Mechanisms of ginseng in pancreatic cancer metastasis

A network pharmacology analysis

https://doi.org/10.53730/ijhs.v7n3.14490

Authors

  • Shengzhang Lin Hangzhou City University, Hangzhou 310015, China
  • Zhaohong Wang Wenzhou Medical University, Wenzhou 325002, China
  • Xufan Cai Zhejiang Chinese Medical University, Hangzhou 310053, China

Keywords:

ginseng, ginsenoside Rg3, metastasis, network pharmacological analysis, pancreatic cancer

Abstract

It has been shown that ginsenosides can inhibit proliferation, migration, and invasion of pancreatic cancer (PC) cells, and promote apoptosis of PC cells. However, the potential mechanisms of ginseng in treating PC metastasis (PCM) have not been fully elucidated. In this study, we employed an integrated bioinformatics approach of network pharmacology analysis. By selecting common targets of diseases and drugs, a drug-component-target-disease network was constructed to analyze the biological functions and signaling pathways involved in the targets. A total of 6 PC samples were includedd, which were divided into primary PC group (PANC-1, n=3) and metastatic PC group. A total of 9263 differentially expressed genes (DEGs) and 14 PC target genes were identified. According to the network pharmacology analysis, we found that ginsenoside Rg3 was associated with the treatment of PCM and identified 6 potential targets. Among them, CD44, EGFR, KRAS, and PRNP were the main DEGs related to the treatment of PC by ginsenoside Rg3. These genes were mainly enriched in the Proteoglycans in Cancer pathway, and KRAS, EGFR, and CD44 were upregulated in the pathway, which may be affected by the ginsenoside Rg3. This provides a new direction for further research on the mechanisms of ginseng in PCM.

Downloads

Download data is not yet available.

References

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., ... & Sherlock, G. (2000). Gene ontology: tool for the unification of biology. Nature genetics, 25(1), 25-29.

Bezabeh, T., Ijare, O. B., Albiin, N., Arnelo, U., Lindberg, B., & Smith, I. C. (2009). Detection and quantification of d-glucuronic acid in human bile using 1 H NMR spectroscopy: relevance to the diagnosis of pancreatic cancer. Magnetic Resonance Materials in Physics, Biology and Medicine, 22, 267-275.

Boeck, S., Jung, A., Laubender, R. P., Neumann, J., Egg, R., Goritschan, C., ... & Heinemann, V. (2013). KRAS mutation status is not predictive for objective response to anti-EGFR treatment with erlotinib in patients with advanced pancreatic cancer. Journal of gastroenterology, 48, 544-548.

Ernawati, K., Nugroho, B. S., Suryana, C., Riyanto, A., & Fatmawati, E. (2022). The advantages of digital applications in public health services on automation era. International Journal of Health Sciences, 6(1), 174–186. https://doi.org/10.53730/ijhs.v6n1.3684

Fedoros, E. I., Orlov, A. A., Zherebker, A., Gubareva, E. A., Maydin, M. A., Konstantinov, A. I., ... & Anisimov, V. N. (2018). Novel water-soluble lignin derivative BP-Cx-1: identification of components and screening of potential targets in silico and in vitro. Oncotarget, 9(26), 18578.

Frazee, A. C., Pertea, G., Jaffe, A. E., Langmead, B., Salzberg, S. L., & Leek, J. T. (2014). Flexible isoform-level differential expression analysis with Ballgown. Biorxiv, 003665.

He, X., & Zhang, J. (2006). Why do hubs tend to be essential in protein networks?. PLoS genetics, 2(6), e88.

Hu, C. M., Tien, S. C., Hsieh, P. K., Jeng, Y. M., Chang, M. C., Chang, Y. T., ... & Lee, W. H. (2019). High glucose triggers nucleotide imbalance through O-GlcNAcylation of key enzymes and induces KRAS mutation in pancreatic cells. Cell metabolism, 29(6), 1334-1349.

Jiang, W., Zhang, Y., Kane, K. T., Collins, M. A., Simeone, D. M., di Magliano, M. P., & Nguyen, K. T. (2015). CD44 regulates pancreatic cancer invasion through MT1-MMP. Molecular Cancer Research, 13(1), 9-15.

Kanehisa, M., & Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research, 28(1), 27-30.

