated from clinical infections

https://doi.org/10.53730/ijhs.v6nS8.12841

Authors

  • Sura Qasssem Shaheed AL-Khafajy Faculty of Science, University of Kufa, Iraq
  • Abbas S. J. ALMuhana Faculty of Science, University of Kufa, Iraq
  • Jaafar Ahmed Abdulmunem Baqr AL-sham Faculty of Science, University of Kufa, Iraq

Keywords:

PCR detection, genes encoded antibiotic resistance, Stenotrophomonas maltophilia, clinical infections

Abstract

Background: Stenotrophomonas maltophilia is an aerobic, Gram-negative, no fermentative bacteria. It is an uncommon bacteria that is difficult to treat in people. The initial term was Bacterium bookeri, however it was eventually renamed to Pseudomonas maltophilia. It was resistant to multiple antibiotics, and its mechanisms also include acquired and intrinsic resistance. It is innately multi drug resistant (MDR) and found in watery and humid environments in the environment. Aim of study: The study amid to see if there were any antibiotic resistance genes in  specimens that were found in  S. maltophilia. Materials and methods: The S. maltophilia isolates were isolated and identified  from 250 of clinical specimens, biochemically analyzed, susceptibility test by using Kirby-Bauer disk diffusion method and genetically screened for antibiotic resistance genes using a traditional (PCR). Results: The molecular profile revealed that (L1Q gene) was identified in 20 (100 %) of S. maltophilia isolates and (L2Q gene) was found in 20 (90 %) of S. maltophilia isolates for β- lactamase antibiotics, and (Aph gene) was found in 20 (15 %) of S. maltophilia isolates for aminoglycoside.

Downloads

Download data is not yet available.

References

Al-Anazi, K. A., and Al-Jasser, A. M. (2014). Infections caused by Stenotrophomonas maltophilia in recipients of hematopoietic stem cell transplantation. Front. Oncol. 4:232. doi: 10.3389/fonc.2014.00232

Botana-Rial, M., Leiro-Fernandez, V., Nunez-Delgado, M., Alvarez-Fernandez, M., Otero-Fernandez, S., Bello-Rodriguez, H., et al. (2016). A pseudooutbreak of Pseudomonas putida and Stenotrophomonas maltophilia in a bronchoscopy unit. Respiration 92, 274–278. doi: 10.1159/0004 49137.

Brooke, J. S. (2012). Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin. Microbiol. Rev. 25, 2–41. doi: 10.1128/CMR.00019-11.

Brooke, J.S. (2014). New strategies against Stenotrophomonas maltophilia: a serious worldwide intrinsically drug-resistant opportunistic pathogen. 12, 1–4. doi: 10.1586/14787210.2014.864553.

Calvopina, K., Avison, M.B., (2018). Disruption of mpl activates beta-lactamase production in Stenotrophomonas maltophilia and Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 62 (8), e00638–e00718.

Chang, L. L., Lin, H. H., Chang, C. Y., and Lu, P. L. (2007). Increased incidence of class 1 integrons in trimethoprim/sulfamethoxazole-resistant clinical isolates of Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 59, 1038–1039. doi: 10.1093/jac/dkm034.

Crossman, L. C., Gould, V. C., Dow, J. M., Vernikos, G. S., Okazaki, A., Sebaihia, M., et al. (2008). The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol. 9:R74. doi: 10.1186/gb-2008-9-4-r74.

Cruz-Córdova, A., Mancilla-Rojano, J., Luna-Pineda, V. M., Escalona-Venegas, G., Cázares-Domínguez, V., Ormsby, C., ... & Xicohtencatl-Cortes, J. (2020). Molecular epidemiology, antibiotic resistance, and virulence traits of Stenotrophomonas maltophilia strains associated with an outbreak in a Mexican tertiary care hospital. Frontiers in cellular and infection microbiology, 10, 50.

Falagas, M. E., Kastoris, A. C., Vouloumanou, E. K., Rafailidis, P. I., Kapaskelis, A. M. & Dimopoulos, G. (2009). Attributable mortality of Stenotrophomonas maltophilia infections: a systematic review of the literature. Future Microbiol 4, 1103–1109.

Flores-Treviño, S., Gutierrez-Ferman, J. L., Morfín-Otero, R., Rodríguez-Noriega, E., Estrada-Rivadeneyra, D., Rivas-Morales, C., ... & Garza-Gonzalez, E. (2014). Stenotrophomonas maltophilia in Mexico: antimicrobial resistance, biofilm formation and clonal diversity. Journal of medical microbiology, 63(11), 1524-1530.‏

Gulcan, H., Kuzucu, C., and Durmaz, R. (2004). Nosocomial Stenotrophomonas maltophilia cross-infection: three cases in newborns. Am. J. Infect. Control 32, 365–368. doi: 10.1016/j.ajic.2004.07.003.

Guyot, A., Turton, J. F., and Garner, D. (2013). Outbreak of Stenotrophomonas maltophilia on an intensive care unit. J. Hosp. Infect. 85, 303–307. doi: 10.1016/j.jhin.2013.09.007.

