The journey of the avian influenza virus H5N1 through 30 years of evolutionary events, geographical locations, and animal species

A review

https://doi.org/10.53730/ijhs.v9n1.15502

Authors

Keywords:

Avian influenza virus, hemagglutinin, neuraminidase, outbreak, reassortment

Abstract

Influenza viruses have caused outbreaks and pandemics throughout human history and have until Covid-19 been considered the group of viruses with the largest potential for pandemics. Avian influenza viruses cause zoonotic diseases, including birds, mammals, and humans. This review focuses on H5N1 because it is highly pathogenic and generated the most common clades among the current ones (e.g. 2.3.4.4). Since the first goose that was infected in Guangdong, China by A/Goose/Guangdong/1/96 (H5N1) in 1996, H5N1 has undergone many events of reassortment with other influenza viruses and accumulated many amino acid substitutions on the 10 proteins that are encoded by the H5N1 genome. The review will follow H5N1 through examples of such evolutionary events that permitted the virus to spread across the world, as well as through many animal species. Hallmark mutations that permit or prevent the selective binding to receptors on bird or mammal host cells will be identified. The journey through the NorthAtlantic fly way from Europe to North and South America, culminating in the first reported death from H5N1 in the United States will be explained. The review concludes with the current state of vaccines and anti-virals and an assessment by the author of the current situation.

Downloads

Download data is not yet available.

References

Abdelwhab, E. M., Hassan, M. K., Abdel-Moneim, A. S., Naguib, M. M., Mostafa, A., Hussein, I. T. M., ... & Hafez, H. M. (2016). Introduction and enzootic of A/H5N1 in Egypt: Virus evolution, pathogenicity and vaccine efficacy ten years on. Infection, Genetics and Evolution, 40, 80-90. https://doi.org/10.1016/j.meegid.2016.02.023 DOI: https://doi.org/10.1016/j.meegid.2016.02.023

Adlhoch, C., Fusaro, A., Gonzales, J. L., ... & Kohnle, L. (2023). Avian influenza overview September–December 2023. EFSA Journal, 21(12), e8539. DOI: https://doi.org/10.2903/j.efsa.2023.8539

Agüero, M., Monne, I., Sánchez, A., Zecchin, B., Fusaro, A., Ruano, M. J., ... & Orejas, J. J. (2023). Highly pathogenic avian influenza A (H5N1) virus infection in farmed minks, Spain, October 2022. Eurosurveillance, 28(3), 2300001. DOI: https://doi.org/10.2807/1560-7917.ES.2023.28.3.2300001

Ahlstrom, C. A., Torchetti, M. K., Lenoch, J., Beckmen, K., Boldenow, M., Buck, E. J., ... & Ramey, A. M. (2024). Genomic characterization of highly pathogenic H5 avian influenza viruses from Alaska during 2022 provides evidence for genotype-specific trends of spatiotemporal and interspecies dissemination. Emerging Microbes & Infections, 13(1), 2406291. DOI: https://doi.org/10.1080/22221751.2024.2406291

Aldhaeefi, M., Rungkitwattanakul, D., Saltani, I., Muirhead, A., Ruehman, A. J., Hawkins, W. A., & Daftary, M. N. (2024). Update and narrative review of avian influenza (H5N1) infection in adult patients. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 44(11), 870-879. DOI: https://doi.org/10.1002/phar.4621

Alkie, T. N., Byrne, A. M., Jones, M. E., Mollett, B. C., Bourque, L., Lung, O., ... & Berhane, Y. (2023). Recurring trans-Atlantic incursion of clade 2.3. 4.4 b H5N1 viruses by long distance migratory birds from Northern Europe to Canada in 2022/2023. Viruses, 15(9), 1836. DOI: https://doi.org/10.3390/v15091836

Alkie, T. N., Nasheri, N., Romero-Barrios, P., Catford, A., Krishnan, J., Pama, L., ... & Berhane, Y. (2025). Effectiveness of pasteurization for the inactivation of H5N1 influenza virus in raw whole milk. Food Microbiology, 125, 104653. https://doi.org/10.1016/j.fm.2024.104653 DOI: https://doi.org/10.1016/j.fm.2024.104653

Andreev, K., Jones, J. C., Seiler, P., Kandeil, A., Webby, R. J., & Govorkova, E. A. (2024). Genotypic and phenotypic susceptibility of emerging avian influenza A viruses to neuraminidase and cap-dependent endonuclease inhibitors. Antiviral Research, 229, 105959. https://doi.org/10.1016/j.antiviral.2024.105959 DOI: https://doi.org/10.1016/j.antiviral.2024.105959

Andrews, S. F., Raab, J. E., Gorman, J., Gillespie, R. A., Cheung, C. S., Rawi, R., ... & McDermott, A. B. (2022). A single residue in influenza virus H2 hemagglutinin enhances the breadth of the B cell response elicited by H2 vaccination. Nature Medicine, 28(2), 373-382. DOI: https://doi.org/10.1038/s41591-021-01636-8

Arafa, A. S., Naguib, M. M., Luttermann, C., Selim, A. A., Kilany, W. H., Hagag, N., ... & Harder, T. C. (2015). Emergence of a novel cluster of influenza A (H5N1) virus clade 2.2. 1.2 with putative human health impact in Egypt, 2014/15. Eurosurveillance, 20(13), 21085. DOI: https://doi.org/10.2807/1560-7917.ES2015.20.13.21085

Arafa, A., El-Masry, I., Kholosy, S., Hassan, M. K., Dauphin, G., Lubroth, J., & Makonnen, Y. J. (2016). Phylodynamics of avian influenza clade 2.2. 1 H5N1 viruses in Egypt. Virology journal, 13, 1-11. DOI: https://doi.org/10.1186/s12985-016-0477-7

Baechlein, C., Kleinschmidt, S., Hartmann, D., Kammeyer, P., Wöhlke, A., Warmann, T., ... & Runge, M. (2023). Neurotropic Highly Pathogenic Avian Influenza A (H5N1) Virus in Red Foxes, Northern Germany. Emerging Infectious Diseases, 29(12), 2509. DOI: https://doi.org/10.3201/eid2912.230938

Belser, J. A., Katz, J. M., & Tumpey, T. M. (2011). The ferret as a model organism to study influenza A virus infection. Disease models & mechanisms, 4(5), 575-579. DOI: https://doi.org/10.1242/dmm.007823

Berche, P. (2022). The spanish flu. La Presse Médicale, 51(3), 104127. https://doi.org/10.1016/j.lpm.2022.104127 DOI: https://doi.org/10.1016/j.lpm.2022.104127

