A review on cardio-hepatic toxic macrolide: Azithromycin

https://doi.org/10.53730/ijhs.v8nS1.14966

Authors

  • Aparna Sadhu Assistant Teacher (Life Sciences), Lowa Dibakar Vidyamandir High School, West Bengal, India
  • Dipsikha Manna Department of Physiology, Faculty, Belur Sramajibi Swasthya Prakalpa Samity, Belur, Howrah, West Bengal, India
  • Susmita Datta Department of Microbiology, Faculty, Belur Sramajibi Swasthya Prakalpa Samity, Belur, Howrah, West Bengal, India
  • Sarmishtha Chatterjee Department of Anatomy and Physiology, Vice Principal, Belur Sramajibi Swasthya Prakalpa Samity, Belur, Howrah, West Bengal, India

Keywords:

Azithromycin, Macrolide, QT interval, DILI, Hepatotoxicity

Abstract

Drug-induced cardio-hepatic toxicity is the foremost cause of heart and liver damage, with the use of antimicrobial-agent. Most patients, although recuperate after discontinuing the offending-agent, severe cases may consequence in progressive disease. Azithromycin is a rare cause of idiosyncratic drug-induced cardiac and liver injury. This semi-synthetic macrolide has a substantial potency against both gram-positive and gram-negative organisms due to the presence of a nitrogen atom in its ring. A search was performed in PubMed, Scopus, Google Scholar and Research Gate. Azithromycin divulges a lower number of interactions with proteins, whereas, QTc prolongation with torsades de pointes (Tdp) and polymorphic ventricular tachycardia are communally occurred in cardiovascular system, due to dysregulation of intracellular [Ca++] via the Na+-Ca++ exchanger activity, leading to delayed after depolarizations.  In addition azithromycin-induced liver injury was more cholestatic in nature, with an ALT/ALP ratio of <2 ULN, contributing vanishing bile duct syndrome. This review hereafter revealed the adverse effect of azithromycin in relation with cardio – hepatic toxicity.

Downloads

Download data is not yet available.

References

Aspromonte, N., Monitillo, F., Puzzovivo, A., Valle, R., Caldarola, P., Iacoviello, M. (2014). Modulation of cardiac cytochrome P450 in patients with heart failure. Expert Opin Drug Metab Toxicol, 10 (3), 327-339

Bessone, F., Hernández, N., Tanno, M. E., Roma, M.G. (2021). Drug-Induced Vanishing Bile Duct Syndrome: From Pathogenesis to Diagnosis and Therapeutics. Semin Liver Dis, 41 (03), 331-348

Bloomingdale, P., Housand, C., Apgar, B J. F., Millard, jL., Mager, D. E., Burke, J. M., Shah, D. K.(2017). Quantitative systems toxicology. Curr Opin Toxicol, 4, 79-87

Cambell, K. B. (2022). Chapter 10 – Antimicrobial agents and torsades de pointes, Editor (s): James E. Tisdale, Torsades de Pointes, Academic Press, 231-266

Chalasani, N. P., Hayashi, P. H., Bonkovsky, H. L., Navarro, V. J., Lee, W. M., Fontana, R. J. (2014). ACG Clinical Guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. Am J Gastroenterol, 109, 950–966

Chalasani, N., Bonkovsky, H. L., Fontana, R., Lee, W., Stolz, A., Talwalkar, J., Reddy, K. R,., Watkins, P. B., Navarro, V., Barnhart, H., Gu, J., Serrano, J. (2015). United States Drug Induced Liver Injury Network. Features and Outcomes of 899 Patients With Drug-Induced Liver Injury: The DILIN Prospective Study. Gastroenter, 148 (7), 1340-52.e7

Chandrupatla, S., Demetris, A. J., Rabinovitz, M. (2002). Azithromycin-induced intrahepatic cholestasis. Dig Dis Sci, 47, 2186–2188

Chitturi, S., Farrell, G. C. (2001). Drug-induced cholestasis. Semin Gastrointest Dis, 12, 113-124

