Mitigation adverse effects of salinity stress on wheat plants by co-inoculation of plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and compost amendment
Keywords:
salinity, wheat plant, PGPR, AMF, compostAbstract
Salinity has become one of the most important challenges in agriculture. A pot experiment was conducted during 2017/2018 and 2018/2019 seasons at the greenhouse of Fac. Agric., Cairo Univ., Giza, Egypt, on Triticum aestivum L., var. Gemmiza 10. Plants irrigated with diluted seawater with tap water (control), 4.0 6.0, 8.0 and 10.0 dS m-1 to investigate the utilization of co-inoculation of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) and the addition of compost individually or in combination as an environmentally sustainable tools to alleviate the effects of salinity on wheat plants at both 75 days after sowing (DAS) (elongation stage) and 150 DAS (maturity stage). Salinity stress caused significant reduction in shoot height, shoot fresh and dry weights, K+/Na+ ratio and nitrogen, phosphorous and potassium contents of shoot at 75 DAS, however, Na+ concentration increased significantly. At maturity yield and its attributes, nitrogen, phosphorous and potassium contents in grain and straw decreased significantly with increasing irrigation water salinity level. Co-inoculation and/or compost amendments increased significantly the growth parameters and yield components compared to untreated plants under all irrigation water salinity levels.
Downloads
References
Oron, G., DeMalach, Y., Gillerman, L., David, I., Lurie, S. (2002). Effect of water salinity and Irrigation Technology on yield and Quality of pears. Biosyst. Engin. 81, 237 -247.
Hassanli, M.; Ebrahimian, H. (2017). Cyclic use of saline and non-saline water to increase water use efficiency and soil sustainability on drip irrigated maize in a semi-arid region. Span. J. Agric. Res., 14, 1204.
Ramadoss, D.; Lakkineni, V.K.; Bose, P.; Ali, S.; Annapurna, K. (2013). Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus, 2, 6.
Salwan, R.; Sharma, A.; Sharma, V. (2019). Microbes mediated plant stress tolerance in saline agricultural ecosystem. Plant Soil, 442.
Hossain, S. (2019). Present scenario of global salt affected soils, its management and importance of salinity research. Int. J. Biol. Sci.1, 1-13. doi: 10.1201/9780203739242-1
Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q., and Zhang, J. (2019). Salinity Stress in Arid and Semi-Arid Climates: Effects and Management in Field Crops in Climate Change and Agriculture. London: Intech Open.
FAO (2019). FAO Cereal Supply and Demand Brief. http://www. fao.org/worldfoodsituation/csdb/en/
Irshad, M.; Ullah, F.; Fahad, S.; Mehmood, S.; Khan, A.U.; Brtnicky, M.; Kintl, A.; Holatko, J.; Irshad, I.; El-Sharnouby, M.; et al. (2021). Evaluation of Jatropha curcas L. leaves mulching on wheat growth and biochemical attributes under water stress. BMC Plant Biol. 21, 303.
EL Sabagh, A.; Islam, M.S.; Skalicky, M.; Raza, M.A.; Singh, K.; Anwar Hossain, M.; Hossain, A.; Mahboob, W.; Iqbal, M.A.; Ratnasekaera, D.; et al. (2021). Salinity Stress in Wheat (Triticum aestivum L.) in the Changing Climate: Adaptation and Management Strategies. Fron. Agron. 3, 43.
Chu, T.N.; Tran, B.T.H.; Hoang, M.T.T. (2019). Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana. BMC Res. Notes. 12, 1-7.
Mokrani S., Nabti El-hafid, and Cruz, C. (2020). Current Advances in Plant Growth Promoting Bacteria Alleviating Salt Stress for Sustainable Agriculture. Appl. Sci. 10, 7025; doi:10.3390/app10207025
Abd El-Ghany, M.F.; Attia, M. (2020). Effect of exopolysaccharide-producing bacteria and melatonin on faba bean production in saline and non-saline soil. Agronomy, 10, 316.
Arora, N.K, Fatima, T., Mishra, J., Mishra, I. Verma, S., Verma, R., Verma, M., Bhattacharya, A., Verma, P., Priya Mishra, P., Bharti, C. (2020). Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. Journal of Advanced Research, 26, 69-82.
Brundrett, M.C., Tedersoo, L. (2018). Evolutionary his-tory of mycorrhizal symbioses and global host plantdiversity. New Phytologist, 220, 1108-1115.
Eroglu, Ç.G.; Cabral, C.; Ravnskov, S.; Topbjerg, H.B.; Wollenweber, B. (2020). Arbuscular mycorrhiza influences carbon-use efficiency and grain yield of wheat grown under pre-and post-anthesis salinity stress. Plant Biol. 22, 863-871.