Bevins, S. N., Shriner, S. A., Cumbee Jr, J. C., Dilione, K. E., Douglass, K. E., Ellis, J. W., ... & Lenoch, J. B. (2022). Intercontinental movement of highly pathogenic avian influenza A (H5N1) clade 2.3. 4.4 virus to the United States, 2021. Emerging infectious diseases, 28(5), 1006. DOI: https://doi.org/10.3201/eid2805.220318

Bordes, L., Vreman, S., Heutink, R., Roose, M., Venema, S., Pritz-Verschuren, S. B., ... & Beerens, N. (2023). Highly pathogenic avian influenza H5N1 virus infections in wild red foxes (Vulpes vulpes) show neurotropism and adaptive virus mutations. Microbiology spectrum, 11(1), e02867-22. DOI: https://doi.org/10.1128/spectrum.02867-22

Braakman, I., Hoover-Litty, H., Wagner, K. R., & Helenius, A. (1991). Folding of influenza hemagglutinin in the endoplasmic reticulum. The Journal of cell biology, 114(3), 401-411. DOI: https://doi.org/10.1083/jcb.114.3.401

Briand, F. X., Souchaud, F., Pierre, I., Beven, V., Hirchaud, E., Hérault, F., ... & Grasland, B. (2023). Highly pathogenic avian influenza a (H5N1) clade 2.3. 4.4 b virus in domestic cat, France, 2022. Emerging Infectious Diseases, 29(8), 1696. DOI: https://doi.org/10.3201/eid2908.230188

Burrough, E. R., Magstadt, D. R., Petersen, B., Timmermans, S. J., Gauger, P. C., Zhang, J., ... & Main, R. (2024). Highly pathogenic avian influenza A (H5N1) clade 2.3. 4.4 b virus infection in domestic dairy cattle and cats, United States, 2024. Emerging infectious diseases, 30(7), 1335. DOI: https://doi.org/10.3201/eid3007.240508

Bussey, K. A., Bousse, T. L., Desmet, E. A., Kim, B., & Takimoto, T. (2010). PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. Journal of virology, 84(9), 4395-4406. DOI: https://doi.org/10.1128/JVI.02642-09

Byrne, A. M., James, J., Mollett, B. C., Meyer, S. M., Lewis, T., Czepiel, M., ... & Banyard, A. C. (2023). Investigating the genetic diversity of H5 avian influenza viruses in the United Kingdom from 2020–2022. Microbiology spectrum, 11(4), e04776-22. DOI: https://doi.org/10.1128/spectrum.04776-22

Cargnin Faccin, F., & Perez, D. R. (2024). Pandemic preparedness through vaccine development for avian influenza viruses. Human Vaccines & Immunotherapeutics, 20(1), 2347019. DOI: https://doi.org/10.1080/21645515.2024.2347019

CDC. (2022). Current bird flu situation in wild birds. https://www.cdc.gov/bird-flu/situation-summary/index.html

CDC. (2024a). Food Safety and Bird Flu. https://www.cdc.gov/bird-flu/prevention/food-safety.html

CDC. (2024b). Types of influenza viruses. https://www.cdc.gov/flu/about/viruses-types.html?CDC_AAref_Val=https://www.cdc.gov/flu/about/viruses/types.htm

Chang, H., Duan, J., Zhou, P., Su, L., Zheng, D., Zhang, F., ... & Chen, Z. (2017). Single immunization with MF59-adjuvanted inactivated whole-virion H7N9 influenza vaccine provides early protection against H7N9 virus challenge in mice. Microbes and Infection, 19(12), 616-625. https://doi.org/10.1016/j.micinf.2017.08.012 DOI: https://doi.org/10.1016/j.micinf.2017.08.012

Charostad, J., Rukerd, M. R. Z., Mahmoudvand, S., Bashash, D., Hashemi, S. M. A., Nakhaie, M., & Zandi, K. (2023). A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: An imminent threat at doorstep. Travel Medicine and Infectious Disease, 102638. https://doi.org/10.1016/j.tmaid.2023.102638 DOI: https://doi.org/10.1016/j.tmaid.2023.102638

Chothe, S. K., Srinivas, S., Misra, S., Nallipogu, N. C., Gilbride, E., LaBella, L., ... & Kuchipudi, S. V. (2024). Marked neurotropism and potential adaptation of H5N1 Clade 2.3. 4.4. b virus in naturally infected domestic cats. Emerging Microbes & Infections, (just-accepted), 2440498. DOI: https://doi.org/10.1080/22221751.2024.2440498

Claas, E. C., de Jong, J. C., van Beek, R., Rimmelzwaan, G. F., & Osterhaus, A. D. (1998). Human influenza virus A/HongKong/156/97 (H5N1) infection. Vaccine, 16(9-10), 977-978. https://doi.org/10.1016/S0264-410X(98)00005-X DOI: https://doi.org/10.1016/S0264-410X(98)00005-X

Costa, T., Chaves, A. J., Valle, R., Darji, A., van Riel, D., Kuiken, T., ... & Ramis, A. (2012). Distribution patterns of influenza virus receptors and viral attachment patterns in the respiratory and intestinal tracts of seven avian species. Veterinary research, 43, 1-13. DOI: https://doi.org/10.1186/1297-9716-43-28

Cruz, C. D., Icochea, M. E., Espejo, V., Troncos, G., Castro-Sanguinetti, G. R., Schilling, M. A., & Tinoco, Y. (2023). Highly Pathogenic Avian Influenza A (H5N1) from Wild Birds, Poultry, and Mammals, Peru. Emerging Infectious Diseases, 29(12), 2572. DOI: https://doi.org/10.3201/eid2912.230505

de Araújo, A. C., Silva, L. M. N., Cho, A. Y., Repenning, M., Amgarten, D., de Moraes, A. P., ... & Ferreira, H. L. (2024). Incursion of highly pathogenic avian influenza A (H5N1) clade 2.3. 4.4 b virus, Brazil, 2023. Emerging Infectious Diseases, 30(3), 619. DOI: https://doi.org/10.3201/eid3003.231157

de Chassey, B., Aublin-Gex, A., Ruggieri, A., Meyniel-Schicklin, L., Pradezynski, F., Davoust, N., ... & Lotteau, V. (2013). The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication. PLoS pathogens, 9(7), e1003440. DOI: https://doi.org/10.1371/journal.ppat.1003440

De Jong, M. D., Thanh, T. T., Khanh, T. H., Hien, V. M., Smith, G. J., Chau, N. V., ... & Farrar, J. (2005). Oseltamivir resistance during treatment of influenza A (H5N1) infection. New england journal of medicine, 353(25), 2667-2672. DOI: https://doi.org/10.1056/NEJMoa054512

