Characterization and antimicrobial activity of Piper Betel L. (Betel vine) extract-biosynthesized silver nanoparticles
Keywords:
biosynthesis, silver nanoparticles (AgNPs), piper betel, Methicillin-resistant Staphylococcus Aureus (MRSA), antibacterial activityAbstract
Biosynthesis is a promising and environmentally safe technique for producing effective antibacterial silver nanoparticles (AgNPs). These particles have been used for a long time to combat various bacterial strains and are regarded as an efficient method for addressing the emergence of antibiotic-resistant bacteria. In this study, Piper betel plant extract was tested as an agent for the biosynthesis of silver nanoparticles. Spectrophotometry was employed to determine the optimal extract concentration for biosynthesis while scanning electron microscopy was used to assess the size and shape of the nanoparticles. Broth microdilution was used to measure their antibacterial efficacy against Methicillin-Resistant Staphylococcus aureus (MRSA). The highest yield of biosynthesized AgNPs was obtained using a 10% extract preparation. Characterization revealed that the nanoparticles ranged in size from 300-1300 nm and had a branched shape, which is known to enhance antimicrobial effectiveness due to the sharp edges. The mean minimum inhibitory concentration (MIC) against MRSA was determined to be 19.53 μg/mL, while the mean minimum bactericidal concentration (MBC) was 21.0 μg/mL. Piper betel extract is an effective agent for the biosynthesis of AgNPs.
Downloads
References
Abbasi, E., Milani, M., Fekri Aval, S., Kouhi, M., Akbarzadeh, A., Tayefi Nasrabadi, H., ... & Samiei, M. (2016). Silver nanoparticles: synthesis methods, bio-applications and properties. Critical reviews in microbiology, 42(2), 173-180.
Ahmed, S., Ahmed, M. Z., Rafique, S., Almasoudi, S. E., Shah, M., Jalil, N. A. C., & Ojha, S. C. (2023). Recent approaches for downplaying antibiotic resistance: molecular mechanisms. BioMed Research International, 2023(1), 5250040. DOI: https://doi.org/10.1155/2023/5250040
Asmathunisha, N., & Kathiresan, K. (2013). A review on biosynthesis of nanoparticles by marine organisms. Colloids and Surfaces B: Biointerfaces, 103, 283-287. https://doi.org/10.1016/j.colsurfb.2012.10.030 DOI: https://doi.org/10.1016/j.colsurfb.2012.10.030
Barlow, G. (2018). Clinical challenges in antimicrobial resistance. Nature microbiology, 3(3), 258-260. DOI: https://doi.org/10.1038/s41564-018-0121-y
Beyene, H. D., Werkneh, A. A., Bezabh, H. K., & Ambaye, T. G. (2017). Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable materials and technologies, 13, 18-23. https://doi.org/10.1016/j.susmat.2017.08.001 DOI: https://doi.org/10.1016/j.susmat.2017.08.001
Biswas, P., Anand, U., Saha, S. C., Kant, N., Mishra, T., Masih, H., ... & Dey, A. (2022). Betelvine (Piper betle L.): A comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes. Journal of Cellular and Molecular Medicine, 26(11), 3083-3119. DOI: https://doi.org/10.1111/jcmm.17323
Cheon, J. Y., Kim, S. J., Rhee, Y. H., Kwon, O. H., & Park, W. H. (2019). Shape-dependent antimicrobial activities of silver nanoparticles. International journal of nanomedicine, 2773-2780. DOI: https://doi.org/10.2147/IJN.S196472
Cuny, C., Friedrich, A., Kozytska, S., Layer, F., Nübel, U., Ohlsen, K., ... & Witte, W. (2010). Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. International journal of medical microbiology, 300(2-3), 109-117. https://doi.org/10.1016/j.ijmm.2009.11.002 DOI: https://doi.org/10.1016/j.ijmm.2009.11.002
De Castro-Ontengco, D., & Capal, T. (2019). The activity of the leaf essential oil of Philippine Piper betel against dermatophytes and Candida albicans. Philipp J Syst Biol, 13(2), 15-18. DOI: https://doi.org/10.26757/pjsb2019b13002
Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial cells, nanomedicine, and biotechnology, 47(1), 844-851. DOI: https://doi.org/10.1080/21691401.2019.1577878
Gupta, R. K., Guha, P., & Srivastav, P. P. (2023). Phytochemical and biological studies of betel leaf (Piper betle L.): Review on paradigm and its potential benefits in human health. Acta Ecologica Sinica, 43(5), 721-732. https://doi.org/10.1016/j.chnaes.2022.09.006 DOI: https://doi.org/10.1016/j.chnaes.2022.09.006
Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes—a review. Colloids and surfaces B: Biointerfaces, 121, 474-483. https://doi.org/10.1016/j.colsurfb.2014.05.027 DOI: https://doi.org/10.1016/j.colsurfb.2014.05.027
Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in pharmaceutical sciences, 9(6), 385-406.