Kim, S. T., Lim, D. H., Jang, K. T., Lim, T., Lee, J., Choi, Y. L., ... & Park, J. O. (2011). Impact of KRAS mutations on clinical outcomes in pancreatic cancer patients treated with first-line gemcitabine-based chemotherapy. Molecular cancer therapeutics, 10(10), 1993-1999.

Klein, A. P., Lindström, S., Mendelsohn, J. B., Steplowski, E., Arslan, A. A., Bueno-de-Mesquita, H. B., ... & Kraft, P. (2013). An absolute risk model to identify individuals at elevated risk for pancreatic cancer in the general population. PloS one, 8(9), e72311.

Köninger, J., Giese, N. A., di Mola, F. F., Berberat, P., Giese, T., Esposito, I., ... & Friess, H. (2004). Overexpressed decorin in pancreatic cancer: potential tumor growth inhibition and attenuation of chemotherapeutic action. Clinical cancer research, 10(14), 4776-4783.

Lai, S., Wang, Y., Li, T., Dong, Y., Lin, Y., Wang, L., ... & Lin, C. (2022). N6-methyladenosine-mediated CELF2 regulates CD44 alternative splicing affecting tumorigenesis via ERAD pathway in pancreatic cancer. Cell & Bioscience, 12(1), 1-20.

Li, J., Li, Y., Chen, C., Guo, J., Qiao, M., & Lyu, J. (2022). Recent estimates and predictions of 5-year survival rate in patients with pancreatic cancer: A model-based period analysis. Frontiers in Medicine, 9, 1049136.

Li, W., Ma, Q., Liu, J., Han, L., Ma, G., Liu, H., ... & Wu, E. (2012). Hyperglycemia as a mechanism of pancreatic cancer metastasis. Frontiers in Bioscience-Landmark, 17(5), 1761-1774.

Liang, Y., Zhang, T., Jing, S., Zuo, P., Li, T., Wang, Y., ... & Wei, Z. (2021). 20 (S)-Ginsenoside Rg3 inhibits lung cancer cell proliferation by targeting EGFR-mediated Ras/Raf/MEK/ERK pathway. The American journal of Chinese medicine, 49(03), 753-765.

Liu, P., Wang, Y., & Li, X. (2019). Targeting the untargetable KRAS in cancer therapy. Acta Pharmaceutica Sinica B, 9(5), 871-879. https://doi.org/10.1016/j.apsb.2019.03.002

Lowenfels, A. B., & Maisonneuve, P. (2006). Epidemiology and risk factors for pancreatic cancer. Best practice & research Clinical gastroenterology, 20(2), 197-209. https://doi.org/10.1016/j.bpg.2005.10.001

Mizrahi, J. D., Surana, R., Valle, J. W., & Shroff, R. T. (2020). Pancreatic cancer. The Lancet, 395(10242), 2008-2020.

Moon, J. Y., Ryu, J. Y., & Cho, S. K. (2019). Nootkatone, an AMPK activator derived from grapefruit, inhibits KRAS downstream pathway and sensitizes non-small-cell lung cancer A549 cells to adriamycin. Phytomedicine, 63, 153000. https://doi.org/10.1016/j.phymed.2019.153000

Nag, S. A., Qin, J. J., Wang, W., Wang, M. H., Wang, H., & Zhang, R. (2012). Ginsenosides as anticancer agents: in vitro and in vivo activities, structure–activity relationships, and molecular mechanisms of action. Frontiers in pharmacology, 3, 25.

Oh, J., Yoon, H. J., Jang, J. H., Kim, D. H., & Surh, Y. J. (2019). The standardized Korean Red Ginseng extract and its ingredient ginsenoside Rg3 inhibit manifestation of breast cancer stem cell–like properties through modulation of self-renewal signaling. Journal of Ginseng Research, 43(3), 421-430. https://doi.org/10.1016/j.jgr.2018.05.004

Pan, H., Yang, L., Bai, H., Luo, J., & Deng, Y. (2022). Ginsenoside Rg3 increases gemcitabine sensitivity of pancreatic adenocarcinoma via reducing ZFP91 mediated TSPYL2 destabilization. Journal of Ginseng Research, 46(5), 636-645. https://doi.org/10.1016/j.jgr.2021.08.004

Philip, P. A., Lacy, J., Portales, F., Sobrero, A., Pazo-Cid, R., Mozo, J. L. M., ... & Hammel, P. (2020). Nab-paclitaxel plus gemcitabine in patients with locally advanced pancreatic cancer (LAPACT): a multicentre, open-label phase 2 study. The lancet Gastroenterology & hepatology, 5(3), 285-294.