Del Giudice, G., Fragapane, E., Della Cioppa, G., & Rappuoli, R. (2013). Aflunov®: a vaccine tailored for pre-pandemic and pandemic approaches against influenza. Expert opinion on biological therapy, 13(1), 121-135. DOI: https://doi.org/10.1517/14712598.2013.748030

Dharmayanti, N. L. P. I., Hartawan, R., Wibawa, H., Balish, A., Donis, R., Davis, C. T., & Samaan, G. (2014). Genetic characterization of clade 2.3. 2.1 avian influenza A (H5N1) viruses, Indonesia, 2012. Emerging infectious diseases, 20(4), 671. DOI: https://doi.org/10.3201/eid2004.130517

Duvvuri, V. R., Duvvuri, B., Cuff, W. R., Wu, G. E., & Wu, J. (2009). Role of positive selection pressure on the evolution of H5N1 hemagglutinin. Genomics, Proteomics and Bioinformatics, 7(1-2), 47-56. DOI: https://doi.org/10.1016/S1672-0229(08)60032-7

Edwards, E. (2025). CDC urges faster testing for bird flu amid growing outbreak. US News.

Eisfeld, A. J., Biswas, A., Guan, L., Gu, C., Maemura, T., Trifkovic, S., ... & Kawaoka, Y. (2024). Pathogenicity and transmissibility of bovine H5N1 influenza virus. Nature, 633(8029), 426-432. DOI: https://doi.org/10.1038/s41586-024-07766-6

El Romeh, A., Zecchin, B., Fusaro, A., Ibrahim, E., El Bazzal, B., El Hage, J., ... & Monne, I. (2017). Highly pathogenic avian influenza H5N1 Clade 2.3. 2.1 c Virus in Lebanon, 2016. Avian Diseases, 61(2), 271-273. DOI: https://doi.org/10.1637/11544-113016-Case.1

El-Husseiny, M. H., Hagag, N. M., Pushko, P., Tretyakova, I., Naguib, M. M., & Arafa, A. S. (2021). Evaluation of protective efficacy of influenza virus like particles prepared from H5N1 virus of clade 2.2. 1.2 in chickens. Vaccines, 9(7), 715. DOI: https://doi.org/10.3390/vaccines9070715

FDA. (2024). Questions and answers regarding the safety of eggs during highly pathogenic avian influenza outbreaks. https://www.usda.gov/sites/default/files/documents/avian-influenza-food-safety-qa.pdf

Feldman, R. A., Fuhr, R., Smolenov, I., Ribeiro, A. M., Panther, L., Watson, M., ... & Ciaramella, G. (2019). mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine, 37(25), 3326-3334. https://doi.org/10.1016/j.vaccine.2019.04.074 DOI: https://doi.org/10.1016/j.vaccine.2019.04.074

Furey, C., Scher, G., Ye, N., Kercher, L., DeBeauchamp, J., Crumpton, J. C., ... & Hensley, S. E. (2024). Development of a nucleoside-modified mRNA vaccine against clade 2.3. 4.4 b H5 highly pathogenic avian influenza virus. Nature Communications, 15(1), 4350. DOI: https://doi.org/10.1038/s41467-024-48555-z

Fusaro, A., Zecchin, B., Giussani, E., Palumbo, E., Agüero-García, M., Bachofen, C., ... & Monne, I. (2024). High pathogenic avian influenza A (H5) viruses of clade 2.3. 4.4 b in Europe—Why trends of virus evolution are more difficult to predict. Virus evolution, 10(1), veae027. DOI: https://doi.org/10.1093/ve/veae027

Gambaryan, A., Webster, R., & Matrosovich, M. (2002). Differences between influenza virus receptors on target cells of duck and chicken. Archives of virology, 147, 1197-1208. DOI: https://doi.org/10.1007/s00705-002-0796-4

Gao, R., Gu, M., Liu, K., Li, Q., Li, J., Shi, L., ... & Liu, X. (2018). T160A mutation-induced deglycosylation at site 158 in hemagglutinin is a critical determinant of the dual receptor binding properties of clade 2.3. 4.4 H5NX subtype avian influenza viruses. Veterinary microbiology, 217, 158-166. https://doi.org/10.1016/j.vetmic.2018.03.018 DOI: https://doi.org/10.1016/j.vetmic.2018.03.018

Gasparini, R., Amicizia, D., Lai, P. L., & Panatto, D. (2012). Aflunov®: a prepandemic influenza vaccine. Expert Review of Vaccines, 11(2), 145-157. DOI: https://doi.org/10.1586/erv.11.170

Gilbert, P. B., Montefiori, D. C., McDermott, A. B., Fong, Y., Benkeser, D., Deng, W., ... & United States Government (USG)/CoVPN Biostatistics Team §. (2022). Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science, 375(6576), 43-50. DOI: https://doi.org/10.1126/science.abm3425

Glazunova, A., Krasnova, E., Bespalova, T., Sevskikh, T., Lunina, D., Titov, I., ... & Blokhin, A. (2024). A highly pathogenic avian influenza virus H5N1 clade 2.3. 4.4 detected in Samara Oblast, Russian Federation. Frontiers in Veterinary Science, 11, 1244430. DOI: https://doi.org/10.3389/fvets.2024.1244430

Gomaa, M. R., Khalil, A. A., Kandeil, A., Sabir, J. S., Kayed, A., Moatasim, Y., ... & Ali, M. A. (2019). Development of an effective contemporary trivalent avian influenza vaccine against circulating H5N1, H5N8, and H9N2 in Egypt. Poultry Science, 98(12), 6289-6295. https://doi.org/10.3382/ps/pez385 DOI: https://doi.org/10.3382/ps/pez385

Gong, X., Hu, M., Chen, W., Yang, H., Wang, B., Yue, J., ... & Ren, H. (2021). Reassortment network of influenza A virus. Frontiers in Microbiology, 12, 793500. DOI: https://doi.org/10.3389/fmicb.2021.793500

Grund, C., Abdelwhab, E. S. M., Arafa, A. S., Ziller, M., Hassan, M. K., Aly, M. M., ... & Beer, M. (2011). Highly pathogenic avian influenza virus H5N1 from Egypt escapes vaccine-induced immunity but confers clinical protection against a heterologous clade 2.2. 1 Egyptian isolate. Vaccine, 29(33), 5567-5573. https://doi.org/10.1016/j.vaccine.2011.01.006 DOI: https://doi.org/10.1016/j.vaccine.2011.01.006

Guo, X., Zhu, Y., Li, Y., Shi, P., Zhou, H., Yao, J., ... & Wei, D. (2007). Genetic insight of the H5N1 hemagglutinin cleavage site. Chinese Science Bulletin, 52(17), 2374-2379. DOI: https://doi.org/10.1007/s11434-007-0374-y

