The effect of ethyl acetate fraction of Marsilea crenata presl. leaves in increasing osterix expression in hFOB 1.19 cells

https://doi.org/10.53730/ijhs.v6n2.8096

Authors

  • Agnis Pondineka Ria Aditama Universitas Airlangga, Surabaya, Indonesia and Pharmacy Academy of Jember, Jember, Indonesia
  • Burhan Ma’arif Maulana Malik Ibrahim State Islamic University, Malang, Indonesia
  • Hening Laswati Universitas Airlangga, Surabaya, Indonesia
  • Mangestuti Agil Universitas Airlangga, Surabaya, Indonesia

Keywords:

bone formation, ethyl acetate fraction, Hfob 1.19, marsilea crenata presl, osterix

Abstract

Marsilea crenata Presl. leaves contain phytoestrogens that is suspected to play a role in increasing bone formation. Bone formation activity is defined by the expression of Osterix, a transcription factor that plays a key role in bone development. The aim of this study is to show that the ethyl acetate fraction of Marsilea crenata Presl. leaves can increase bone formation process in hFOB 1.19 cells in a TNF-α dependent manner, by measurement of Osterix. The hFOB 1.19 cells were grown in 24-well microplates and treated with 10 ng/ml TNF-α for 24 hours. The ethyl acetate fraction of Marsilea crenata Presl. leaves were also added in concentrations of 62.5, 125, and 250 ppm. A positive control was employed, at a concentration of 2.5 g/L of genistein. The expression of osterix was examined using an immunocytochemistry technique with CLSM to assess bone forming activity. The results show that ethyl acetate fraction Marsilea crenata Presl. leaves can boost osterix expression in hFOB 1.19 cells, with optimal concentration was 250 ppm at p<0.005. The ethyl acetate fraction of Marsilea crenata Presl. leaves can increase Osterix in osteoblast hFOB 1.19 cell, indicating improved bone forming activity.

Downloads

Download data is not yet available.

References

Aditama, A. P. R., Ma’arif, B., & Muslikh, F. A. (2022). Effect of Osterix and Osteocalcin Enhancement By Quercetin (3,3’,4’,5,7-Pentahydroxyflavone) on Osteoblast hFOB 1.19 Cell line. International Jornal of Applied Pharmaceutics, 14.

Aditama, A. P. R., Ma'arif, B., Mirza, D. M., Laswati, H., & Agil, M. (2020). In vitro and in silico analysis on the bone formation activity of N-hexane fraction of Semanggi (Marsilea crenata Presl.). Systematic Reviews in Pharmacy, 11(11), 837-849.

Aditama, A. P., Ma’arif, B., Laswati, H., & Agil, M. (2021). In vitro and in silico analysis of phytochemical compounds of 96% ethanol extract of semanggi (Marsilea crenata Presl.) leaves as a bone formation agent. Journal of Basic and Clinical Physiology and Pharmacology, 32(4), 881-887.

Aggarwal, B. B., Shishodia, S., Takada, Y., Jackson-Bernitsas, D., Ahn, K. S., Sethi, G., & Ichikawa, H. (2005). TNF blockade: an inflammatory issue. Cytokines as potential therapeutic targets for inflammatory skin diseases, 161-186.

Amarasekara, D. S., Kim, S., & Rho, J. (2021). Regulation of osteoblast differentiation by cytokine networks. International journal of molecular sciences, 22(6), 2851.

Baek, W. Y., de Crombrugghe, B., & Kim, J. E. (2010). Postnatally induced inactivation of Osterix in osteoblasts results in the reduction of bone formation and maintenance. Bone, 46(4), 920-928. https://doi.org/10.1016/j.bone.2009.12.007

Bretler, D. M., Hansen, P. R., Lindhardsen, J., Ahlehoff, O., Andersson, C., Jensen, T. B., ... & Gislason, G. H. (2012). Hormone replacement therapy and risk of new-onset atrial fibrillation after myocardial infarction-a nationwide cohort study. PloS one, 7(12), e51580.