Zhu, X., Cao, Q., Sun, L., Yang, X., Yang, W., Zhang, H. (2018). Stomatal conductance and morphology ofarbuscular mycorrhizal wheat plants response to elevated CO2 and NaCl stress. Frontiers in Plant Science, 9, 1363.
Mardukhi, B., Rejali, F., Daei, G., Ardakani, M.R., Malakouti, M.J., Miransari, M. (2015). Mineral uptake of mycorrhizal wheat (Triticum aestivum L.) under salinity stress. Communications in Soil Science and Plant Analysis 46, 343-357
Talaat, N.B., Shawky, B.T. (2014). Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environmental and Experimental Botany, 98, 20-31.
Chang, W., Sui, X., Fan, X.X., Jia, T.T., Song, F.Q. (2018). Arbuscular mycorrhizal symbiosis modulates antiox-idant response and ion distribution in salt-stressed Elaeagnus angustifolia seedlings. Frontiers in Microbiology. 9, 652
Ben-Laouane, R., Meddich, A., Bechtaoui, N., Oufdou, K., and Wahbi, S. (2019). Effects of arbuscular mycorrhizal fungi and rhizobia symbiosis on the tolerance of Medicago sativa to salt stress. Gesunde Pflanz. 71, 135-146. doi: 10.1007/ s10343-019-00461-x
Pan, J.; Huang, C.; Peng, F.; Zhang, W.; Luo, J.; Ma, S.; Xue, X. (2020). Effect of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting bacteria (PGPR) inoculations on Elaeagnus angustifolia L. in saline soil. Appl. Sci. 10, 945.
Sagar, A.; Rathore, P.; Ramteke, P.W.; Ramakrishna, W.; Reddy, M.S.; Pecoraro, L. (2021). Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Their Synergistic Interactions to Counteract the Negative Effects of Saline Soil on Agriculture: Key Macromolecules and Mechanisms. Microorganisms, 9, 1491.
Younesi, O.; Moradi, A. (2014). Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (Phaseolus vulgaris L.). Agriculture, 60, 10-21.
Mbarki, S.; Skalicky, M.; Talbi, O.; Chakraborty, A.; Hnilicka, F.; Hejnak, V.; Zivcak, M.; Brestic, M.; Cerda, A. and Abdelly, C. (2020). Performance of Medicago sativa grown in clay soil favored by compost or farmyard manure to mitigate salt stress. Agronomy, 10, 94
Raklami, A., Bechtaoui, N., Tahiri, A. I., Anli, M., Meddich, A., and Oufdou, K. (2019). Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Front. Microbiol. 10, 1106. doi: 10.3389/fmicb.01106
Ou Zin, M., Bouhlal, Y., El Hilali, R., Achbani, E. H., Haggoud, A., and Rachid, B. (2020). Evaluation of compost quality and bioprotection potential against Fusarium wilt of date palm. Waste Manag. 113, 12-19.
Trivedi, P., Singh, K., Pankaj, U., Verma, S. K., Verma, R. K., and Patra, D. D. (2017). Effect of organic amendments and microbial application on sodic soil properties and growth of an aromatic crop. Ecol. Eng. 102, 127-136.
Ullah N, Ditta A, Imtiaz M, Li X, Jan A U, Mehmood S, Rizwan M S, Rizwan M. (2021). Appraisal for organic amendments and plant growth promoting rhizobacteria to enhance crop productivity under drought stress: A review. J Agro Crop Sci. 207, 783-802.
Ding, Z., Kheir, A., Ali, M., Ali, O., Abdelaal, A., Lin, X., Zhou, Z., Wang, B., Liu, B., & He, Z. (2020). The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Scientific Reports, 10, 2736.
Kanwal, S., Ilyas, N., Batool, N., & Arshad, M. (2017). Amelioration of drought stress in wheat by combined application of PGPR, compost, and mineral fertilizer. Journal of Plant Nutrition, 40, 1250-1260.
Yaseen, R., Aziz, O., Saleem, M. H., Riaz, M., Zafar-ul-Hye, M., Rehman, M., Ali, S., Rizwan, M., Alyemeni, M. N., El-Serehy, H. A., Al-Misned, F. A., & Ahmad, P. (2020). Ameliorating the drought stress for wheat growth through application of ACC-deaminase containing rhizobacteria along with biogas slurry. Sustainability, 12, 6022.
Chapman, H.D., Pratt P.E. Methods of analysis for soils, lands and waters. Univ. of Calif., Div. Agric.Sci., USA, 1978, 3043. pp: 162-165.