Halwe, N. J., Cool, K., Breithaupt, A., Schön, J., Trujillo, J. D., Nooruzzaman, M., ... & Richt, J. A. (2024). H5N1 clade 2.3. 4.4 b dynamics in experimentally infected calves and cows. Nature, 1-3. DOI: https://doi.org/10.1038/s41586-024-08063-y

Hanula, R., Bortolussi-Courval, E., Mendel, A., Ward, B. J., Lee, T. C., & McDonald, E. G. (2024). Evaluation of oseltamivir used to prevent hospitalization in outpatients with influenza: a systematic review and meta-analysis. JAMA Internal Medicine, 184(1), 18-27. DOI: https://doi.org/10.1001/jamainternmed.2023.0699

Hatta, M., Zhong, G., Chiba, S., Lopes, T. J., Neumann, G., & Kawaoka, Y. (2018). Effectiveness of whole, inactivated, low pathogenicity influenza A (H7N9) vaccine against antigenically distinct, highly pathogenic H7N9 virus. Emerging Infectious Diseases, 24(10), 1910. DOI: https://doi.org/10.3201/eid2410.180403

He, J., Liu, B. Y., Gong, L., Chen, Z., Chen, X. L., Hou, S., ... & Liu, Y. (2018). Genetic characterization of the first detected human case of avian influenza A (H5N6) in Anhui Province, East China. Scientific reports, 8(1), 15282. DOI: https://doi.org/10.1038/s41598-018-33356-4

Hegazy, A. M., Yehia, N., Hassan, A. F., El-Saadony, M. T., Aboelenin, S. M., Soliman, M. M., & Tolba, H. M. (2021). The potency of newly development H5N8 and H9N2 avian influenza vaccines against the isolated strains in laying hens from Egypt during 2019. Saudi Journal of Biological Sciences, 28(9), 5310-5316. https://doi.org/10.1016/j.sjbs.2021.05.049 DOI: https://doi.org/10.1016/j.sjbs.2021.05.049

Heo, G. B., Kang, Y. M., An, S. H., Kim, Y., Cha, R. M., Jang, Y., ... & Lee, K. N. (2024). Concurrent Infection with Clade 2.3. 4.4 b Highly Pathogenic Avian Influenza H5N6 and H5N1 Viruses, South Korea, 2023. Emerging Infectious Diseases, 30(6), 1223. DOI: https://doi.org/10.3201/eid3006.240194

Herfst, S., Schrauwen, E. J., Linster, M., Chutinimitkul, S., De Wit, E., Munster, V. J., ... & Fouchier, R. A. (2012). Airborne transmission of influenza A/H5N1 virus between ferrets. science, 336(6088), 1534-1541. DOI: https://doi.org/10.1126/science.1213362

Higashiguchi, M., Matsumoto, T., & Fujii, T. (2018). A meta-analysis of laninamivir octanoate for treatment and prophylaxis of influenza. Antiviral therapy, 23(2), 157-165. DOI: https://doi.org/10.3851/IMP3189

Hilsch, M., Goldenbogen, B., Sieben, C., Höfer, C. T., Rabe, J. P., Klipp, E., ... & Chiantia, S. (2014). Influenza A matrix protein M1 multimerizes upon binding to lipid membranes. Biophysical journal, 107(4), 912-923. DOI: https://doi.org/10.1016/j.bpj.2014.06.042

Horimoto, T., & Kawaoka, Y. (1994). Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. Journal of virology, 68(5), 3120-3128. DOI: https://doi.org/10.1128/jvi.68.5.3120-3128.1994

Hu, T., Zhao, H., Zhang, Y., Zhang, W., Kong, Q., Zhang, Z., ... & Zhang, F. (2016). Fatal influenza A (H5N1) virus infection in zoo-housed tigers in Yunnan Province, China. Scientific Reports, 6(1), 25845. DOI: https://doi.org/10.1038/srep25845

Hu, X., Saxena, A., Magstadt, D. R., Gauger, P. C., Burrough, E. R., Zhang, J., ... & Li, G. (2024). Genomic characterization of highly pathogenic avian influenza A H5N1 virus newly emerged in dairy cattle. Emerging microbes & infections, 13(1), 2380421. DOI: https://doi.org/10.1080/22221751.2024.2380421

Hu, Y., Lu, S., Song, Z., Wang, W., Hao, P., Li, J., ... & Yuan, Z. (2013). Association between adverse clinical outcome in human disease caused by novel influenza A H7N9 virus and sustained viral shedding and emergence of antiviral resistance. The Lancet, 381(9885), 2273-2279. https://doi.org/10.1016/s0140-6736(13)61125-3 DOI: https://doi.org/10.1016/S0140-6736(13)61125-3

Ikematsu, H., & Kawai, N. (2011). Laninamivir octanoate: a new long-acting neuraminidase inhibitor for the treatment of influenza. Expert review of anti-infective therapy, 9(10), 851-857. DOI: https://doi.org/10.1586/eri.11.112

Jang, S. G., Kim, Y. I., Casel, M. A. B., Choi, J. H., Gil, J. R., Rollon, R., ... & Choi, Y. K. (2024). HA N193D substitution in the HPAI H5N1 virus alters receptor binding affinity and enhances virulence in mammalian hosts. Emerging Microbes & Infections, 13(1), 2302854. DOI: https://doi.org/10.1080/22221751.2024.2302854

Janssens, Y., Joye, J., Waerlop, G., Clement, F., Leroux-Roels, G., & Leroux-Roels, I. (2022). The role of cell-mediated immunity against influenza and its implications for vaccine evaluation. Frontiers in immunology, 13, 959379. DOI: https://doi.org/10.3389/fimmu.2022.959379

Ji, Z. X., Wang, X. Q., & Liu, X. F. (2021). NS1: a Key protein in the “game” between influenza A virus and host in innate immunity. Frontiers in cellular and infection microbiology, 11, 670177. DOI: https://doi.org/10.3389/fcimb.2021.670177

Kareinen, L., Tammiranta, N., Kauppinen, A., Zecchin, B., Pastori, A., Monne, I., ... & Gadd, T. (2024). Highly pathogenic avian influenza A (H5N1) virus infections on fur farms connected to mass mortalities of black-headed gulls, Finland, July to October 2023. Eurosurveillance, 29(25), 2400063. DOI: https://doi.org/10.2807/1560-7917.ES.2024.29.25.2400063

Kawaoka, Y., Krauss, S., & Webster, R. G. (1989). Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. Journal of virology, 63(11), 4603-4608. DOI: https://doi.org/10.1128/jvi.63.11.4603-4608.1989

