Paramedic and COVID-19 pandemic
Review article
Keywords:
COVID-19, Emergency Medical Services, EMS response, pandemic impact, service disruptions, crisis managementAbstract
Background: The COVID-19 pandemic has overwhelmed Emergency Medical Services (EMS) worldwide, resulting in increased call volumes, delays, and disruptions in service delivery. This study explores the impact of the pandemic on EMS operations and identifies key factors contributing to these challenges. Aim: The objective is to analyze the disruptions in EMS services caused by the COVID-19 pandemic, examining various factors that influenced response times, service quality, and overall EMS efficiency during the peak of the crisis. Methods: A narrative review methodology was employed to synthesize findings from existing literature on EMS response during the COVID-19 pandemic. Factors affecting EMS operations were categorized into three primary groups: EMS-related factors, social dynamics, and patient-related factors. The review focused on analyzing these factors' impacts on EMS calls, response times, and overall service delivery. Results: The study identified five key themes affecting EMS during the pandemic: (1) Increased volume of EMS calls, (2) Decreased response times, (3) Delays in ambulance dispatch, (4) Increased collateral mortality and morbidity among non-COVID-19 cases, and (5) Prolonged total time for ambulance calls. These disruptions were attributed to a combination of high call volumes, resource constraints, and operational challenges exacerbated by the pandemic.
Downloads
References
Gondi S, Beckman AL, Deveau N, et al. Personal protective equipment needs in the USA during the COVID-19 pandemic. Lancet. 2020; 395(10237):e90 https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7255297/. DOI: https://doi.org/10.1016/S0140-6736(20)31038-2
WHO. Clinical Management of COVID-19: Interim Guidance, 27 May 2020. World Health Organization; 2020. https://apps.who.int/iris/bitstream/handle/10665/332196/WHO-2019-nCoV-clinical-2020.5-eng.pdf
Zhang X, Tan Y, Ling Y, et al. Viral and host factors related to the clinical outcome of COVID-19. Nature. 2020. https://doi.org/10.1038/s41586-020-2355-0. DOI: https://doi.org/10.1038/s41586-020-2355-0
Zhang L, Jackson CB, Mou H, et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxiv. June 2020. doi:https://doi.org/10.1101/2020.06.12.148726 DOI: https://doi.org/10.1101/2020.06.12.148726
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323: 1061. https://doi.org/10.1001/jama.2020.1585. DOI: https://doi.org/10.1001/jama.2020.1585
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395: 1054. https://doi.org/10.1016/S0140-6736(20)30566-3. DOI: https://doi.org/10.1016/S0140-6736(20)30566-3
Guan W-J, Ni Z-Y, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382: 1708. https://doi.org/10.1056/NEJMoa2002032. DOI: https://doi.org/10.1056/NEJMoa2002032
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5. DOI: https://doi.org/10.1016/S0140-6736(20)30183-5
Mani VR, Kalabin A, Valdivieso SC, Murray-Ramcharan M, Donaldson B. At the epicenter of the American coronavirus outbreak - New York inner city hospital COVID-19 experience and current data: a retrospective analysis. J Med Internet Res. 2020. https://doi.org/10.2196/20548. DOI: https://doi.org/10.2196/preprints.20548
Cecconi M, Piovani D, Brunetta E, et al. Early predictors of clinical deterioration in a cohort of 239 patients hospitalized for Covid-19 infection in Lombardy, Italy. J Clin Med es. 2020; 9(5): 1548. https://doi.org/10.3390/jcm9051548. DOI: https://doi.org/10.3390/jcm9051548
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395(10223): 507-513. https://doi.org/10.1016/S0140-6736(20)30211-7. DOI: https://doi.org/10.1016/S0140-6736(20)30211-7
Zhang C, Gu J, Chen Q, et al. Clinical and epidemiological characteristics of pediatric SARS-CoV-2 infections in China: a multicenter case series. PLoS Med. 2020; 17(6):e1003130. https://doi.org/10.1371/journal.pmed.1003130. DOI: https://doi.org/10.1371/journal.pmed.1003130