Rawla, P., Sunkara, T., & Gaduputi, V. (2019). Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World journal of oncology, 10(1), 10.

Sheng, S., Wang, J., Wang, L., Liu, H., Li, P., Liu, M., ... & Su, W. (2014). Network pharmacology analyses of the antithrombotic pharmacological mechanism of Fufang Xueshuantong Capsule with experimental support using disseminated intravascular coagulation rats. Journal of ethnopharmacology, 154(3), 735-744. https://doi.org/10.1016/j.jep.2014.04.048

Shinkai, K., Akedo, H., Mukai, M., Imamura, F., Isoai, A., Kobayashi, M., & Kitagawa, I. (1996). Inhibition of in vitro tumor cell invasion by ginsenoside Rg3. Japanese Journal of Cancer Research, 87(4), 357-362.

Song, J., Park, S., Oh, J., Kim, D., Ryu, J. H., Park, W. C., ... & Jin, E. J. (2020). NUDT7 loss promotes KrasG12D CRC development. Cancers, 12(3), 576.

Suker, M., Beumer, B. R., Sadot, E., Marthey, L., Faris, J. E., Mellon, E. A., ... & Koerkamp, B. G. (2016). FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis. The Lancet Oncology, 17(6), 801-810.

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249.

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., ... & Mering, C. V. (2019). STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic acids research, 47(D1), D607-D613.

Tang, X. P., Tang, G. D., Fang, C. Y., Liang, Z. H., & Zhang, L. Y. (2013). Effects of ginsenoside Rh2 on growth and migration of pancreatic cancer cells. World Journal of Gastroenterology: WJG, 19(10), 1582.

Verma, H. K., Kampalli, P. K., Lakkakula, S., Chalikonda, G., Bhaskar, L. V., & Pattnaik, S. (2019). A retrospective look at anti-EGFR agents in pancreatic cancer therapy. Current Drug Metabolism, 20(12), 958-966.

Wang, Y., Wang, Y., Ren, Y., Zhang, Q., Yi, P., & Cheng, C. (2022). Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. In Seminars in cancer biology (Vol. 86, pp. 542-565). Academic Press. https://doi.org/10.1016/j.semcancer.2022.02.010

Weber, C. K., Sommer, G., Michl, P., Fensterer, H., Weimer, M., Gansauge, F., ... & Gress, T. M. (2001). Biglycan is overexpressed in pancreatic cancer and induces G1-arrest in pancreatic cancer cell lines. Gastroenterology, 121(3), 657-667. https://doi.org/10.1053/gast.2001.27222

Wei, J., Hu, M., Huang, K., Lin, S., & Du, H. (2020). Roles of proteoglycans and glycosaminoglycans in cancer development and progression. International journal of molecular sciences, 21(17), 5983.

Wei, X., Su, F., Su, X., Hu, T., & Hu, S. (2012). Stereospecific antioxidant effects of ginsenoside Rg3 on oxidative stress induced by cyclophosphamide in mice. Fitoterapia, 83(4), 636-642. https://doi.org/10.1016/j.fitote.2012.01.006

Xiang, Y., Guo, Z., Zhu, P., Chen, J., & Huang, Y. (2019). Traditional Chinese medicine as a cancer treatment: modern perspectives of ancient but advanced science. Cancer medicine, 8(5), 1958-1975.

Zhou, Q., Zhang, Q., Wang, K., Huang, T., Deng, S., Wang, Y., & Cheng, C. (2022). Anti-rheumatic drug-induced hepatitis B virus reactivation and preventive strategies for hepatocellular carcinoma. Pharmacological Research, 178, 106181. https://doi.org/10.1016/j.phrs.2022.106181

Published

08-10-2023

How to Cite

Lin, S., Wang, Z., & Cai, X. (2023). Mechanisms of ginseng in pancreatic cancer metastasis: A network pharmacology analysis. International Journal of Health Sciences, 7(3), 67–75. https://doi.org/10.53730/ijhs.v7n3.14490

Issue

Section

Peer Review Articles