Ke, X., Yao, Z., Tang, Y., Yang, M., Li, Y., Yang, G., ... & Chen, Q. (2022). Highly pathogenic avian influenza A (H5N1) virus in swans, central China, 2021. Microbiology Spectrum, 10(5), e02315-22. DOI: https://doi.org/10.1128/spectrum.02315-22

Kilbourne, E. D. (2006). Influenza pandemics of the 20th century. Emerging infectious diseases, 12(1), 9. DOI: https://doi.org/10.3201/eid1201.051254

Kong, D., He, Y., Wang, J., Chi, L., Ao, X., Ye, H., ... & Fan, H. (2024). A single immunization with H5N1 virus-like particle vaccine protects chickens against divergent H5N1 influenza viruses and vaccine efficacy is determined by adjuvant and dosage. Emerging Microbes & Infections, 13(1), 2287682. DOI: https://doi.org/10.1080/22221751.2023.2287682

Kosik, I., & Yewdell, J. W. (2019). Influenza hemagglutinin and neuraminidase: Yin–Yang proteins coevolving to thwart immunity. Viruses, 11(4), 346. DOI: https://doi.org/10.3390/v11040346

Krammer, F., & Schultz-Cherry, S. (2023). We need to keep an eye on avian influenza. Nature Reviews Immunology, 23(5), 267-268. DOI: https://doi.org/10.1038/s41577-023-00868-8

Kristensen, C., Jensen, H. E., Trebbien, R., Webby, R. J., & Larsen, L. E. (2024). The avian and human influenza A virus receptors sialic acid (SA)-α2, 3 and SA-α2, 6 are widely expressed in the bovine mammary gland. bioRxiv, 2024-05. DOI: https://doi.org/10.1101/2024.05.03.592326

Kupferschmidt, K. (2023). From bad to worse. DOI: https://doi.org/10.1126/science.adi1005

Kwon, J., Youk, S., & Lee, D. H. (2022). Role of wild birds in the spread of clade 2.3. 4.4 e H5N6 highly pathogenic avian influenza virus into South Korea and Japan. Infection, Genetics and Evolution, 101, 105281. https://doi.org/10.1016/j.meegid.2022.105281 DOI: https://doi.org/10.1016/j.meegid.2022.105281

Kwon, T., Trujillo, J. D., Carossino, M., Lyoo, E. L., McDowell, C. D., Cool, K., ... & Richt, J. A. (2024). Pigs are highly susceptible to but do not transmit mink-derived highly pathogenic avian influenza virus H5N1 clade 2.3. 4.4 b. Emerging Microbes & Infections, 13(1), 2353292. DOI: https://doi.org/10.1080/22221751.2024.2353292

Lamb, R. A., & Choppin, P. W. (1983). The gene structure and replication of influenza virus. Annual review of biochemistry, 52(1), 467-506. DOI: https://doi.org/10.1146/annurev.bi.52.070183.002343

Lee, J., Lee, C. W., Suarez, D. L., Lee, S. A., Kim, T., & Spackman, E. (2024). Efficacy of commercial recombinant HVT vaccines against a North American clade 2.3. 4.4 b H5N1 highly pathogenic avian influenza virus in chickens. Plos one, 19(7), e0307100. DOI: https://doi.org/10.1371/journal.pone.0307100

Leguia, M., Garcia-Glaessner, A., Muñoz-Saavedra, B., Juarez, D., Barrera, P., Calvo-Mac, C., ... & Lescano, J. (2023). Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. Nature Communications, 14(1), 5489. DOI: https://doi.org/10.1038/s41467-023-41182-0

Li, K. S., Guan, Y., Wang, J., Smith, G. J. D., Xu, K. M., Duan, L., ... & Peiris, J. S. M. (2004). Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature, 430(6996), 209-213. DOI: https://doi.org/10.1038/nature02746

Li, M., & Wang, B. (2006). Computational studies of H5N1 hemagglutinin binding with SA-α-2, 3-Gal and SA-α-2, 6-Gal. Biochemical and Biophysical Research Communications, 347(3), 662-668. https://doi.org/10.1016/j.bbrc.2006.06.179 DOI: https://doi.org/10.1016/j.bbrc.2006.06.179

Liem, N. T., Tung, C. V., Hien, N. D., Hien, T. T., Chau, N. Q., Long, H. T., ... & Horby, P. (2009). Clinical features of human influenza A (H5N1) infection in Vietnam: 2004–2006. Clinical Infectious Diseases, 48(12), 1639-1646. DOI: https://doi.org/10.1086/599031

Lin, T. H., Zhu, X., Wang, S., Zhang, D., McBride, R., Yu, W., Babarinde, S., Paulson, J. C., & Wilson, I. A. (2024). A single mutation in bovine influenza H5N1 hemagglutinin switches specificity to human receptors. Science, 386(6726), 1128-1134. DOI: https://doi.org/10.1126/science.adt0180

Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A., & Klenk, H.-D. (2004). Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proceedings of the National Academy of Sciences, 101(13), 4620-4624. DOI: https://doi.org/10.1073/pnas.0308001101

Matsuda, K., Migueles, S. A., Huang, J., Bolkhovitinov, L., Stuccio, S., Griesman, T., Pullano, A. A., Kang, B. H., Ishida, E., Zimmerman, M., Kashyap, N., Martins, K. M., Stadlbauer, D., Pederson, J., Patamawenu, A., Wright, N., Shofner, T., Evans, S., Liang, C. J., . . . Connors, M. (2021). A replication-competent adenovirus-vectored influenza vaccine induces durable systemic and mucosal immunity. Journal of clinical investigation, 131(5). DOI: https://doi.org/10.1172/JCI140794

McAuley, J. L., Gilbertson, B. P., Trifkovic, S., Brown, L. E., & McKimm-Breschkin, J. L. (2019). Influenza virus neuraminidase structure and functions. Frontiers in microbiology, 10, 39. DOI: https://doi.org/10.3389/fmicb.2019.00039

McLaughlin, M. M., Skoglund, E. W., & Ison, M. G. (2015). Peramivir: an intravenous neuraminidase inhibitor. Expert opinion in pharmacotherapy, 16(12), 1889-1900. DOI: https://doi.org/10.1517/14656566.2015.1066336

Michiels, B., Van Puyenbroeck, K., Verhoeven, V., Vermeire, E., & Coenen, S. (2013). The value of neuraminidase inhibitors for the prevention and treatment of seasonal influenza: a systematic review of systematic reviews. PLoS One, 8(4), e60348. DOI: https://doi.org/10.1371/journal.pone.0060348

