Evaluation of the renoprotective effects of metformin nanoparticles in rats with diabetic nephropathy

https://doi.org/10.53730/ijhs.v6nS1.8311

Authors

  • Khalid A. Edam Directorate of Education Thi-Qar, Ministry of Education, Iraq
  • Mohsin E. Aldokheily College of Science, University of Thi-Qar, Iraq
  • Firas F. Al-Yaseen College of Pharmacy, University of Thi-Qar, Iraq

Keywords:

Metformin Nanoparticles, Microemulsions, Diabetic Nephropathy, rats

Abstract

A system microemulsions was used to make metformin nanoparticles. Transmission electron microscope (TEM) and Scanning Electron Microscopy were used to diagnose previously prepared nanoparticles, which found that the average size of previously prepared nanoparticles is 29.5 nm. This study looked at the effects of metformin nanoparticles on rats with diabetic nephropathy. Diabetic nephropathy was successfully developed in rats using a high-fat diet and a single dose of 30 mg/kg streptozotocin. Metformin nanoparticles was administered intragastrically for 60 days, and fasting blood sugar, fasting insulin concentration, serum urea, serum albumin, serum creatinine, albuminuria and albumin to creatinine ratio  were subsequently examined at the end of administration. The current investigation found that metformin NPs therapy effectively lowered fasting blood sugar, fasting insulin concentration, serum urea, serum albumin, serum creatinine, albuminuria, and albumin to creatinine ratio in diabetic nephropathy rats, with an increase in serum albumin.

Downloads

Download data is not yet available.

References

Alhaider, A. A., Korashy, H. M., Sayed-Ahmed, M. M., Mobark, M., Kfoury, H., & Mansour, M. A. (2011). Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression. Chemico-Biological Interactions, 192(3), 233–242. https://doi.org/10.1016/j.cbi.2011.03.014

Alicic, R. Z., Rooney, M. T., & Tuttle, K. R. (2017). Diabetic Kidney Disease. 12(18). https://doi.org/10.2215/CJN.11491116

Amini, F. G.; Rafieian-Kopaei, M.; Nematbakhsh, M.; Baradaran, A. &, & Nasri, H. (2012). Ameliorative effects of metformin on renal histologic and biochemical alterations of gentamicin-induced renal toxicity in Wistar rats. Journal of Research in Medical Sciences, 18(7), 627.

Anai, M., Funaki, M., Ogihara, T., Kanda, A., Onishi, Y., Sakoda, H., Inukai, K., Nawano, M., Fukushima, Y., Yazaki, Y., Kikuchi, M., Oka, Y., & Asano, T. (1999). Enhanced insulin-stimulated activation of phosphatidylinositol 3-kinase in the liver of high-fat-fed rats. Diabetes, 48(1), 158–169. https://doi.org/10.2337/diabetes.48.1.158

Araki, E., & Nishikawa, T. (2010). Oxidative stress: A cause and therapeutic target of diabetic complications. Journal of Diabetes Investigation, 1(3), 90–96. https://doi.org/10.1111/j.2040-1124.2010.00013.x

Arora, M. K., & Singh, U. K. (2013). Molecular mechanisms in the pathogenesis of diabetic nephropathy: An update. Vascular Pharmacology, 58(4), 259–271. https://doi.org/10.1016/j.vph.2013.01.001

Azrini, N., Azmi, N., Elgharbawy, A. A. M., Motlagh, S. R., & Samsudin, N. (2019). Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Processes, 7(617), 1–34.

Bellin, C., De Wiza, D. H., Wiernsperger, N. F., & Rösen, P. (2006). Generation of reactive oxygen species by endothelial and smooth muscle cells: Influence of hyperglycemia and metformin. Hormone and Metabolic Research, 38(11), 732–739. https://doi.org/10.1055/s-2006-955084

Buettner, R., Schölmerich, J., & Bollheimer, L. C. (2007). High-fat diets: Modeling the metabolic disorders of human obesity in rodents. Obesity, 15(4), 798–808. https://doi.org/10.1038/oby.2007.608

Chen, X., Zhang, Q., Yang, Q., Huang, Z., Liao, G., & Wang, Z. (2022). The Effect and Mechanism of Duodenal-Jejunal Bypass to Treat Type 2 Diabetes Mellitus in a Rat Model. Obesity Facts, 1–13. https://doi.org/10.1159/000519417

Chowdhury, P., Gogoi, M., Borchetia, S., & Bandyopadhyay, T. (2017). Nanotechnology applications and intellectual property rights in agriculture. Environmental Chemistry Letters, 15(3), 413–419. https://doi.org/10.1007/s10311-017-0632-4

Dallak, M., Bin-Jaliah, I., Al-Hashem, F., Kamar, S. S., Abdel Kader, D. H., Amin, S. N., Haidara, M. A., & Al-Ani, B. (2018). Metformin pretreatment ameliorates diabetic nephropathy induced by a combination of high fat diet and streptozotocin in rats. International Journal of Morphology, 36(3), 969–974. https://doi.org/10.4067/S0717-95022018000300969