Canette, A., & Briandet, R. (2014). MICROSCOPY| Confocal Laser Scanning Microscopy. Elsevier.

Cardona, J. A. R., Iriart, C. H., & Herrera, M. L. (2013). Applications of confocal laser scanning microscopy (CLSM) in foods. In Confocal Laser Microscopy-Principles and Applications in Medicine, Biology, and the Food Sciences. IntechOpen.

Chen, Y. P., Chu, Y. L., Tsuang, Y. H., Wu, Y., Kuo, C. Y., & Kuo, Y. J. (2020). Anti-inflammatory effects of adenine enhance osteogenesis in the osteoblast-like mg-63 cells. Life, 10(7), 116.

Compston, J. E., McClung, M. R., & Leslie, W. D. (2019). Osteoporosis. The Lancet, 393(10169), 364–376.

Florencio-Silva, R., Sasso, G. R. D. S., Sasso-Cerri, E., Simões, M. J., & Cerri, P. S. (2015). Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed research international, 2015.

Gupta, C., Prakash, D., & Gupta, S. (2016). Phytoestrogens as pharma foods. Adv Food Technol Nutr Sci Open J, 2(1), 19-31.

Kim, J. M., Lin, C., Stavre, Z., Greenblatt, M. B., & Shim, J. H. (2020). Osteoblast-osteoclast communication and bone homeostasis. Cells, 9(9), 2073.

Kini, U., & Nandeesh, B. N. (2012). Physiology of bone formation, remodeling, and metabolism. In Radionuclide and hybrid bone imaging (pp. 29-57). Springer, Berlin, Heidelberg.

Laswati, H. (2011). Green clover potentiates delaying the increment of imbalance bone remodeling process in postmenopausal women. Folia Medica Indonesiana, 47(2), 112-117.

Liu, Q., Li, M., Wang, S., Xiao, Z., Xiong, Y., & Wang, G. (2020). Recent advances of osterix transcription factor in osteoblast differentiation and bone formation. Frontiers in Cell and Developmental Biology, 8, 1575.

Ma'arif, B., Agil, M., & Laswati, H. (2018). Alkaline phosphatase activity of Marsilea crenata Presl. extract and fractions as marker of MC3T3-E1 osteoblast cell differentiation. Journal of Applied Pharmaceutical Science, 8(3), 55-59.

Marie, P. J. (2006). Strontium ranelate: a physiological approach for optimizing bone formation and resorption. Bone, 38(2), 10-14. https://doi.org/10.1016/j.bone.2005.07.029

Mizoguchi, T., Pinho, S., Ahmed, J., Kunisaki, Y., Hanoun, M., Mendelson, A., ... & Frenette, P. S. (2014). Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Developmental cell, 29(3), 340-349. https://doi.org/10.1016/j.devcel.2014.03.013

Noh, J. Y., Yang, Y., & Jung, H. (2020). Molecular mechanisms and emerging therapeutics for osteoporosis. International Journal of Molecular Sciences, 21(20), 7623.

Saravanakumar, K., Park, S., Mariadoss, A. V. A., Sathiyaseelan, A., Veeraraghavan, V. P., Kim, S., & Wang, M. H. (2021). Chemical composition, antioxidant, and anti-diabetic activities of ethyl acetate fraction of Stachys riederi var. japonica (Miq.) in streptozotocin-induced type 2 diabetic mice. Food and Chemical Toxicology, 155, 112374. https://doi.org/10.1016/j.fct.2021.112374

Sembiring, T. B., Maruf, I. R., Susilo, C. B., Hidayatulloh, A. N., & Bangkara, B. M. A. S. A. (2022). Health literacy study on approaching forest and boosting immune system strategy. International Journal of Health Sciences, 6(1), 40-49. https://doi.org/10.53730/ijhs.v6n1.3145

Setzer, B., Bächle, M., Metzger, M. C., & Kohal, R. J. (2009). The gene-expression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia. Biomaterials, 30(6), 979-990. https://doi.org/10.1016/j.biomaterials.2008.10.054

Simmons, C. A., Alsberg, E., Hsiong, S., Kim, W. J., & Mooney, D. J. (2004). Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone, 35(2), 562-569. https://doi.org/10.1016/j.bone.2004.02.027 https://doi.org/10.1016/j.bone.2004.02.027

Sinha, K. M., & Zhou, X. (2013). Genetic and molecular control of osterix in skeletal formation. Journal of cellular biochemistry, 114(5), 975-984.