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020; 180: 934. https://doi.org/10.1001/jamainternmed.2020.0994. DOI: https://doi.org/10.1001/jamainternmed.2020.0994
Imam Z, Odish F, Gill I, et al. Older age and comorbidity are independent mortality predictors in a large cohort of 1305 COVID-19 patients in Michigan, United States. J Intern Med. 2020. https://doi.org/10.1111/joim.13119. DOI: https://doi.org/10.1111/joim.13119
Ciceri F, Castagna A, Rovere-Querini P, et al. Early predictors of clinical outcomes of COVID-19 outbreak in Milan, Italy. Clin Immunol. 2020; 217:108509. https://doi.org/10.1016/j.clim.2020.108509. DOI: https://doi.org/10.1016/j.clim.2020.108509
Galloway JB, Norton S, Barker RD, et al. A clinical risk score to identify patients with COVID-19 at high risk of critical care admission or death: an observational cohort study. J Infect. 2020. https://doi.org/10.1016/j.jinf.2020.05.064. DOI: https://doi.org/10.1136/emj-2020-rcemabstracts.38
Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020; 369:m1966. https://doi.org/10.1136/bmj.m1966. DOI: https://doi.org/10.1136/bmj.m1966
Liang W, Liang H, Ou L, et al. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Intern Med. 2020. https://doi.org/10.1001/jamainternmed.2020.2033. DOI: https://doi.org/10.1001/jamainternmed.2020.2033
Duan J, Wang X, Chi J, et al. Correlation between the variables collected at admission and progression to severe cases during hospitalization among patients with COVID-19 in Chongqing. J Med Virol. 2020. https://doi.org/10.1002/jmv.26082. DOI: https://doi.org/10.1002/jmv.26082
Li Q, Cao Y, Chen L, et al. Hematological features of persons with COVID-19. Leukemia. 2020. https://doi.org/10.1038/s41375-020-0910-1. DOI: https://doi.org/10.1038/s41375-020-0910-1
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020; 8(5): 475-481. https://doi.org/10.1016/S2213-2600(20)30079-5. DOI: https://doi.org/10.1016/S2213-2600(20)30079-5
Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020; 323: 1574. https://doi.org/10.1001/jama.2020.5394. DOI: https://doi.org/10.1001/jama.2020.4031
CDC COVID-19 Response Team. Severe outcomes among patients with coronavirus disease 2019 (COVID-19) - United States, February 12-March 16, 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(12): 343-346. https://doi.org/10.15585/mmwr.mm6912e2. DOI: https://doi.org/10.15585/mmwr.mm6912e2
Palaiodimos L, Kokkinidis DG, Li W, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. 2020; 108:154262. https://doi.org/10.1016/j.metabol.2020.154262. DOI: https://doi.org/10.1016/j.metabol.2020.154262
Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020; 146: 110. https://doi.org/10.1016/j.jaci.2020.04.006. DOI: https://doi.org/10.1016/j.jaci.2020.04.006
Zhu Z, Cai T, Fan L, et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J Infect Dis. 2020; 95: 332-339. https://doi.org/10.1016/j.ijid.2020.04.041. DOI: https://doi.org/10.1016/j.ijid.2020.04.041
Price-Haywood EG, Burton J, Fort D, Seoane L. Hospitalization and mortality among black patients and white patients with Covid-19. N Engl J Med. 2020; 382: 2534. https://doi.org/10.1056/NEJMsa2011686. DOI: https://doi.org/10.1056/NEJMsa2011686
Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020; 368:m1091. https://doi.org/10.1136/bmj.m1091. DOI: https://doi.org/10.1136/bmj.m1091
Huang S, Wang J, Liu F, et al. COVID-19 patients with hypertension have more severe disease: a multicenter retrospective observational study. Hypertens Res. 2020. https://doi.org/10.1038/s41440-020-0485-2. DOI: https://doi.org/10.1038/s41440-020-0485-2
Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020;e3319. https://doi.org/10.1002/dmrr.3319. DOI: https://doi.org/10.1002/dmrr.3319
CDC. Coronavirus Disease 2019 (COVID-19). Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fneed-extra-precautions%2Fgroups-at-higher-risk.html. Published June 25, 2020. Accessed June 27, 2020.