Deeds, M. C., Anderson, J. M., Armstrong, A. S., Gastineau, D. A., Hiddinga, H. J., Jahangir, A., Eberhardt, N. L., & Kudva, Y. C. (2011). Single dose streptozotocin-induced diabetes: Considerations for study design in islet transplantation models. Laboratory Animals, 45(3), 131–140. https://doi.org/10.1258/la.2010.010090

Devi, L. T., & Nimonkar, A. R. (2018). Spot urinary albumin creatinine ratio as a predictor of preeclampsia and dilemma in clinical interpretation. International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 7(10), 4086. https://doi.org/10.18203/2320-1770.ijrcog20184133

Dupuis, F., Atkinson, J., Limiñana, P., & Chillon, J. M. (2005). Captopril improves cerebrovascular structure and function in old hypertensive rats. British Journal of Pharmacology, 144(3), 349–356. https://doi.org/10.1038/sj.bjp.0706001

Elmarakby, A. A., & Sullivan, J. C. (2012). Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovascular Therapeutics, 30(1), 49–59. https://doi.org/10.1111/j.1755-5922.2010.00218.x

Ghasemi, A., Khalifi, S., & Jedi, S. (2014). Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiologica Hungarica, 101(4), 408–420. https://doi.org/10.1556/APhysiol.101.2014.4.2

Gheibi, S., Kashfi, K., & Ghasemi, A. (2017). A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin. In Biomedicine and Pharmacotherapy (Vol. 95, pp. 605–613). Elsevier Masson SAS. https://doi.org/10.1016/j.biopha.2017.08.098

Grossmann, M. E., Yang, D. Q., Guo, Z., Potter, D. A., & Cleary, M. P. (2015). Metformin Treatment for the Prevention and/or Treatment of Breast/Mammary Tumorigenesis. Current Pharmacology Reports, 1(5), 312–323. https://doi.org/10.1007/s40495-015-0032-z

Gupta, J., Fatima, M. T., Islam, Z., Khan, R. H., Uversky, V. N., & Salahuddin, P. (2019). Nanoparticle formulations in the diagnosis and therapy of Alzheimer’s disease. International Journal of Biological Macromolecules, 130, 515–526. https://doi.org/10.1016/j.ijbiomac.2019.02.156

Hamidi, M., Azadi, A., & Rafiei, P. (2008). Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 60(15), 1638–1649. https://doi.org/10.1016/j.addr.2008.08.002

Haneda, M., Utsunomiya, K., Koya, D., Babazono, T., Moriya, T., & Makino, H. (2015). A new Classi fi cation of Diabetic Nephropathy 2014 : a report from Joint Committee on Diabetic Nephropathy. 6(2), 242–246. https://doi.org/10.1111/jdi.12319

Kalin, M. F., Goncalves, M., John-Kalarickal, J., & Fonseca, V. (2017). Pathogenesis of type 2 diabetes mellitus. Principles of Diabetes Mellitus: Third Edition, 267–277. https://doi.org/10.1007/978-3-319-18741-9_13

Kirpichnikov, D., McFarlane, S. I., & Sowers, J. R. (2002). Metformin: An update. Annals of Internal Medicine, 137(1), 25–33. https://doi.org/10.7326/0003-4819-137-1-200207020-00009

Kumar, A., Kuang, Y., Liang, Z., & Sun, X. (2020). Materials Today Nano Microwave chemistry , recent advancements , and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications : a review. Materials Today Nano, 11, 100076. https://doi.org/10.1016/j.mtnano.2020.100076

Markowicz-Piasecka, M., Sikora, J., Szydłowska, A., Skupień, A., Mikiciuk-Olasik, E., & Huttunen, K. M. (2017). Metformin – a Future Therapy for Neurodegenerative Diseases: Theme: Drug Discovery, Development and Delivery in Alzheimer’s Disease Guest Editor: Davide Brambilla. Pharmaceutical Research, 34(12), 2614–2627. https://doi.org/10.1007/s11095-017-2199-y

Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2001). Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacological Reviews, 53(2), 283–318.

Mulherin, A. J., & Mulherin, A. (2011). Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L-cell by.

