Characterization and antimicrobial activity of Piper Betel L. (Betel vine) extract-biosynthesized silver nanoparticles

https://doi.org/10.53730/ijhs.v9n1.15372

Authors

  • Dave Tristan A. Tannagan Adventist University, Philippines
  • Princess Allaine C. Dela Torre Adventist University, Philippines
  • Louise Ann D. Famorcan Adventist University, Philippines
  • Ferdinand E. Mendoza Adventist University, Philippines
  • Myrnille Joy Z. Galang Adventist University, Philippines
  • Mormie Joseph F. Sarno Adventist University, Philippines
  • Ma. Kristine Hernandez-Mendoza Adventist University, Philippines
  • Ma. Estrella H. Sales Adventist University, Philippines
  • Yanna Yvonne C. Macayan Adventist University, Philippines

Keywords:

biosynthesis, silver nanoparticles (AgNPs), piper betel, Methicillin-resistant Staphylococcus Aureus (MRSA), antibacterial activity

Abstract

Biosynthesis is a promising and environmentally safe technique for producing effective antibacterial silver nanoparticles (AgNPs). These particles have been used for a long time to combat various bacterial strains and are regarded as an efficient method for addressing the emergence of antibiotic-resistant bacteria. In this study, Piper betel plant extract was tested as an agent for the biosynthesis of silver nanoparticles.  Spectrophotometry was employed to determine the optimal extract concentration for biosynthesis while scanning electron microscopy was used to assess the size and shape of the nanoparticles. Broth microdilution was used to measure their antibacterial efficacy against Methicillin-Resistant Staphylococcus aureus (MRSA).  The highest yield of biosynthesized AgNPs was obtained using a 10% extract preparation. Characterization revealed that the nanoparticles ranged in size from 300-1300 nm and had a branched shape, which is known to enhance antimicrobial effectiveness due to the sharp edges. The mean minimum inhibitory concentration (MIC) against MRSA was determined to be 19.53 μg/mL, while the mean minimum bactericidal concentration (MBC) was 21.0 μg/mL. Piper betel extract is an effective agent for the biosynthesis of AgNPs.

Downloads

Download data is not yet available.

References

Abbasi, E., Milani, M., Fekri Aval, S., Kouhi, M., Akbarzadeh, A., Tayefi Nasrabadi, H., ... & Samiei, M. (2016). Silver nanoparticles: synthesis methods, bio-applications and properties. Critical reviews in microbiology, 42(2), 173-180.

Ahmed, S., Ahmed, M. Z., Rafique, S., Almasoudi, S. E., Shah, M., Jalil, N. A. C., & Ojha, S. C. (2023). Recent approaches for downplaying antibiotic resistance: molecular mechanisms. BioMed Research International, 2023(1), 5250040. DOI: https://doi.org/10.1155/2023/5250040

Asmathunisha, N., & Kathiresan, K. (2013). A review on biosynthesis of nanoparticles by marine organisms. Colloids and Surfaces B: Biointerfaces, 103, 283-287. https://doi.org/10.1016/j.colsurfb.2012.10.030 DOI: https://doi.org/10.1016/j.colsurfb.2012.10.030

Barlow, G. (2018). Clinical challenges in antimicrobial resistance. Nature microbiology, 3(3), 258-260. DOI: https://doi.org/10.1038/s41564-018-0121-y

Beyene, H. D., Werkneh, A. A., Bezabh, H. K., & Ambaye, T. G. (2017). Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable materials and technologies, 13, 18-23. https://doi.org/10.1016/j.susmat.2017.08.001 DOI: https://doi.org/10.1016/j.susmat.2017.08.001

Biswas, P., Anand, U., Saha, S. C., Kant, N., Mishra, T., Masih, H., ... & Dey, A. (2022). Betelvine (Piper betle L.): A comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes. Journal of Cellular and Molecular Medicine, 26(11), 3083-3119. DOI: https://doi.org/10.1111/jcmm.17323

Cheon, J. Y., Kim, S. J., Rhee, Y. H., Kwon, O. H., & Park, W. H. (2019). Shape-dependent antimicrobial activities of silver nanoparticles. International journal of nanomedicine, 2773-2780. DOI: https://doi.org/10.2147/IJN.S196472

Cuny, C., Friedrich, A., Kozytska, S., Layer, F., Nübel, U., Ohlsen, K., ... & Witte, W. (2010). Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. International journal of medical microbiology, 300(2-3), 109-117. https://doi.org/10.1016/j.ijmm.2009.11.002 DOI: https://doi.org/10.1016/j.ijmm.2009.11.002

De Castro-Ontengco, D., & Capal, T. (2019). The activity of the leaf essential oil of Philippine Piper betel against dermatophytes and Candida albicans. Philipp J Syst Biol, 13(2), 15-18. DOI: https://doi.org/10.26757/pjsb2019b13002

Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial cells, nanomedicine, and biotechnology, 47(1), 844-851. DOI: https://doi.org/10.1080/21691401.2019.1577878

Gupta, R. K., Guha, P., & Srivastav, P. P. (2023). Phytochemical and biological studies of betel leaf (Piper betle L.): Review on paradigm and its potential benefits in human health. Acta Ecologica Sinica, 43(5), 721-732. https://doi.org/10.1016/j.chnaes.2022.09.006 DOI: https://doi.org/10.1016/j.chnaes.2022.09.006

Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes—a review. Colloids and surfaces B: Biointerfaces, 121, 474-483. https://doi.org/10.1016/j.colsurfb.2014.05.027 DOI: https://doi.org/10.1016/j.colsurfb.2014.05.027

Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in pharmaceutical sciences, 9(6), 385-406.