Hernández-Garduño E. Obesity is the comorbidity more strongly associated for Covid-19 in Mexico. A case-control study. Obes Res Clin Pract. 2020. https://doi.org/10.1016/j.orcp.2020.06.001. DOI: https://doi.org/10.1016/j.orcp.2020.06.001
Wang Z, Du Z, Zhu F. Glycosylated hemoglobin is associated with systemic inflammation, hypercoagulability, and prognosis of COVID-19 patients. Diabetes Res Clin Pract. 2020; 164:108214. https://doi.org/10.1016/j.diabres.2020.108214. DOI: https://doi.org/10.1016/j.diabres.2020.108214
Mullen B. COVID-19 Clinical Guidance For the Cardiovascular Care Team. American College of Cardiology. https://www.acc.org//~/media/Non-Clinical/Files-PDFs-Excel-MS-Word-etc/2020/02/S20028-ACC-Clinical-Bulletin-Coronavirus.pdf. Published June 20, 2003. Accessed May 20, 2004.
Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020; 21(3): 335-337. https://doi.org/10.1016/S1470-2045(20)30096-6. DOI: https://doi.org/10.1016/S1470-2045(20)30096-6
Zhang L, Zhu F, Xie L, et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann Oncol. 2020; 31(7): 894-901. https://doi.org/10.1016/j.annonc.2020.03.296. DOI: https://doi.org/10.1016/j.annonc.2020.03.296
Tian J, Yuan X, Xiao J, et al. Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study. Lancet Oncol. 2020; 21: 893. https://doi.org/10.1016/S1470-2045(20)30309-0. DOI: https://doi.org/10.1016/S1470-2045(20)30309-0
Kuderer NM, Choueiri TK, Shah DP, et al. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet. 2020; 395(10241): 1907-1918. https://doi.org/10.1016/S0140-6736(20)31187-9. DOI: https://doi.org/10.1016/S0140-6736(20)31187-9
Mehta V, Goel S, Kabarriti R, et al. Case fatality rate of cancer patients with COVID-19 in a New York hospital system. Cancer Discov. 2020; 10: 935. https://doi.org/10.1158/2159-8290.CD-20-0516. DOI: https://doi.org/10.1158/2159-8290.CD-20-0516
Lee LYW, Cazier JB, Starkey T, et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study. Lancet. 2020; 395(10241): 1919-1926. https://doi.org/10.1016/S0140-6736(20)31173-9. DOI: https://doi.org/10.1016/S0140-6736(20)31173-9
Pereira MR, Mohan S, Cohen DJ, et al. COVID-19 in solid organ transplant recipients: initial report from the US epicenter. Am J Transplant. 2020; 20: 1800. https://doi.org/10.1111/ajt.15941. DOI: https://doi.org/10.1111/ajt.15941
Zhou Y, He Y, Yang H, et al. Development and validation a nomogram for predicting the risk of severe COVID-19: a multi-center study in Sichuan, China. PLoS One. 2020; 15(5):e0233328. https://doi.org/10.1371/journal.pone.0233328. DOI: https://doi.org/10.1371/journal.pone.0233328
Xie J, Covassin N, Fan Z, et al. Association between hypoxemia and mortality in patients with COVID-19. Mayo Clin Proc. 2020; 95(6): 1138-1147. https://doi.org/10.1016/j.mayocp.2020.04.006. DOI: https://doi.org/10.1016/j.mayocp.2020.04.006
Rubin GD, Ryerson CJ, Haramati LB, et al. The role of chest imaging in patient management during the COVID-19 pandemic: a multinational consensus statement from the Fleischner society. Radiology. 2020; 296: 172. https://doi.org/10.1148/radiol.2020201365. DOI: https://doi.org/10.1148/radiol.2020201365
Wong HYF, Lam HYS, Fong AH-T, et al. Frequency and distribution of chest radiographic findings in COVID-19 positive patients. Radiology. 2019;201160. https://doi.org/10.1148/radiol.2020201160. DOI: https://doi.org/10.1148/radiol.2020201160
Chung M, Bernheim A, Mei X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology. 2020; 295(1): 202-207. https://doi.org/10.1148/radiol.2020200230. DOI: https://doi.org/10.1148/radiol.2020200230
Lei DP. The progression of computed tomographic (CT) images in patients with coronavirus disease (COVID-19) pneumonia: the CT progression of COVID-19 pneumonia. J Infect. 2020; 80:e30. https://doi.org/10.1016/j.jinf.2020.03.020. DOI: https://doi.org/10.1016/j.jinf.2020.03.020
Yuan M, Yin W, Tao Z, Tan W, Hu Y. Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China. PLoS One. 2020; 15(3):e0230548. https://doi.org/10.1371/journal.pone.0230548. DOI: https://doi.org/10.1371/journal.pone.0230548
American College of Radiology. Illustrated breast imaging reporting and data system (BI-RADS). American College of Radiology. 2003. https://ci.nii.ac.jp/naid/10014560841/. Accessed April 15, 2020.
Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020; 20(4): 425-434. https://doi.org/10.1016/S1473-3099(20)30086-4. DOI: https://doi.org/10.1016/S1473-3099(20)30086-4
Spagnolo P, Cozzi A, Foà RA, et al. CT-derived pulmonary vascular metrics and clinical outcome in COVID-19 patients. Quant Imaging Med Surg. 2020; 10(6): 1325-1333. https://doi.org/10.21037/qims-20-546. DOI: https://doi.org/10.21037/qims-20-546
Borghesi A, Zigliani A, Golemi S, et al. Chest X-ray severity index as a predictor of in-hospital mortality in coronavirus disease 2019: a study of 302 patients from Italy. Int J Infect Dis. 2020; 96: 291-293. https://doi.org/10.1016/j.ijid.2020.05.021. DOI: https://doi.org/10.1016/j.ijid.2020.05.021
Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020; 58(7): 1021-1028. https://doi.org/10.1515/cclm-2020-0369. DOI: https://doi.org/10.1515/cclm-2020-0369
Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020; 8:e46. https://doi.org/10.1016/S2213-2600(20)30216-2. DOI: https://doi.org/10.1016/S2213-2600(20)30216-2
Shang W, Dong J, Ren Y, et al. The value of clinical parameters in predicting the severity of COVID-19. J Med Virol. 2020. https://doi.org/10.1002/jmv.26031. DOI: https://doi.org/10.1002/jmv.26031
Hu L, Chen S, Fu Y, et al. Risk factors associated with clinical outcomes in 323 COVID-19 hospitalized patients in Wuhan, China. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa539. DOI: https://doi.org/10.1093/cid/ciaa539
Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020; 395(10239): 1763-1770. https://doi.org/10.1016/S0140-6736(20)31189-2. DOI: https://doi.org/10.1016/S0140-6736(20)31189-2
Oxley TJ, Mocco J, Majidi S, et al. Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med. 2020; 382:e60. https://doi.org/10.1056/NEJMc2009787. DOI: https://doi.org/10.1056/NEJMc2009787
Xiong W, Mu J, Guo J, et al. New onset neurologic events in people with COVID-19 infection in three regions in China. Neurology. 2020. https://doi.org/10.1212/WNL.0000000000010034. DOI: https://doi.org/10.1212/WNL.0000000000010034
Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18(4): 844-847. https://doi.org/10.1111/jth.14768. DOI: https://doi.org/10.1111/jth.14768
Li C, Hu B, Zhang Z, et al. D-dimer triage for COVID-19. Acad Emerg Med. 2020. https://doi.org/10.1111/acem.14037. DOI: https://doi.org/10.1111/acem.14037
Zhang L, Yan X, Fan Q, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020; 18(6): 1324-1329. https://doi.org/10.1111/jth.14859. DOI: https://doi.org/10.1111/jth.14859
Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020; 7(6):e438-e440. https://doi.org/10.1016/S2352-3026(20)30145-9. DOI: https://doi.org/10.1016/S2352-3026(20)30145-9
Gao Y, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020; 92(7): 791-796. https://doi.org/10.1002/jmv.25770. DOI: https://doi.org/10.1002/jmv.25770
Chen R, Sang L, Jiang M, et al. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol. 2020; 146: 89. https://doi.org/10.1016/j.jaci.2020.05.003. DOI: https://doi.org/10.1016/j.jaci.2020.05.003
Spiezia L, Boscolo A, Poletto F, et al. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb Haemost. 2020; 120(6): 998-1000. https://doi.org/10.1055/s-0040-1710018. DOI: https://doi.org/10.1055/s-0040-1710018