Jalab, J., Abdelwahed, W., Kitaz, A., & Al-Kayali, R. (2021). Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon, 7(9). DOI: https://doi.org/10.1016/j.heliyon.2021.e08033
Liao, C., Li, Y., & Tjong, S. C. (2019). Bactericidal and cytotoxic properties of silver nanoparticles. International journal of molecular sciences, 20(2), 449. DOI: https://doi.org/10.3390/ijms20020449
Magana, S. M., Quintana, P., Aguilar, D. H., Toledo, J. A., Angeles-Chavez, C., Cortés, M. A., ... & Sánchez, R. T. (2008). Antibacterial activity of montmorillonites modified with silver. Journal of Molecular Catalysis A: Chemical, 281(1-2), 192-199. https://doi.org/10.1016/j.molcata.2007.10.024 DOI: https://doi.org/10.1016/j.molcata.2007.10.024
Mandal, M. D., & Mandal, S. (2011). Honey: its medicinal property and antibacterial activity. Asian Pacific journal of tropical biomedicine, 1(2), 154-160. https://doi.org/10.1016/S2221-1691(11)60016-6 DOI: https://doi.org/10.1016/S2221-1691(11)60016-6
Nimmo, G. R., & Coombs, G. W. (2008). Community-associated methicillin-resistant Staphylococcus aureus (MRSA) in Australia. International journal of antimicrobial agents, 31(5), 401-410. https://doi.org/10.1016/j.ijantimicag.2007.08.011 DOI: https://doi.org/10.1016/j.ijantimicag.2007.08.011
Osonga, F. J., Akgul, A., Yazgan, I., Akgul, A., Eshun, G. B., Sakhaee, L., & Sadik, O. A. (2020). Size and shape-dependent antimicrobial activities of silver and gold nanoparticles: A model study as potential fungicides. Molecules, 25(11), 2682. DOI: https://doi.org/10.3390/molecules25112682
Parvekar, P., Palaskar, J., Metgud, S., Maria, R., & Dutta, S. (2020). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomaterial investigations in dentistry, 7(1), 105-109. DOI: https://doi.org/10.1080/26415275.2020.1796674
Periakaruppan, R., & Danaraj, J. (2022). Green fabrication of Piper betle leaf extract assisted magnesium oxide nanoparticles with antioxidant potential. DOI: https://doi.org/10.21203/rs.3.rs-1504138/v1
Sagee, O., Dror, I., & Berkowitz, B. (2012). Transport of silver nanoparticles (AgNPs) in soil. Chemosphere, 88(5), 670-675. https://doi.org/10.1016/j.chemosphere.2012.03.055 DOI: https://doi.org/10.1016/j.chemosphere.2012.03.055
Siddiqi, K. S., Husen, A., & Rao, R. A. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of nanobiotechnology, 16, 1-28. DOI: https://doi.org/10.1186/s12951-018-0334-5
Singh, T., Singh, P., Pandey, V. K., Singh, R., & Dar, A. H. (2023). A literature review on bioactive properties of betel leaf (Piper betel L.) and its applications in food industry. Food Chemistry Advances, 3, 100536. https://doi.org/10.1016/j.focha.2023.100536 DOI: https://doi.org/10.1016/j.focha.2023.100536
Soares, S., Sousa, J., Pais, A., & Vitorino, C. (2018). Nanomedicine: principles, properties, and regulatory issues. Frontiers in chemistry, 6, 360. DOI: https://doi.org/10.3389/fchem.2018.00360
Truong, T. T. V., Kumar, S. R., Huang, Y. T., Chen, D. W., Liu, Y. K., & Lue, S. J. (2020). Size-dependent antibacterial activity of silver nanoparticle-loaded graphene oxide nanosheets. Nanomaterials, 10(6), 1207. DOI: https://doi.org/10.3390/nano10061207
Published
How to Cite
Issue
Section
Copyright (c) 2025 International journal of health sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.