Sirotkin, A. V., & Harrath, A. H. (2014). Phytoestrogens and their effects. European journal of pharmacology, 741, 230-236. https://doi.org/10.1016/j.ejphar.2014.07.057

Strzelecka-Kiliszek, A., Bozycki, L., Mebarek, S., Buchet, R., & Pikula, S. (2017). Characteristics of minerals in vesicles produced by human osteoblasts hFOB 1.19 and osteosarcoma Saos-2 cells stimulated for mineralization. Journal of Inorganic Biochemistry, 171, 100-107. https://doi.org/10.1016/j.jinorgbio.2017.03.006

Wang, K., Hu, S., Wang, B., Wang, J., Wang, X., & Xu, C. (2019). Genistein protects intervertebral discs from degeneration via Nrf2‐mediated antioxidant defense system: An in vitro and in vivo study. Journal of Cellular Physiology, 234(9), 16348-16356.

Wittkowske, C., Reilly, G. C., Lacroix, D., & Perrault, C. M. (2016). In vitro bone cell models: impact of fluid shear stress on bone formation. Frontiers in Bioengineering and Biotechnology, 4, 87.

Wu, H. S., Zhu, D. F., Zhou, C. X., Feng, C. R., Lou, Y. J., Yang, B., & He, Q. J. (2009). Insulin sensitizing activity of ethyl acetate fraction of Acorus calamus L. in vitro and in vivo. Journal of Ethnopharmacology, 123(2), 288-292. https://doi.org/10.1016/j.jep.2009.03.004

Yang, N., Wang, G., Hu, C., Shi, Y., Liao, L., Shi, S., ... & Jin, Y. (2013). Tumor necrosis factor α suppresses the mesenchymal stem cell osteogenesis promoter miR‐21 in estrogen deficiency–induced osteoporosis. Journal of Bone and Mineral Research, 28(3), 559-573.

Yang, N., Zuchero, J. B., Ahlenius, H., Marro, S., Ng, Y. H., Vierbuchen, T., ... & Wernig, M. (2013). Generation of oligodendroglial cells by direct lineage conversion. Nature biotechnology, 31(5), 434-439.

Yang, T. S., Wang, S. Y., Yang, Y. C., Su, C. H., Lee, F. K., Chen, S. C., ... & Huang, K. E. (2012). Effects of standardized phytoestrogen on Taiwanese menopausal women. Taiwanese Journal of Obstetrics and Gynecology, 51(2), 229-235. https://doi.org/10.1016/j.tjog.2012.04.011

Yang, X., Qin, L., Liang, W., Wang, W., Tan, J., Liang, P., ... & Cui, S. (2014). New bone formation and microstructure assessed by combination of confocal laser scanning microscopy and differential interference contrast microscopy. Calcified tissue international, 94(3), 338-347.

Zhang, S., Zhang, M., Yu, X., & Ren, H. (2016). What keeps Chinese from recycling: Accessibility of recycling facilities and the behavior. Resources, Conservation and Recycling, 109, 176-186. https://doi.org/10.1016/j.resconrec.2016.02.008

Published

01-06-2022

How to Cite

Aditama, A. P. R., Ma’arif, B., Laswati, H., & Agil, M. (2022). The effect of ethyl acetate fraction of Marsilea crenata presl. leaves in increasing osterix expression in hFOB 1.19 cells. International Journal of Health Sciences, 6(2), 789–796. https://doi.org/10.53730/ijhs.v6n2.8096

Issue

Section

Peer Review Articles