Jalab, J., Abdelwahed, W., Kitaz, A., & Al-Kayali, R. (2021). Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon, 7(9). DOI: https://doi.org/10.1016/j.heliyon.2021.e08033

Liao, C., Li, Y., & Tjong, S. C. (2019). Bactericidal and cytotoxic properties of silver nanoparticles. International journal of molecular sciences, 20(2), 449. DOI: https://doi.org/10.3390/ijms20020449

Magana, S. M., Quintana, P., Aguilar, D. H., Toledo, J. A., Angeles-Chavez, C., Cortés, M. A., ... & Sánchez, R. T. (2008). Antibacterial activity of montmorillonites modified with silver. Journal of Molecular Catalysis A: Chemical, 281(1-2), 192-199. https://doi.org/10.1016/j.molcata.2007.10.024 DOI: https://doi.org/10.1016/j.molcata.2007.10.024

Mandal, M. D., & Mandal, S. (2011). Honey: its medicinal property and antibacterial activity. Asian Pacific journal of tropical biomedicine, 1(2), 154-160. https://doi.org/10.1016/S2221-1691(11)60016-6 DOI: https://doi.org/10.1016/S2221-1691(11)60016-6

Nimmo, G. R., & Coombs, G. W. (2008). Community-associated methicillin-resistant Staphylococcus aureus (MRSA) in Australia. International journal of antimicrobial agents, 31(5), 401-410. https://doi.org/10.1016/j.ijantimicag.2007.08.011 DOI: https://doi.org/10.1016/j.ijantimicag.2007.08.011

Osonga, F. J., Akgul, A., Yazgan, I., Akgul, A., Eshun, G. B., Sakhaee, L., & Sadik, O. A. (2020). Size and shape-dependent antimicrobial activities of silver and gold nanoparticles: A model study as potential fungicides. Molecules, 25(11), 2682. DOI: https://doi.org/10.3390/molecules25112682

Parvekar, P., Palaskar, J., Metgud, S., Maria, R., & Dutta, S. (2020). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomaterial investigations in dentistry, 7(1), 105-109. DOI: https://doi.org/10.1080/26415275.2020.1796674

Periakaruppan, R., & Danaraj, J. (2022). Green fabrication of Piper betle leaf extract assisted magnesium oxide nanoparticles with antioxidant potential. DOI: https://doi.org/10.21203/rs.3.rs-1504138/v1

Sagee, O., Dror, I., & Berkowitz, B. (2012). Transport of silver nanoparticles (AgNPs) in soil. Chemosphere, 88(5), 670-675. https://doi.org/10.1016/j.chemosphere.2012.03.055 DOI: https://doi.org/10.1016/j.chemosphere.2012.03.055

Siddiqi, K. S., Husen, A., & Rao, R. A. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of nanobiotechnology, 16, 1-28. DOI: https://doi.org/10.1186/s12951-018-0334-5

Singh, T., Singh, P., Pandey, V. K., Singh, R., & Dar, A. H. (2023). A literature review on bioactive properties of betel leaf (Piper betel L.) and its applications in food industry. Food Chemistry Advances, 3, 100536. https://doi.org/10.1016/j.focha.2023.100536 DOI: https://doi.org/10.1016/j.focha.2023.100536

Soares, S., Sousa, J., Pais, A., & Vitorino, C. (2018). Nanomedicine: principles, properties, and regulatory issues. Frontiers in chemistry, 6, 360. DOI: https://doi.org/10.3389/fchem.2018.00360

Truong, T. T. V., Kumar, S. R., Huang, Y. T., Chen, D. W., Liu, Y. K., & Lue, S. J. (2020). Size-dependent antibacterial activity of silver nanoparticle-loaded graphene oxide nanosheets. Nanomaterials, 10(6), 1207. DOI: https://doi.org/10.3390/nano10061207

Published

10-01-2025

How to Cite

Tannagan, D. T. A., Dela Torre, P. A. C., Famorcan, L. A. D., Mendoza, F. E., Galang, M. J. Z., Sarno, M. J. F., Hernandez-Mendoza, M. K., Sales, M. E. H., & Macayan, Y. Y. C. (2025). Characterization and antimicrobial activity of Piper Betel L. (Betel vine) extract-biosynthesized silver nanoparticles. International Journal of Health Sciences, 9(1), 1–9. https://doi.org/10.53730/ijhs.v9n1.15372

Issue

Section

Peer Review Articles