Mustafa, F., & Andreescu, S. (2020). Nanotechnology-based approaches for food sensing and packaging applications. RSC Advances, 10(33), 19309–19336. https://doi.org/10.1039/d0ra01084g

Nathan, D. M., Buse, J. B., Davidson, M. B., Ferrannini, E., Holman, R. R., Sherwin, R., & Zinman, B. (2009). Medical management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy. Diabetes Care, 32(1), 193–203. https://doi.org/10.2337/dc08-9025

Newsholme, P., Haber, E. P., Hirabara, S. M., Rebelato, E. L. O., Procopio, J., Morgan, D., Oliveira-Emilio, H. C., Carpinelli, A. R., & Curi, R. (2007). Diabetes associated cell stress and dysfunction: Role of mitochondrial and non-mitochondrial ROS production and activity. Journal of Physiology, 583(1), 9–24. https://doi.org/10.1113/jphysiol.2007.135871

Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 55(3), 329–347. https://doi.org/10.1016/S0169-409X(02)00228-4

Rafieian-Kopaei, M., & Nasri, H. (2013). Ginger and diabetic nephropathy. Journal of Renal Injury Prevention, 2(1), 9–10. https://doi.org/10.12861/jrip.2013.05

Redhead, H. M., Davis, S. S., & Illum, L. (2001). Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: In vitro characterisation and in vivo evaluation. Journal of Controlled Release, 70(3), 353–363. https://doi.org/10.1016/S0168-3659(00)00367-9

Rojas, L. B. A., & Gomes, M. B. (2013). Metformin: An old but still the best treatment for type 2 diabetes. Diabetology and Metabolic Syndrome, 5(1), 1. https://doi.org/10.1186/1758-5996-5-6

Saini, A., Panwar, D., Panesar, P. S., & Bera, M. B. (2021). Encapsulation of functional ingredients in lipidic nanocarriers and antimicrobial applications: a review. Environmental Chemistry Letters, 19(2), 1107–1134. https://doi.org/10.1007/s10311-020-01109-3

Salman, Z. K., Refaat, R., Selima, E., El Sarha, A., & Ismail, M. A. (2013). The combined effect of metformin and L-cysteine on inflammation, oxidative stress and insulin resistance in streptozotocin-induced type 2 diabetes in rats. European Journal of Pharmacology, 714(1–3), 448–455. https://doi.org/10.1016/j.ejphar.2013.07.002

Samaha, M. M., Helal, M. G., El-sherbiny, M., & Said, E. (2022). Indapamide Increases IRS1 Expression and Modifies Adiponectin / NLRP3 / PPAR γ Crosstalk in Type 2 Diabetic Rats. 1–25.

Shali, K. S., Soumya, N. P., Mondal, S., & Mini, S. (2022). Hepatoprotective effect of morin via regulating the oxidative stress and carbohydrate metabolism in STZ induced diabetic rats. 5(3), 53–66.

Simos, Y. V., Spyrou, K., Patila, M., Karouta, N., Stamatis, H., Gournis, D., Dounousi, E., & Peschos, D. (2021). Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian Journal of Pharmaceutical Sciences, 16(1), 62–76. https://doi.org/10.1016/j.ajps.2020.05.001

Song, R. (2016). Mechanism of Metformin : A Tale of Two Sites. 39(February), 187–189. https://doi.org/10.2337/dci15-0013

Szkudelski, T. (2012). Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Experimental Biology and Medicine, 237(5), 481–490. https://doi.org/10.1258/ebm.2012.011372

Tabassum, A., & Mahboob, T. (2018). Role of peroxisome proliferator–activated receptor-gamma activation on visfatin, advanced glycation end products, and renal oxidative stress in obesity-induced type 2 diabetes mellitus. Human and Experimental Toxicology, 37(11), 1187–1198. https://doi.org/10.1177/0960327118757588

Vithian, K., & Hurel, S. (2010). Microvascular complications: pathophysiology and management. Clinical Medicine, 10(5), 505–509. https://doi.org/10.7861/clinmedicine.10-5-505

Xue, R., Gui, D., Zheng, L., Zhai, R., Wang, F., & Wang, N. (2017). Mechanistic Insight and Management of Diabetic Nephropathy: Recent Progress and Future Perspective. Journal of Diabetes Research, 2017. https://doi.org/10.1155/2017/1839809

Yaqoob, P., Sherrington, E. J., Jeffery, N. M., Sanderson, P., Harvey, D. J., Newsholme, E. A., & Calder, P. C. (1995). Comparison of the Effects of a Range of Dietary L upon Serum and Tissue Lipid C in the Rat. J. Biochem. Cell Biol, 27(3), 297–310.

Yuan, C., & Yang, D. (2017). Thesis Bachelor of Health Care , Nursing October 2017. October.

Zhang, L., Huang, Y. juan, Sun, J. pan, Zhang, T. ying, Liu, T. li, Ke, B., Shi, X. fang, Li, H., Zhang, G. peng, Ye, Z. yu, Hu, J., & Qin, J. (2021). Protective effects of calorie restriction on insulin resistance and islet function in STZ-induced type 2 diabetes rats. Nutrition and Metabolism, 18(1), 1–10. https://doi.org/10.1186/s12986-021-00575-y

Published

02-06-2022

How to Cite

Edam, K. A., Aldokheily, M. E., & Al-Yaseen, F. F. (2022). Evaluation of the renoprotective effects of metformin nanoparticles in rats with diabetic nephropathy. International Journal of Health Sciences, 6(S1), 13212–13227. https://doi.org/10.53730/ijhs.v6nS1.8311

Issue

Section

Peer Review Articles