Han, L., Zhang, R. M., Jia, L., Bai, S. C., Liu, X. W., Wei, R., ... & Sun, J. (2020). Diversity of L1/L2 genes and molecular epidemiology of high-level carbapenem resistance Stenotrophomonas maltophilia isolates from animal production environment in China. Infection, Genetics and Evolution, 86, 104531.‏

Hu, R.-M., Huang, K.-J., Wu, L.-T., Hsiao, Y.-J., and Yang, T.-C. (2008). Induction of L1 and L2 β-lactamases of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 52, 1198–1200. doi: 10.1128/AAC.00682-07.

Huang, Y. W., Lin, C. W., Hu, R. M., Lin, Y. T., Chung, T. C., & Yang, T. C. (2010). AmpN-AmpG operon is essential for expression of L1 and L2 β-lactamases in Stenotrophomonas maltophilia. Antimicrobial agents and chemotherapy, 54(6), 2583-2589.‏

Huang, Y.-W., Liou, R.-S., Lin, Y.-T., Huang, H.-H., and Yang, T.-C. (2014). A linkage between SmeIJK efflux pump, cell envelope integrity, and σEmediated envelope stress response in Stenotrophomonas maltophilia. PLoS One 9:e111784. doi: 10.1371/journal.pone.0115743.

Li, X. Z., Zhang, L., Mckay, G. A., and Poole, K. (2003). Role of the acetyltransferase AAC(6’)-Iz modifying enzyme in aminoglycoside resistance in Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 51, 803–811. doi: 10.1093/jac/dkg148.

Mercier-Darty, M., Royer, G., Lamy, B., Charron, C., Lemenand, O., Gomart, C., ... & Decousser, J. W. (2020). Comparative whole-genome phylogeny of animal, environmental, and human strains confirms the genogroup organization and diversity of the Stenotrophomonas maltophilia complex. Applied and environmental microbiology, 86(10), e02919-19.‏

Mojica, M. F., Rutter, J. D., Taracila, M., Abriata, L. A., Fouts, D. E., PappWallace, K. M., et al. (2019). Population structure, molecular epidemiology, and beta-lactamase diversity among Stenotrophomonas maltophilia isolates in the United States. MBio 10, e00405–00419. doi: 10.1128/mBio.00405-19.

Okazaki, A., and Avison, M. B. (2007). Aph(3′ )-IIc, an aminoglycoside resistance determinant from Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 51, 359–360. doi: 10.1128/AAC.00795-06.

Paez, J. I. & Costa, S. F. (2008). Risk factors associated with mortality of infections caused by Stenotrophomonas maltophilia: a systematic review. J Hosp Infect 70, 101–108.

Pedrosa-Silva, F., Matteoli, F. P., Passarelli-Araujo, H., Olivares, F. L., & Venancio, T. M. (2022). Genome sequencing of the vermicompost strain Stenotrophomonas maltophilia UENF-4GII and population structure analysis of the S. maltophilia Sm3 genogroup. Microbiological Research, 255, 126923.‏

Sanchez, M. B. (2015). Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia. Front. Microbiol. 6:658. doi: 10.3389/fmicb.2015.00658.

Sanchez, P., Alonso, A., and Martinez, J. L. (2002). Cloning and characterization of SmeT, a repressor of the Stenotrophomonas maltophilia multidrug efflux pump SmeDEF. Antimicrob. Agents Chemother. 46, 3386–3393. doi: 10.1128/AAC.46.11.3386-3393.2002.

Vu-Thien, H., Dulot, C., Moissenet, D., Fauroux, B., & Garbarg-Chenon, A. (1999). Comparison of randomly amplified polymorphic DNA analysis and pulsed-field gel electrophoresis for typing of Moraxella catarrhalis strains. Journal of Clinical Microbiology, 37(2), 450-452.

Waite, T. D., Georgiou, A., Abrishami, M., and Beck, C. R. (2016). Pseudooutbreaks of Stenotrophomonas maltophilia on an intensive care unit in England. J. Hosp. Infect. 92, 392–396. doi: 10.1016/j.jhin.2015.12.014.

Wang, Y., He, T., Shen, Z., & Wu, C. (2018). Antimicrobial resistance in Stenotrophomonas spp. Microbiology Spectrum, 6(1), 6-1.‏

Wu, P. S., Lu, C. Y., Chang, L. Y., Hsueh, P. R., Lee, P. I., Chen, J. M., et al. (2006). Stenotrophomonas maltophilia bacteremia in pediatric patients–a 10- year analysis. J. Microbiol. Immunol. Infect. 39, 144–149.

Yu, D., Yin, Z., Li, B., Jin, Y., Ren, H., Zhou, J., Zhou, W., Liang, L., Yue, J., (2016). Gene flow, recombination, and positive selection in Stenotrophomonas maltophilia: mechanisms underlying the diversity of the widespread opportunistic pathogen. Genome 59, 1063–1075.

Published

19-09-2022

How to Cite

AL-Khafajy, S. Q. S., ALMuhana, A. S. J., & AL-sham, J. A. A. B. (2022). PCR detection of genes encoded antibiotic resistance in Stenotrophomonas maltophilia that isolated from clinical infections. International Journal of Health Sciences, 6(S8), 3319–3329. https://doi.org/10.53730/ijhs.v6nS8.12841

Issue

Section

Peer Review Articles

Most read articles by the same author(s)