Moreno, A., Bonfante, F., Bortolami, A., Cassaniti, I., Caruana, A., Cottini, V., Cereda, D., Farioli, M., Fusaro, A., Lavazza, A., Lecchini, P., Lelli, D., Maroni Ponti, A., Nassuato, C., Pastori, A., Rovida, F., Ruocco, L., Sordilli, M., Baldanti, F., & Terregino, C. (2023). Asymptomatic infection with clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) in carnivore pets, Italy, April 2023. Eurosurveillance, 28(35). DOI: https://doi.org/10.2807/1560-7917.ES.2023.28.35.2300441

Mostafa, A., Naguib, M. M., Nogales, A., Barre, R. S., Stewart, J. P., García-Sastre, A., & Martinez-Sobrido, L. (2024). Avian influenza A (H5N1) virus in dairy cattle: origin, evolution, and cross-species transmission. MBio, 15(12), e0254224. DOI: https://doi.org/10.1128/mbio.02542-24

Murawski, A., Fabrizio, T., Ossiboff, R., Kackos, C., Jeevan, T., Jones, J. C., Kandeil, A., Walker, D., Turner, J. C. M., Patton, C., Govorkova, E. A., Hauck, H., Mickey, S., Barbeau, B., Bommineni, Y. R., Torchetti, M., Lantz, K., Kercher, L., Allison, A. B., . . . Webby, R. J. (2024). Highly pathogenic avian influenza A(H5N1) virus in a common bottlenose dolphin (Tursiops truncatus) in Florida. Communications biology, 7(1), 476. DOI: https://doi.org/10.1038/s42003-024-06173-x

Nakhaie, M., Soleimanjahi, H., Mollaie, H. R., & Arabzadeh, S. M. A. (2017). Development of multiplex reverse transcription-polymerase chain reaction for simultaneous detection of influenza A, B and adenoviruses. Iranian journal of pathology, 13(1), 54. DOI: https://doi.org/10.30699/ijp.13.1.54

Nichol, K. L., & Treanor, J. J. (2006). Vaccines for seasonal and pandemic influenza. The Journal of infectious diseases, 194(Supplement_2), S111-S118. DOI: https://doi.org/10.1086/507544

Nooruzzaman, M., Haque, M. E., Chowdhury, E. H., & Islam, M. R. (2019). Pathology of clade 2.3.2.1 avian influenza virus (H5N1) infection in quails and ducks in Bangladesh. Avian Pathology, 48(1), 73-79. DOI: https://doi.org/10.1080/03079457.2018.1535165

Noshi, T., Kitano, M., Taniguchi, K., Yamamoto, A., Omoto, S., Baba, K., ... & Naito, A. (2018). In vitro characterization of baloxavir acid, a first-in-class cap-dependent endonuclease inhibitor of the influenza virus polymerase PA subunit. Antiviral research, 160, 109-117. https://doi.org/10.1016/j.antiviral.2018.10.008 DOI: https://doi.org/10.1016/j.antiviral.2018.10.008

OFFLU. (2022). Influenza A cleavage sites. Office International des Epizooties - FAO Network of Expertise of Animal Influenza. https://www.offlu.org/wp-content/uploads/2021/01/Influenza_A_Cleavage_Sites.pdf

Oguzie, J. U., Marushchak, L. V., Shittu, I., Lednicky, J. A., Miller, A. L., Hao, H., Nelson, M. I., & Gray, G. C. (2024). Avian influenza A(H5N1) virus among dairy cattle, Texas, USA. Emerging infectious diseases, 30(7), 1425-1429. DOI: https://doi.org/10.3201/eid3007.240717

Panickan, S., Bhatia, S., Bhat, S., Bhandari, N., Pateriya, A. K., Kalaiyarasu, S., ... & Tripathi, M. (2022). Reverse genetics based H5N2 vaccine provides clinical protection against H5N1, H5N8 and H9N2 avian influenza infection in chickens. Vaccine, 40(48), 6998-7008. https://doi.org/10.1016/j.vaccine.2022.10.018 DOI: https://doi.org/10.1016/j.vaccine.2022.10.018

Pardi, N., Tuyishime, S., Muramatsu, H., Kariko, K., Mui, B. L., Tam, Y. K., ... & Weissman, D. (2015). Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. Journal of Controlled Release, 217, 345-351. https://doi.org/10.1016/j.jconrel.2015.08.007 DOI: https://doi.org/10.1016/j.jconrel.2015.08.007

Peacock, T. P., Sheppard, C. M., Lister, M. G., Staller, E., Frise, R., Swann, O. C., ... & Barclay, W. S. (2023). Mammalian ANP32A and ANP32B proteins drive differential polymerase adaptations in avian influenza virus. Journal of virology, 97(5), e00213-23. DOI: https://doi.org/10.1128/jvi.00213-23

Peacock, T., Moncla, L., Dudas, G., VanInsberghe, D., Sukhova, K., Lloyd-Smith, J. O., ... & Nelson, M. I. (2024). The global H5N1 influenza panzootic in mammals. Nature, 1-2. DOI: https://doi.org/10.1038/s41586-024-08054-z

Pearce, M. B., Pappas, C., Gustin, K. M., Davis, C. T., Pantin-Jackwood, M. J., Swayne, D. E., ... & Tumpey, T. M. (2017). Enhanced virulence of clade 2.3. 2.1 highly pathogenic avian influenza A H5N1 viruses in ferrets. Virology, 502, 114-122. https://doi.org/10.1016/j.virol.2016.12.024 DOI: https://doi.org/10.1016/j.virol.2016.12.024

Pereira, H. G., Tůmová, B., & Law, V. G. (1965). Avian influenza A viruses. Bulletin of the World Health Organization, 32(6), 855-860.

Phan, T. L., Ho, V. T., Vu, M. H., Nguyen, T. N., Duong, H. T., Holt, R., ... & Flores, J. (2016). Clinical testing of an inactivated influenza A/H5N1 vaccine candidate in a double-blinded, placebo-controlled, randomized trial in healthy adults in Vietnam. Vaccine, 34(45), 5449-5456. https://doi.org/10.1016/j.vaccine.2016.08.055 DOI: https://doi.org/10.1016/j.vaccine.2016.08.055

Pielak, R. M., & Chou, J. J. (2011). Influenza M2 proton channels. Biochimica et biophysica acta-biomembranes, 1808(2), 522-529. DOI: https://doi.org/10.1016/j.bbamem.2010.04.015

Restori, K. H., Septer, K. M., Field, C. J., Patel, D. R., VanInsberghe, D., Raghunathan, V., Lowen, A. C., & Sutton, T. C. (2024). Risk assessment of a highly pathogenic H5N1 influenza virus from mink. Nature communations, 15(1), 4112. DOI: https://doi.org/10.1038/s41467-024-48475-y