Chorin, E., Wadhwani, L., Magnani, S., Dai, M., Shulman, E., Nadeau-Routhier, C., Knotts, R., Bar-Cohen, R., Kogan, E., Barbhaiya, C., Aizer, A., Holmes, D., Bernstein, S., Spinelli, M., Park, D. S., Stefano, C., Chinitz, L. A., Jankelson, L. (2020). QT interval prolongation and torsade de pointes in patients with COVID-19 treated with hydroxychloroquine/azithromycin. Heart Rhythm, 17 (9), 1425–1433.

Das, B. K. (2011). Azithromycin induced hepatocellular toxicity and hepatic encephalopathy in asymptomatic dilated cardiomyopathy. Indian J Pharmacol, 43 (6), 736–737

Dawkins, M., Fishkin, T., Gavriel Berman, G., Wang, A., Saidman, J., Partiula, B. (2023). Severe Azithromycin-Induced Liver Injury With Vanishing Bile Duct Syndrome Necessitating Liver Transplantation. . AIM Clinical Cases, 2, e230251

Derendorf, H. (2020). Excessive lysosomal ion-trapping of hydroxychloroquine and azithromycin. International Journal of Antimicrobial Agents, 55 (6), 106007

Devarbhavi, H. (2012). An update on drug-induced liver injury. J Clin Exp Hepatol, 2, 247-259

Dhar, R., Talwar, D., Singh, V., Dumra, H., Rajan, S., Jindal, S.K. (2021). Expert recommendations on the role of macrolides in chronic respiratory diseases. Lung India, 38 (2), 174-182

Drew, B. J., Ackerman, M.J., Funk, M., Gibler, W. B., Kligfield, P., Menon, V., Philippides, G. J., Roden, D. M., Zareba, W. (2010). Prevention of torsade de pointes in hospital settings: a scientific statement from the American Heart Association and the American College of Cardiology Foundation. Cir, 121 (8), 1047–1060

Drew, R. H., Gallis, H. A. (1992). Azithromycin--spectrum of activity, pharmacokinetics, and clinical applications. Pharmacotherapy, 12 (3), 61-73

Dzhura, I., Wu, Y., Colbran, R., Balser, J., Anderson, M. (2000). Calmodulin kinase determines calciumdependent facilitation of L-type calcium channels. Nature Cell Biol, 2,173–177

Elbekai, R. H., El-Kadi, A. O. S. (2006). Cytochrome P450 enzymes: central players in cardiovascular health and disease. Pharmacol Ther, 112 (2), 564-587

Farag, N. E., El-Kherbetawy, M. K., Ismail, H. M., Abdelrady, A. M., Toraih, E. A., Abdelbasset, W. K., Lashine, R. M., EL-dosoky, M., Abed, S. Y., Ibraheem, K. M., Fawzy, M. S., Zaitone, S. A. (2021). Differential Effect of Three Macrolide Antibiotics on Cardiac Pathology and Electrophysiology in a Myocardial Infarction Rat Model: Influence on Sodium Nav1.5 Channel Expression. Pharmaceuticals, 14, 597

Fisher, K., Vuppalanchi, R., Saxena, R. (2015). Drug-Induced Liver Injury. Arch Pathol Lab Med, 139 (7), 876-887

Fohnera, A. E., Sparreboomb, A., Altmana, R. B., Klein, T. E. (2017). PharmGKB summary: macrolide antibiotic pathway, pharmacokinetics/pharmacodynamics. Pharmacogenet Genomics, 27 (4), 164–167

Francis, P., Navarro, V. J. (2022). Drug-Induced Hepatotoxicity. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing

Giudicessa, J. R., Ackerman, M. J. (2012). Azithromycin and risk of sudden cardiac death: Guilty as charged or falsely accused? Cleveland Clinic Journal of Medicine, 8 (9), 539-544