Chibane S, Gibeau G, Poulin F, et al. Hyperacute multi-organ thromboembolic storm in COVID-19: a case report. J Thromb Thrombolysis. 2020. https://doi.org/10.1007/s11239-020-02173-w. DOI: https://doi.org/10.1007/s11239-020-02173-w
Yaghi S, Ishida K, Torres J, et al. SARS-CoV-2 and stroke in a New York healthcare system. Stroke. 2020; 51(7): 2002- DOI: https://doi.org/10.1161/STROKEAHA.120.030335
Pavoni V, Gianesello L, Pazzi M, Stera C, Meconi T, Frigieri FC. Evaluation of coagulation function by rotation thromboelastometry in critically ill patients with severe COVID-19 pneumonia. J Thromb Thrombolysis. 2020. https://doi.org/10.1007/s11239-020-02130-7. DOI: https://doi.org/10.21203/rs.3.rs-24620/v1
Tabatabai A, Rabin J, Menaker J, et al. Factor VIII and functional protein C activity in critically ill patients with coronavirus disease 2019: a case series. A A Pract. 2020; 14(7):e01236. https://doi.org/10.1213/XAA.0000000000001236. DOI: https://doi.org/10.1213/XAA.0000000000001236
Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020; 190: 62. https://doi.org/10.1016/j.thromres.2020.04.014. DOI: https://doi.org/10.1016/j.thromres.2020.04.014
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395(10234): 1417-1418. https://doi.org/10.1016/S0140-6736(20)30937-5. DOI: https://doi.org/10.1016/S0140-6736(20)30937-5
Yao XH, Li TY, He ZC, et al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020; 49(0):E009. https://doi.org/10.3760/cma.j.cn112151-20200312-00193.
Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020. https://doi.org/10.1001/jamacardio.2020.1096. DOI: https://doi.org/10.1001/jamacardio.2020.1096
Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020; 63(3): 364-374. https://doi.org/10.1007/s11427-020-1643-8. DOI: https://doi.org/10.1007/s11427-020-1643-8
Chen C, Zhou Y, Wang DW. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz. 2020; 45: 230. https://doi.org/10.1007/s00059-020-04909-z. DOI: https://doi.org/10.1007/s00059-020-04909-z
Escher F, Pietsch H, Aleshcheva G, et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail. 2020. https://doi.org/10.1002/ehf2.12805. DOI: https://doi.org/10.1002/ehf2.12805
Bangalore S, Sharma A, Slotwiner A, et al. ST-segment elevation in patients with Covid-19—a case series. N Engl J Med. 2020; 382: 2478. https://doi.org/10.1056/nejmc2009020. DOI: https://doi.org/10.1056/NEJMc2009020
Rath D, Petersen-Uribe Á, Avdiu A, et al. Impaired cardiac function is associated with mortality in patients with acute COVID-19 infection. Clin Res Cardiol. 2020. https://doi.org/10.1007/s00392-020-01683-0. DOI: https://doi.org/10.1007/s00392-020-01683-0
Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020. https://doi.org/10.1001/jamacardio.2020.0950. DOI: https://doi.org/10.1001/jamacardio.2020.0950
Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020. https://doi.org/10.1001/jamacardio.2020.1017. DOI: https://doi.org/10.1001/jamacardio.2020.1017
Cao Z, Li T, Liang L, et al. Clinical characteristics of coronavirus disease 2019 patients in Beijing, China. PLoS One. 2020; 15(6):e0234764. https://doi.org/10.1371/journal.pone.0234764. DOI: https://doi.org/10.1371/journal.pone.0234764