Rimondi, A., Vanstreels, R. E. T., Olivera, V., Donini, A., Lauriente, M. M., & Uhart, M. M. (2024). Highly pathogenic avian influenza A(H5N1) viruses from multispecies outbreak, Argentina, August 2023. Emerging infectious diseases, 30(4), 812-814. DOI: https://doi.org/10.3201/eid3004.231725

Rodríguez, S., Marandino, A., Tomás, G., Panzera, Y., Wallau, G. L., Dezordi, F. Z., ... & Pérez, R. (2024). Infection of South American coatis (Nasua nasua) with highly pathogenic avian influenza H5N1 virus displaying mammalian adaptive mutations. Microbial Pathogenesis, 195, 106895. https://doi.org/10.1016/j.micpath.2024.106895 DOI: https://doi.org/10.1016/j.micpath.2024.106895

Russell, S. L., Andrew, C. L., Yang, K. C., Coombe, M., McGregor, G., Redford, T., ... & Himsworth, C. (2024). Descriptive epidemiology and phylogenetic analysis of highly pathogenic avian influenza H5N1 clade 2.3. 4.4 b in British Columbia (BC) and the Yukon, Canada, September 2022 to June 2023. Emerging Microbes & Infections, 13(1), 2392667.

Sangsiriwut, K., Uiprasertkul, M., Payungporn, S., Auewarakul, P., Ungchusak, K., Chantratita, W., & Puthavathana, P. (2018). Complete genomic sequences of highly pathogenic H5N1 avian influenza viruses obtained directly from human autopsy specimens. Microbiology Resource Announcements, 7(22). DOI: https://doi.org/10.1128/mra.01498-18

Santos, J. J. S., Wang, S., McBride, R., Zhao, Y., Paulson, J. C., & Hensley, S. E. (2024). Bovine H5N1 influenza virus binds poorly to human-type sialic acid receptors. bioRxiv. DOI: https://doi.org/10.1101/2024.08.01.606177

Scheibner, D., Salaheldin, A. H., Bagato, O., Zaeck, L. M., Mostafa, A., Blohm, U., Müller, C., Eweas, A. F., Franzke, K., & Karger, A. (2023). Phenotypic effects of mutations observed in the neuraminidase of human origin H5N1 influenza A viruses. PLoS Pathog, 19(2), e1011135. DOI: https://doi.org/10.1371/journal.ppat.1011135

Sheppard, C. M., Goldhill, D. H., Swann, O. C., Staller, E., Penn, R., Platt, O. K., Sukhova, K., Baillon, L., Frise, R., & Peacock, T. P. (2023). An influenza A virus can evolve to use human ANP32E through altering polymerase dimerization. Nature Communications, 14(1), 6135. DOI: https://doi.org/10.1038/s41467-023-41308-4

Singh, G., Trujillo, J. D., McDowell, C. D., Matias-Ferreyra, F., Kafle, S., Kwon, T., Gaudreault, N. N., Fitz, I., Noll, L., Morozov, I., Retallick, J., & Richt, J. A. (2024). Detection and characterization of H5N1 HPAIV in environmental samples from a dairy farm. Virus genes, 60(5), 517-527. DOI: https://doi.org/10.1007/s11262-024-02085-4

Sobolev, I., Gadzhiev, A., Sharshov, K., Ohlopkova, O., Stolbunova, K., Fadeev, A., Dubovitskiy, N., Glushchenko, A., Irza, V., Perkovsky, M., Litvinov, K., Meshcheriakova, N., Petherbridge, G., & Shestopalov, A. (2023). Highly pathogenic avian influenza A(H5N1) virus-induced mass death of wild birds, Caspian Sea, Russia, 2022. Emerg Infect Dis, 29(12), 2528-2532. DOI: https://doi.org/10.3201/eid2912.230330

Soda, K., Tomioka, Y., Hidaka, C., Matsushita, M., Usui, T., & Yamaguchi, T. (2022). Susceptibility of common family Anatidae bird species to clade 2.3. 4.4 e H5N6 high pathogenicity avian influenza virus: an experimental infection study. BMC Veterinary Research, 18(1), 127. DOI: https://doi.org/10.1186/s12917-022-03222-7

Spackman, E., Suarez, D. L., Lee, C. W., Pantin-Jackwood, M. J., Lee, S. A., Youk, S., & Ibrahim, S. (2023). Efficacy of inactivated and RNA particle vaccines against a North American Clade 2.3. 4.4 b H5 highly pathogenic avian influenza virus in chickens. Vaccine, 41(49), 7369-7376. https://doi.org/10.1016/j.vaccine.2023.10.070 DOI: https://doi.org/10.1016/j.vaccine.2023.10.070

Squires, R. B., Noronha, J., Hunt, V., García‐Sastre, A., Macken, C., Baumgarth, N., ... & Scheuermann, R. H. (2012). Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza and other respiratory viruses, 6(6), 404-416. DOI: https://doi.org/10.1111/j.1750-2659.2011.00331.x

Stieneke‐Gröber, A., Vey, M., Angliker, H., Shaw, E., Thomas, G., Roberts, C., Klenk, H., & Garten, W. (1992). Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin‐like endoprotease. The EMBO journal, 11(7), 2407-2414. DOI: https://doi.org/10.1002/j.1460-2075.1992.tb05305.x

Sutton, T. C. (2018). The pandemic threat of emerging H5 and H7 avian influenza viruses. Viruses, 10(9), 461. DOI: https://doi.org/10.3390/v10090461

Takadate, Y., Tsunekuni, R., Kumagai, A., Mine, J., Kikutani, Y., Sakuma, S., Miyazawa, K., & Uchida, Y. (2023). Different ifectivity and transmissibility of H5N8 and H5N1 high pathogenicity avian influenza viruses isolated from chickens in Japan in the 2021/2022 Season. Viruses, 15(2). DOI: https://doi.org/10.3390/v15020265

Te Velthuis, A. J., & Fodor, E. (2016). Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nature Reviews Microbiology, 14(8), 479-493. DOI: https://doi.org/10.1038/nrmicro.2016.87

Te Velthuis, A. J., Grimes, J. M., & Fodor, E. (2021). Structural insights into RNA polymerases of negative-sense RNA viruses. Nature Reviews Microbiology, 19(5), 303-318. DOI: https://doi.org/10.1038/s41579-020-00501-8

Teo, S. P. (2022). Review of COVID-19 mRNA Vaccines: BNT162b2 and mRNA-1273. J of pharmaceutical practices, 35(6), 947-951. DOI: https://doi.org/10.1177/08971900211009650