Han, B., Sheng, Y., Wang, L., Feng, H., Hou, X., Li, Y. (2017). Intrahepatic cholestasis of pregnancy or azithromycin-induced intrahepatic cholestasis. Med (Baltimore), 96 (52), e9346

Han, Y., Zhang, J., Hu, C. Q., Zhang, X., Ma, B., Zhang, P. (2019). In Silico ADME and Toxicity Prediction of Ceftazidime and its Impurities. Front Pharmacol, 10, 434. 10.3389/fphar.2019.00434

He, X. J., Zhao, L. M., Qiu, F., Sun, Y. X., Li-Ling, J. (2009). Influence of ABCB1 gene polymorphisms on the pharmacokinetics of azithromycin among healthy Chinese Han ethnic subjects. Pharmacol Rep, 61, 843-850

Howell, B. A., Yang, Y., Kumar, R., Woodhead, J. L., Harrill, A. H., Clewell, H. L., Andersen, M. E., Siler, S. Q., Watkins, P. B. (2012). In vitro to in vivo extrapolation and species response comparisons for drug‐induced liver injury (DILI) using DILIsymTM: a mechanistic, mathematical model of DILI. J Pharmacokinet Pharmacodyn, 39, 527‐541

Huang, B., Wu, C., Hsia, C., Yin Chen, C. (2007). Azithromycin-induced torsade de pointes. Pacing Clin Electrophysiol, 30, 1579–1582

Idkaidek, N. M., Naji Najib, N., Salem, I., Jilani, J. (2014). Physiologically-Based IVIVC of Azithromycin. Am J Pharmacol Sc,i 2 (6), 100-102

Ioannidis, J. P., Contopoulos-Ioannidis, D. G., Chew, P., Lau, J. (2001). Meta-analysis of randomized controlled trials on the comparative efficacy and safety of azithromycin against other antibiotics for upper respiratory tract infections. J Antimicrob Chemother, 48 (5), 677-689

Kallip, T., Payne, M. A. (1960). High Serum Transaminase Activity in Heart Disease: Circulatory Failure and Hepatic Necrosis. Cir, 21 (5), 646 – 660

Katarey, D., Verma, S. (2016). Drug-induced liver injury. Clin Med (Lond), 16 (6), s104-s109

Kezerashvili, A., Khattak, H., Barsky, A., Nazari, R. (2007). Azithromycin as a cause of QT-interval prolongation and torsade de pointes in the absence of other known precipitating factors. J Interven Car Electrophysiol, 18 (3), 243-246

Kryfti, M., Bartziokas, K., Papaioannou, A. I., Papadopoulos, A., Kostikas, K. (2013). Clinical effectiveness of macrolides in diseases of the airways: Beyond the antimicrobial effects. Pneumon, 26, 33-46

Kutlin, A., Roblin, P. M., Hammerschlag, M. R. (2002). Effect of prolonged treatment with azithromycin, clarithromycin, or levofloxacin on Chlamydia pneumoniae in acontinuous-infection model. Antimicrob Agents Chemother, 46, 409–412

Lalak, N. J., Morris, D.L. (1993). Azithromycin clinical pharmacokinetics. Clin Pharmacokinet, 25, 370-374

Lenz, K. D., Klosterman, K. E., Mukundan, H., Kubicek-Sutherland, J. Z. (2021). Macrolides: From Toxins to Therapeutics. Toxins, 13, 347

Lewis, J. H. (2013). Drug-Induced Liver Injury Throughout the Drug Development Life Cycle: Where We Have Been, Where We are Now, and Where We are Headed. Perspectives of a Clinical Hepatologist. Pharm Med, 27, 165–191

Li, M., Ramos, L. G. (2017). Drug-Induced QT Prolongation And Torsades de Pointes. P T, 42 (7), 473–477

Liang, R., Ramdass, A. (2022). Azithromycin-Induced Liver Injury in an Asthma Exacerbation Patient With Autoimmune Features. Cureus, 14 (5), e25447

