Benefits of concurrent endurance-strength training to increase the efficiency of fat loss: what do studies say?

https://doi.org/10.53730/ijhs.v8nS1.14781

Authors

  • Djamel Eddine Recham University of Bouira, Algeria, Laboratory of Modern Sciences in Physical and Sports Activities
  • Khaled Baouche University of Bouira, Algeria, Laboratory of the Multiple Research Program in Sports Sciences and Human Movement

Keywords:

concurrent training, endurance training, strength training, fat Loss

Abstract

According to many studies, concurrent training has many benefits for the general fitness of the body, especially fat Loss.  In fact, this article include a set of elements that explain the benefits of concurrent endurance-strength training in improving the efficiency of fat Loss, Starting with clarifying the effects of concurrent training on physical fitness, then understanding the balance between Intensity and volume in fat-reducing training, understanding the mechanism of fat metabolism in Concurrent training, as well as the benefits of endurance and strength training, and finally dealing with  the benefits of improving Concurrent endurance-strength training  by using the Periodization.

Downloads

Download data is not yet available.

References

Azócar-Gallardo, J., Ramirez-Campillo, R., Afonso, J., Sá, M., Granacher, U., González-Rojas, L., Ojeda-Aravena, A., & García-García, J. M. (2022). Overweight and Obese Adult Patients Show Larger Benefits from Concurrent Training Compared with Pharmacological Metformin Treatment on Insulin Resistance and Fat Oxidation. International Journal of Environmental Research and Public Health, 19(21), 14331. https://doi.org/10.3390/ijerph192114331

Barber, J. L., Cai, G., Robbins, J. M., Rao, P., Mi, M., Ghosh, S., Clish, C., Katz, D. H., Gerszten, R. E., Bouchard, C., & Sarzynski, M. A. (2022). Exercise Training-Induced Change in Lipid are Associated with Change in Circulating Protein and Metabolites. Medicine & Science in Sports & Exercise, 54(9S), 250–251. https://doi.org/10.1249/01.mss.0000878156.71301.7f

Botella, J., Schytz, C. T., Pehrson, T. F., Hokken, R., Laugesen, S., Aagaard, P., Suetta, C., Christensen, B., Ørtenblad, N., & Nielsen, J. (2023). Increased mitochondrial surface area and cristae density in the skeletal muscle of strength athletes. The Journal of Physiology, 601(14), 2899–2915. https://doi.org/10.1113/jp284394

Brun, J. F., Myzia, J., Varlet-Marie, E., Mercier, J., & Raynaud de Mauverger, E. (2022). The weight-lowering effect of low-intensity endurance training targeted at the level of maximal lipid oxidation (LIPOX max) lasts for more than 8 years, and is associated with improvements in body composition and blood pressure. Science & Sports, 37(7), 603–609. https://doi.org/10.1016/j.scispo.2022.03.002

D’Alleva, M., Giovanelli, N., Graniero, F., Billat, V. L., Fiori, F., Marinoni, M., Parpinel, M., & Lazzer, S. (2023). Effects of 24-week Polarized Training vs. Threshold Training in Obese Male Adults. International Journal of Sports Medicine. https://doi.org/10.1055/a-2123-0851

de Hoyo Lora, M., & Arrones, L. S. (2021). Programming and Periodisation for Team Sports. Resistance Training Methods, 237–258. https://doi.org/10.1007/978-3-030-81989-7_13

Delgado-Floody, P., Chirosa-Ríos, L., Caamaño-Navarrete, F., Valdés-Badilla, P., Herrera-Valenzuela, T., Monsalves-Álvarez, M., Núñez-Espinosa, C., Castro-Sepulveda, M., Guzmán-Muñoz, E., Andrade, D. C., & Álvarez, C. (2022). Concurrent training and interindividual response in women with a high number of metabolic syndrome risk factors. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.934038

Leo, V. D., Lawless, C., Roussel, M. P., Gomes, T. B., Gorman, G. S., Russell, O. M., Tuppen, H. A. L., Duchesne, E., & Vincent, A. E. (2023). Strength training rescues mitochondrial dysfunction in skeletal muscle of patients with myotonic dystrophy type 1. . medRxiv. https://doi.org/10.1101/2023.01.20.23284552

Fyfe, Jackson. (2016). Adaptation to Concurrent Training: Role of Endurance Training Intensity. PhD thesis, Victoria University. https://vuir.vu.edu.au/id/eprint/32399

Gao, J., & Yu, L. (2023). Effects of concurrent training sequence on VO2max and lower limb strength performance: A systematic review and meta-analysis. Frontiers in physiology, 14, 1072679. https://doi.org/10.3389/fphys.2023.1072679

Garibotti, M. C., & Perry, C. G. (2023). Strength athletes and mitochondria: it’s about ‘time.’ The Journal of Physiology, 601(14), 2753–2754. https://doi.org/10.1113/jp284856

Guzzoni, V., Sanches, A., Costa, R., de Souza, L. B., Firoozmand, L. T., de Abreu, I. C. M. E., Guerra, J. F. D. C., Pedrosa, M. L., Casarini, D. E., Marcondes, F. K., & Cunha, T. S. (2022). Stress-Induced Cardiometabolic Perturbations, Increased Oxidative Stress and ACE/ACE2 Imbalance are Improved by High-Volume Endurance Training in Rats. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4121004

Klomklorm, A., Ruangthai, R., Vaithanomsat, P., Sukatta, U., & Phoemsapthawee, J. (2020). Concurrent training and Eri silkworm pupae ingestion improve resting and exercise fat oxidation and energy expenditure in obese adults. Journal of exercise rehabilitation, 16(5), 467–479. https://doi.org/10.12965/jer.2040682.341