Franks CE, Scott MG, Farnsworth CW. Elevated cardiac troponin I is associated with poor outcomes in COVID-19 patients at an academic medical center in Midwestern USA. J Appl Lab Med. 2020. https://doi.org/10.1093/jalm/jfaa092. DOI: https://doi.org/10.1093/jalm/jfaa092
Vrsalovic M, Vrsalovic PA. Cardiac troponins predict mortality in patients with COVID-19: a meta-analysis of adjusted risk estimates. J Infect. 2020. https://doi.org/10.1016/j.jinf.2020.05.022. DOI: https://doi.org/10.1016/j.jinf.2020.05.022
Shi S, Qin M, Cai Y, et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur Heart J. 2020; 41(22): 2070-2079. https://doi.org/10.1093/eurheartj/ehaa408. DOI: https://doi.org/10.1093/eurheartj/ehaa408
Toraih EA, Elshazli RM, Hussein MH, et al. Association of cardiac biomarkers and comorbidities with increased mortality, severity, and cardiac injury in COVID-19 patients: a meta-regression and Decision tree analysis. J Med Virol. 2020. https://doi.org/10.1002/jmv.26166. DOI: https://doi.org/10.1002/jmv.26166
Zheng H-Y, Zhang M, Yang C-X, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020; 17(5): 541-543. https://doi.org/10.1038/s41423-020-0401-3. DOI: https://doi.org/10.1038/s41423-020-0401-3
Ma A, Cheng J, Yang J, Dong M, Liao X, Kang Y. Neutrophil-to-lymphocyte ratio as a predictive biomarker for moderate-severe ARDS in severe COVID-19 patients. Crit Care. 2020; 24(1): 288. https://doi.org/10.1186/s13054-020-03007-0. DOI: https://doi.org/10.1186/s13054-020-03007-0
Tan L, Wang Q, Zhang D, Ding J, Miao H. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. March 2020. doi:https://doi.org/10.1101/2020.03.01.20029074 DOI: https://doi.org/10.1101/2020.03.01.20029074
Tan C, Huang Y, Shi F, et al. C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early. J Med Virol. 2020; 92(7): 856-862. https://doi.org/10.1002/jmv.25871. DOI: https://doi.org/10.1002/jmv.25871
Huang W, Berube J, McNamara M, et al. Lymphocyte subset counts in COVID-19 patients: a meta-analysis. Cytometry A. 2020. https://doi.org/10.1002/cyto.a.24172. DOI: https://doi.org/10.1002/cyto.a.24172
Jiang M, Guo Y, Luo Q, et al. T cell subset counts in peripheral blood can be used as discriminatory biomarkers for diagnosis and severity prediction of COVID-19. J Infect Dis. 2020; 222: 198. https://doi.org/10.1093/infdis/jiaa252. DOI: https://doi.org/10.1093/infdis/jiaa252
Liu Z, Long W, Tu M, et al. Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19. J Infect. 2020. https://doi.org/10.1016/j.jinf.2020.03.054. DOI: https://doi.org/10.1016/j.jinf.2020.03.054
S, Jiang L, Li X, et al. Clinical and pathological investigation of patients with severe COVID-19. JCI Insight. 2020; 5(12). https://doi.org/10.1172/jci.insight.138070. DOI: https://doi.org/10.1172/jci.insight.138070
Xie G, Ding F, Han L, Yin D, Lu H, Zhang M. The role of peripheral blood eosinophil counts in COVID-19 patients. Allergy. 2020. https://doi.org/10.1111/all.14465. DOI: https://doi.org/10.1111/all.14465
Yao N, Wang SN, Lian JQ, et al. Clinical characteristics and influencing factors of patients with novel coronavirus pneumonia combined with liver injury in Shaanxi region. Zhonghua Gan Zang Bing Za Zhi. 2020; 28:E003. https://doi.org/10.3760/cma.j.cn501113-20200226-00070.