LiverTox. (2012). Clinical and Research Information on DrugInduced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, Macrolide Antibiotics. https://www.ncbi.nlm.nih.gov/books/NBK547852/

Lockwood, A. M., Cole, S., Rabinovich, M. (2010). Azithromycin-induced liver injury. Am J Health Syst Pharm, 67, 810-814

Martinez, M. A., Vuppalanchi, R., Fontana, R. J., Stolz, A., Kleiner, D. E., Hayashi, P. H., Gu, J., Hoofnagle, J. H., Chalasani N. (2015). Clinical and Histologic Features of Azithromycin-Induced Liver Injury. Clinical Gastroenterology and Hepatology, 13, 369–376

Mitchell, G. F., Jeron, A., Koren, G. (1998). Measurement of heart rate and Q-T interval in the conscious mouse. Am J Physiol, 274, H747–H751

Moy, B. T., Dojki, F. K., Scholes, J. V., Hoffman, M. G. (2015). Azithromycin-induced cholestatic hepatitis. Conn Med, 79, 213–215

Ong, C. E., Pan, Y., Mak, J. W. (2017). The roles of cytochromes P450 in vascular biology and cardiovascular homeostasis. Int J Clin Exp Med, 10 (1), 1624-1636

Park, H. J., Seo, K. II., Yong, C. II. (2020). Liver transplantation for azithromycin-induced severe liver injury. Korean J Transplant, 34 (4), DOI:10.4285/kjt.20.0017

Parnham, M. J., Haber, V. E., Giamarellos-Bourboulis, E. J., Perletti, G., Verleden, G. M., Vos, R. (2014). Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther, 143(2), 225-245

Rao, G. A., Mann, J. R., Shoaibi, A., Bennett, C. L., Nahhas, G., Sutton, S. S., Jacob, S., Strayer, S. M. (2014). Azithromycin and levofloxacin use and increased risk of cardiac arrhythmia and death. Ann Fam Med, 12, 121–127

Ray, W. A., Murray, K. T., Hall, K., Arbogast, P. G., Stein, C. M. (2012). Azithromycin and the Risk of Cardiovascular Death. N Engl J Med, 366 (20), 1881-1890

Sandman, Z., Iqbal, O. A. (2024). Azithromycin. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing

Sharma, K., Mullangi, R.(2013). A concise review of HPLC, LC-MS and LC-MS/MS methods for determination of azithromycin in various biological matrices. Biomed Chromatogr, 27 (10), 1243-1258

Shoda, L., Woodhead, J. L., Siler, S. Q, Watkins, P. B., Howell, B. A. (2014). Linking physiology to toxicity using DILIsym®, a mechanistic mathematical model of drug‐induced liver injury. Biopharm Drug Dispos, 35, 33‐49

Sugie, M., Asakura, E., Zhao,Y. L., Torita, S., Nadai, M., Baba, K., Kitaichi, K., Takagi, K., Takagi, K., Hasegawa, T. (2004). Possible Involvement of the Drug Transporters P Glycoprotein and Multidrug Resistance-Associated Protein Mrp2 in Disposition of Azithromycin. Antimicrobial Agents and Chemotherapy, 48 (3), 809–814

Suresh, B. K., Kastelik, J., Morjaria, J. B. (2013). Role of long term antibiotics in chronic respiratory diseases. Respir Med, 107, 800‑815

Swayze, E. E., Griffey, R. H., Bennett, C. F. (2007). 2.26 -Nucleic Acids (Deoxyribonucleic Acid and Ribonucleic Acid). Comprehensive Medicinal Chemistry II, 2, 1037-1052

Tsai, D., Jamal, J. A., Davis, J., Lipman, J., Roberts, J. (2015). Interethnic differences in pharmacokinetics of antibacterials. Clin Pharmacokinet, 54 (3), 243-260

Vial, T., Biour, M., Descotes, J., Trepo, C. (1997). Antibiotic-associated hepatitis: update from 1990. Ann Pharmacother, 31, 204-220