Tiensin, T., Chaitaweesub, P., Songserm, T., Chaisingh, A., Hoonsuwan, W., Buranathai, C., Parakamawongsa, T., Premashthira, S., Amonsin, A., Gilbert, M., Nielen, M., & Stegeman, A. (2005). Highly pathogenic avian influenza H5N1, Thailand, 2004. Emerging infectious diseases, 11(11), 1664-1672. DOI: https://doi.org/10.3201/eid1111.050608

Tomás, G., Marandino, A., Panzera, Y., Rodríguez, S., Wallau, G. L., Dezordi, F. Z., Pérez, R., Bassetti, L., Negro, R., & Williman, J. (2024). Highly pathogenic avian influenza H5N1 virus infections in pinnipeds and seabirds in Uruguay: Implications for bird–mammal transmission in South America. Virus evolution, 10(1), veae031. DOI: https://doi.org/10.1093/ve/veae031

Uhart, M. M., Vanstreels, R. E. T., Nelson, M. I., Olivera, V., Campagna, J., Zavattieri, V., Lemey, P., Campagna, C., Falabella, V., & Rimondi, A. (2024). Epidemiological data of an influenza A/H5N1 outbreak in elephant seals in Argentina indicates mammal-to-mammal transmission. Nature Communications, 15(1), 9516. DOI: https://doi.org/10.1038/s41467-024-53766-5

Uno, Y., Soda, K., Tomioka, Y., Ito, T., Usui, T., & Yamaguchi, T. (2020). Pathogenicity of clade 2.3.2.1 H5N1 highly pathogenic avian influenza virus in American kestrel (Falco sparverius). Avian Pathology, 49(5), 515-525. DOI: https://doi.org/10.1080/03079457.2020.1787337

Wade, A., Taïga, T., Fouda, M. A., MaiMoussa, A., Jean Marc, F. K., Njouom, R., ... & Cattoli, G. (2018). Highly pathogenic avian influenza A/H5N1 Clade 2.3. 2.1 c virus in poultry in Cameroon, 2016–2017. Avian Pathology, 47(6), 559-575. DOI: https://doi.org/10.1080/03079457.2018.1492087

Walther, T., Karamanska, R., Chan, R. W., Chan, M. C., Jia, N., Air, G., Hopton, C., Wong, M. P., Dell, A., & Malik Peiris, J. (2013). Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection. PLoS Pathog, 9(3), e1003223. DOI: https://doi.org/10.1371/journal.ppat.1003223

WDR. (2025). Schwäne am Essener Baldeneysee an Geflügelpest gestorben. West Deutscher Rundfunk. https://www1.wdr.de/nachrichten/ruhrgebiet/gefluegelpest-essen-bestaetigt-100.html

Wester, A., & Shetty, A. K. (2016). Peramivir injection in the treatment of acute influenza: a review of the literature. Infection and drug resistance, 9, 201-214. DOI: https://doi.org/10.2147/IDR.S86460

Wetly, P. (2025). Bird Flu Kills Harbor Seal and Flamingo at Lincoln Park Zoo, Officials Announce. WTTW News.

WHO. (2025). Human infection with avian influenza A(H5) viruses. iris.who.int/bitstream/handle/10665/380024/AI-20250103.pdf

Wimmers, F., Donato, M., Kuo, A., Ashuach, T., Gupta, S., Li, C., ... & Pulendran, B. (2021). The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell, 184(15), 3915-3935. DOI: https://doi.org/10.1016/j.cell.2021.05.039

Xie, R., Edwards, K. M., Wille, M., Wei, X., Wong, S.-S., Zanin, M., El-Shesheny, R., Ducatez, M., Poon, L. L., & Kayali, G. (2023). The episodic resurgence of highly pathogenic avian influenza H5 virus. Nature, 622(7984), 810-817. DOI: https://doi.org/10.1038/s41586-023-06631-2

Xing, X., Shi, J., Cui, P., Yan, C., Zhang, Y., Zhang, Y., Wang, C., Chen, Y., Zeng, X., Tian, G., Liu, L., Guan, Y., Li, C., Suzuki, Y., Deng, G., & Chen, H. (2024). Evolution and biological characterization of H5N1 influenza viruses bearing the clade 2.3.2.1 hemagglutinin gene. Emerging microbes and infection, 13(1), 2284294. DOI: https://doi.org/10.1080/22221751.2023.2284294

Xu, X., Subbarao, K., Cox, N. J., & Guo, Y. (1999). Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology, 261(1), 15-19. DOI: https://doi.org/10.1006/viro.1999.9820

Yamayoshi, S., Kiso, M., Yasuhara, A., Ito, M., Shu, Y., & Kawaoka, Y. (2018). Enhanced replication of highly pathogenic influenza A (H7N9) virus in humans. Emerging infectious diseases, 24(4), 746. DOI: https://doi.org/10.3201/eid2404.171509

Yang, J., Zhang, C., Yuan, Y., Sun, J., Lu, L., Sun, H., Sun, H., Chu, D., Qin, S., Chen, J., Zhang, C., Hao, X., Shi, W., Liu, W., Gao, G. F., Digard, P., Lycett, S., & Bi, Y. (2023). Novel Avian Influenza Virus (H5N1) Clade 2.3.4.4b Reassortants in Migratory Birds, China. Emerging infectious diseases, 29(6), 1244-1249. DOI: https://doi.org/10.3201/eid2906.221723

Younan, M., Poh, M. K., Elassal, E., Davis, T., Rivailler, P., Balish, A. L., ... & Kandeel, A. (2013). Microevolution of highly pathogenic avian influenza A (H5N1) viruses isolated from humans, Egypt, 2007–2011. Emerging infectious diseases, 19(1), 43. DOI: https://doi.org/10.3201/eid1901.121080

Zhang, B., Liu, M., Huang, J., Zeng, Q., Zhu, Q., Xu, S., & Chen, H. (2022). H1N1 influenza A virus protein NS2 inhibits innate immune response by targeting IRF7. Viruses, 14(11), 2411. DOI: https://doi.org/10.3390/v14112411

Zhang, Q., Mei, X., Zhang, C., Li, J., Chang, N., Aji, D., Shi, W., Bi, Y., & Ma, Z. (2021). Novel reassortant 2.3.4.4B H5N6 highly pathogenic avian influenza viruses circulating among wild, domestic birds in Xinjiang, Northwest China. Journal of veterinary sciences, 22(4), e43. DOI: https://doi.org/10.4142/jvs.2021.22.e43

Published

22-01-2025

How to Cite

Pruess, B. M. (2025). The journey of the avian influenza virus H5N1 through 30 years of evolutionary events, geographical locations, and animal species: A review. International Journal of Health Sciences, 9(1), 89–112. https://doi.org/10.53730/ijhs.v9n1.15502

Issue

Section

Peer Review Articles