Piano S, Dalbeni A, Vettore E, et al. Abnormal liver function tests predict transfer to intensive care unit and death in COVID-19. Liver Int. 2020. https://doi.org/10.1111/liv.14565. DOI: https://doi.org/10.1111/liv.14565
Goldwasser P, Feldman J. Association of serum albumin and mortality risk. J Clin Epidemiol. 1997; 50(6): 693-703. https://doi.org/10.1016/s0895-4356(97)00015-2. DOI: https://doi.org/10.1016/S0895-4356(97)00015-2
J, Cheng A, Kumar R, et al. Hypoalbuminemia predicts the outcome of COVID-19 independent of age and co-morbidity. J Med Virol. 2020. https://doi.org/10.1002/jmv.26003. DOI: https://doi.org/10.1002/jmv.26003
Bi X, Su Z, Yan H, et al. Prediction of severe illness due to COVID-19 based on an analysis of initial fibrinogen to albumin ratio and platelet count. Platelets. 2020; 31: 674-679. https://doi.org/10.1080/09537104.2020.1760230. DOI: https://doi.org/10.1080/09537104.2020.1760230
Herlekar R, Roy AS, Matson M. Hypoalbuminaemia in COVID-19 infection: a predictor of severity or a potential therapeutic target? J Med Virol. 2020. https://doi.org/10.1002/jmv.26151. DOI: https://doi.org/10.1002/jmv.26151
Ibáñez-Samaniego L, Bighelli F, Usón C, et al. Elevation of liver fibrosis index FIB-4 is associated with poor clinical outcomes in patients with COVID-19. J Infect Dis. 2020. https://doi.org/10.1093/infdis/jiaa355. DOI: https://doi.org/10.1093/infdis/jiaa355
Zhou B, She J, Wang Y, Ma X. The clinical characteristics of myocardial injury 1 in severe and very severe patients with 2019 novel coronavirus disease. J Infect. 2020; 81: 147. https://doi.org/10.1016/j.jinf.2020.03.021. DOI: https://doi.org/10.1016/j.jinf.2020.03.021
Poggiali E, Zaino D, Immovilli P, et al. Lactate dehydrogenase and C-reactive protein as predictors of respiratory failure in CoVID-19 patients. Clin Chim Acta. 2020; 509: 135-138. https://doi.org/10.1016/j.cca.2020.06.012. DOI: https://doi.org/10.1016/j.cca.2020.06.012
Zhang G, Zhang J, Wang B, Zhu X, Wang Q, Qiu S. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis. Respir Res. 2020; 21(1): 74. https://doi.org/10.1186/s12931-020-01338-8. DOI: https://doi.org/10.1186/s12931-020-01338-8
Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020; 97(5): 829-838. https://doi.org/10.1016/j.kint.2020.03.005. DOI: https://doi.org/10.1016/j.kint.2020.03.005
Wang G, Wu C, Zhang Q, et al. C-reactive protein level may predict the risk of COVID-19 aggravation. Open Forum Infect Dis. 2020; 7(5):ofaa153. https://doi.org/10.1093/ofid/ofaa153. DOI: https://doi.org/10.1093/ofid/ofaa153
Yan L, Zhang H-T, Xiao Y, et al. Prediction of criticality in patients with severe Covid-19 infection using three clinical features: a machine learning-based prognostic model with clinical data in Wuhan. medRxiv. 2020. https://www.medrxiv.org/content/10.1101/2020.02.27.20028027v2.full.pdf
Liu F, Li L, Xu M, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 2020; 127:104370. https://doi.org/10.1016/j.jcv.2020.104370. DOI: https://doi.org/10.1016/j.jcv.2020.104370
Luo X, Zhou W, Yan X, et al. Prognostic value of C-reactive protein in patients with COVID-19. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa641. DOI: https://doi.org/10.1093/cid/ciaa641
C, Demirkol MA, Altunok ES, et al. Performance of pneumonia severity index and CURB-65 in predicting 30-day mortality in patients with COVID-19. Int J Infect Dis. 2020. https://doi.org/10.1016/j.ijid.2020.06.038. DOI: https://doi.org/10.1016/j.ijid.2020.06.038
Han H, Ma Q, Li C, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020; 9(1): 1123-1130. https://doi.org/10.1080/22221751.2020.1770129. DOI: https://doi.org/10.1080/22221751.2020.1770129
Zhao Y, Qin L, Zhang P, et al. Longitudinal COVID-19 profiling associates IL-1Ra and IL-10 with disease severity and RANTES with mild disease. JCI Insight. 2020. https://doi.org/10.1172/jci.insight.139834. DOI: https://doi.org/10.1172/jci.insight.139834
Gallo Marin, B., Aghagoli, G., Lavine, K., Yang, L., Siff, E. J., Chiang, S. S., ... & Michelow, I. C. (2021). Predictors of COVID‐19 severity: a literature review. Reviews in medical virology, 31(1), 1-10. DOI: https://doi.org/10.1002/rmv.2146
Published
How to Cite
Issue
Section
Copyright (c) 2021 International journal of health sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.