Viluksela, M., Vainio, P. J., Tuominen, R. K. (1996). Cytotoxicity of macrolide antibiotics in a cultured human liver cell line. J Antimicrob Chemother, 38, 465-473

Wong, K. M., Hosseinnejad, K., Palaparty, P., Ravakhah, K. (2021). Azithromycin-Induced Liver Injury in Legionnaires' Disease. Cureus, 13 (9), e17856

Woodhead, J. L., Brock, W. J., Roth, S. E., Shoaf, S. E., Brouwer, K. L. R., Church, R., Grammatopoulos, T. N., Stiles, L., Siler, S. Q., Howell, B. A., Mosedale, M., Watkins, P. B., Shoda, L. K. M. (2017). Application of a mechanistic model to evaluate putative mechanisms of tolvaptan drug‐induced liver injury and identify patient susceptibility factors. Toxicol Sci Off J Soc Toxicol, 155, 61‐74

Woodhead, J. L., Yang, K., Oldach, D., MacLauchlin, C., Fernandes, P., Watkins, P. B., Siler, S. Q., Howell, B. A. (2019). Analyzing the mechanisms behind macrolide antibiotic‐induced liver injury using quantitative systems toxicology modeling. Pharm Res, 36, 48

Wu, Y., Bi, W. T., Qu, L. P., Fan, J., Kong, X. J., J, C. C., Chen, X. M., Yao, F. J., Liu, L. J., Cheng, Y. J., Wu, S. H. (2023). Administration of macrolide antibiotics increases cardiovascular risk. Front Cardiovasc Med, 10, 1117254. doi: 10.3389/fcvm.2023.1117254

Yang, Y., Nadanaciva, S., Will, Y., Woodhead, J. L., Howell, B. A., Watkins, P. B., Siler, S. Q. (2015). MITOsym®: A Mechanistic, Mathematical Model of Hepatocellular Respiration and Bioenergetics. Pharm Res, 32, 1975–1992

Yang, Z., Prinsen, J. K., Bersell, K. R., Shen, W., Yermalitskaya, L., Sidorova, T., Luis, P. B., Hall, L., Zhang, W., Du, L., Milne, G., Tucker, P., George Jr, A. L., Campbell, C. M., Pickett, R. A., Shaffer, C. M., Chopra, N., Yang, T., Knollmann, C. B., Roden, D. M., Murray, K. T. (2017). Azithromycin Causes a Novel Proarrhythmic Syndrome. Circ Arrhythm Electrophysiol, 10 (4), doi:10.1161/CIRCEP.115.003560

Yap, Y.G., Camm, A. J. (2003). Drug-induced QT prolongation and torsades de pointes. Heart, 89 (11), 1363–1372

Zhang, H., Zou, J., Yan, X., Chen, J., Cao, X., Wu, J., Liu, Y., Wang, T. (2021). Marine-Derived Macrolides 1990–2020: An Overview of Chemical and Biological Diversity. Mar. Drugs, 19, 180

Zhang, M. Q., Zhang, J. P., Hu, C. Q. (2022). A Rapid Assessment Model for Liver Toxicity of Macrolides and an Integrative Evaluation for Azithromycin Impurities. Front Pharmacol, 13, 860702

Zuckerman, J. M. (2004). Macrolides and ketolides: azithromycin, clarithromycin, telithromycin. Infect Dis Clin North Am, 18 (3), 621–649

Zuckerman, J. M., Qamar, F., Bono, B. R. (2011). Review of macrolides (azithromycin, clarithromycin), ketolids (telithromycin) and glycylcyclines (tigecycline). Med Clin North Am, 95 (4), 761-791

Published

14-07-2024

How to Cite

Sadhu, A., Manna, D., Datta, S., & Chatterjee, S. (2024). A review on cardio-hepatic toxic macrolide: Azithromycin. International Journal of Health Sciences, 8(S1), 854–865. https://doi.org/10.53730/ijhs.v8nS1.14966

Issue

Section

Peer Review Articles