MacLeod, B. (2023). Exploring mitochondrial morphology in skeletal muscle: implications for highly trained individuals. The Journal of Physiology, 601(14), 2769–2770. https://doi.org/10.1113/jp284873

Markov, A., Hauser, L., & Chaabene, H. (2022). Effects of Concurrent Strength and Endurance Training on Measures of Physical Fitness in Healthy Middle-Aged and Older Adults: A Systematic Review with Meta-Analysis. Sports Medicine, 53(2), 437–455. https://doi.org/10.1007/s40279-022-01764-2

Medeiros, L. H., Sandbakk, S. B., Bertazone, T. M., & Bueno Júnior, C. R. (2020, February 21). Comparison of Periodization Models of Concurrent Training in Recreationally Active Postmenopausal Women. Journal of Strength and Conditioning Research, 36(4), 977–983. https://doi.org/10.1519/jsc.0000000000003559

Mesquita, P. H. C., Godwin, J. S., Ruple, B. A., Sexton, C. L., McIntosh, M. C., Mueller, B. J., Osburn, S. C., Mobley, C. B., Libardi, C. A., Young, K. C., Gladden, L. B., Roberts, M. D., & Kavazis, A. N. (2023). Resistance training diminishes mitochondrial adaptations to subsequent endurance training in healthy untrained men. The Journal of physiology, 601(17), 3825–3846. https://doi.org/10.1113/JP284822

Myzia, J., Brun, J. F., Varlet-Marie, E., Bui, G., Raynaud De Mauverger, E., & Mercier, J. (2022). Endurance training minimizing carbohydrate oxidation by targeting the optimal level of fat/carbohydrate oxidation ratio (OLORFOX)? Science & Sports, 37(7), 624–628. https://doi.org/10.1016/j.scispo.2022.03.003

Parastesh, M., Saremi, A., Hashemi, Y., Ramezani, S., & Shavandi, N. (2022). The effect of concurrent endurance-resistance training on serum testosterone levels, body composition, muscular strength and international index of erectile function in older men. Advances in Rehabilitation, 36(1), 1-10. https://doi.org/10.5114/areh.2022.113350

Patoz, A., Lussiana, T., Breine, B., Mourot, L., Gindre, C., & Hébert-Losier, K. (2023). Concurrent endurance training with either plyometric or dynamic body-weight training both improve running economy with minimal or no changes in running biomechanics. Sports Biomechanics, 1–18. https://doi.org/10.1080/14763141.2023.2200403

Prieto-González, P., & Sedlacek, J. (2022, August 29). Effects of Running-Specific Strength Training, Endurance Training, and Concurrent Training on Recreational Endurance Athletes’ Performance and Selected Anthropometric Parameters. International Journal of Environmental Research and Public Health, 19(17), 10773. https://doi.org/10.3390/ijerph191710773

Rashti, B., Mehrabani, J., Damirchi, A., & Babaei, P. (2019). The influence of concurrent training intensity on serum irisin and abdominal fat in postmenopausal women. Menopausal Review, 18(3), 166–173. https://doi.org/10.5114/pm.2019.90810

Reljic, D., Frenk, F., Herrmann, H. J., Neurath, M. F., & Zopf, Y. (2021). Effects of very low volume high intensity versus moderate intensity interval training in obese metabolic syndrome patients: a randomized controlled study. Scientific reports, 11(1), 2836. https://doi.org/10.1038/s41598-021-82372-4

Reljic, D., Frenk, F., Herrmann, H. J., Neurath, M. F., & Zopf, Y. (2020). Low-volume high-intensity interval training improves cardiometabolic health, work ability and well-being in severely obese individuals: a randomized-controlled trial sub-study. Journal of translational medicine, 18(1), 419. https://doi.org/10.1186/s12967-020-02592-6

Seipp, D., Quittmann, O. J., Fasold, F., & Klatt, S. (2023). Concurrent training in team sports: A systematic review. International Journal of Sports Science & Coaching, 18(4), 1342-1364. https://doi.org/10.1177/17479541221099846

Türk, Y., Theel, W., Kasteleyn, M. J., Franssen, F. M. E., Hiemstra, P. S., Rudolphus, A., Taube, C., & Braunstahl, G. J. (2017). High intensity training in obesity: a Meta-analysis. Obesity science & practice, 3(3), 258–271. https://doi.org/10.1002/osp4.109

Turner, A., & Comfort, P. (2022). Advanced strength and conditioning (2nd ed.). Routledge.

Weiss, A., Alack, K., Klatt, S., Zukunft, S., Schermuly, R., Frech, T., Mooren, F. C., & Krüger, K. (2022). Sustained Endurance Training Leads to Metabolomic Adaptation. Metabolites, 12(7), 658. https://doi.org/10.3390/metabo12070658

Zhang, H., Tong, T. K., Kong, Z., Shi, Q., Liu, Y., & Nie, J. (2021). Exercise training-induced visceral fat loss in obese women: The role of training intensity and modality. Scandinavian journal of medicine & science in sports, 31(1), 30–43. https://doi.org/10.1111/sms.13803

Published

01-03-2024

How to Cite

Recham, D. E., & Baouche, K. (2024). Benefits of concurrent endurance-strength training to increase the efficiency of fat loss: what do studies say?. International Journal of Health Sciences, 8(S1), 359–365. https://doi.org/10.53730/ijhs.v8nS1.14781

Issue

Section

Peer Review Articles