Badr El-Din, S.M.S; Attia, M. and Abo-Sedera, S.A. (1999). Evaluation of several substrates for mass multiplication of arbuscular mycorrhizal (AM) fungi grown on onion. Egyp. J. Microbil., 34, 57-61.
Jackson, M. L. (1973). Soil Chemical Analysis. Constable, London.
Shapiro, S.S. and Wilk, M.B. (1965). Analysis of variance test for normality (complete samples). Biometrika, 52, 591-611.
Hartley, H.O. (1950) .The Maximum F-ratio as a short-cut Test for heterogeneity of variance. Biometrika, 37(3/4), 308-312.
Duncan, D. B. (1955). Multiple range and multiple F tests. Biometrics 11, 1-42.
Liu, X., Chen, D., Yang, T., Huang, F., Fu, S., and Li, L. (2020). Changes in soil labile and recalcitrant carbon pools after land-use change in a semi-arid agro-pastoral ecotone in Central Asia. Ecol. Indic. 110, 105925.
Giraldo, P., Benavente, E., Manzano-Agugliaro, F., and Gimenez, E. (2019). Worldwide research trends on wheat and barley: a bibliometric comparative analysis. Agronomy, 9, 352.
Hasanuzzaman, M.; Nahar, K.; Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In Ecophysiology and Responses of Plants under Salt Stress; Ahmad, P., Azooz, M.M., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, pp. 25-87.
Radi, A.A.; Farghaly, F.A.L.; Hamada, A.M. (2013). Physiological and biochemical responses of salt-tolerant and salt-sensitive wheat and bean cultivars to salinity. J. Biol. Earth Sci. 3, 72-88.
Feng G, Zhang Z and Zhang Z. (2019). Evaluating the sustainable use of saline water irrigation on soil water-salt content and grain yield under subsurface drainage condition. Sustainability, 11, 6431.
Kumar, B., Gangwar, V., Parihar, S.K.S. (2017). Effect of Saline Water Irrigation on Germination and Yield of Wheat (Triticum aestivum L.) Genotypes. Agrotechnol, 6, 156.
Dikgwatlhe, S.B., Ceronio, G.M., Van Rensburg, L.D. (2008). Wheat (Triticum aestivum L.) growth and yield response to saline irrigation water under controlled conditions, South African Journal of Plant and Soil, 25, 172-177.
Bidalia, A.; Vikram, K.; Yamal, G.; Rao, K.S. (2019). Effect of salinity on soil nutrients and plant health. In Salt Stress, Microbes, and Plant Interactions: Causes and Solution; Springer: Singapore, pp. 273-297.
Wallace, A., Berry, W.L. (1981). Toxicity-the concept and relationship to dose response curve. J. Plant Nutr. 3, 13-19.
Dey, G.; Banerjee, P.; Sharma, R.K.; Maity, J.P.; Etesami, H.; Shaw, A.K.; Huang, Y.H.; Huang, H.B.; Chen, C.Y. (2021). Management of phosphorus in salinity-stressed agriculture for sustainable crop production by salt-tolerant phosphate-solubilizing bacteria-a review. Agronomy, 11, 1552.
Maathuis, F.J.M.; Amtmann, A. (1999). K+ Nutrition and Na+ toxicity: The basis of cellular k+/Na+ ratios. Ann. Bot. 84, 123-133.
Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., and Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol. Biochem. 156, 64-77.
Nadeem, S.M., Ahmad, M., Zahir, Z.A., Javaid, A., Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv. 32:429-448.
Hidri, R.; Mahmoud, O.M.-B.; Farhat, N.; Cordero, I.; Pueyo, J.J.; Debez, A.; Barea, J.-M.; Abdelly, C.; Azcon, R. (2019). Arbuscular mycorrhizal fungus and rhizobacteria affect the physiology and performance of Sulla coronaria plants subjected to salt stress by mitigation of ionic imbalance. J. Plant Nutr. Soil Sci. 182, 451-462.
Gupta, A.; Singh, S.K.; Singh, M.K.; Singh, V.K.; Modi, A.; Singh, P.K.; Kumar, A. (2020). Plant growth-promoting rhizobacteria and their functional role in salinity stress management. Abat. Environ. Pollut. 151-160.
Li, Z.; Wu, N.; Meng, S.; Wu, F.; Liu, T. (2020). Arbuscular mycorrhizal fungi (AMF) enhance the tolerance of Euonymus maackii Rupr. at a moderate level of salinity. PLoS ONE. 15(4): e0231497. https://doi.org/10.137.
Del Orozco-Mosqueda, M.C.; Glick, B.R.; Santoyo, G. (2020). ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiol. Res. 235, 126439.
Pons, S.; Fournier, S.; Chervin, C.; Bécard, G.; Rochange, S.; Frey, N.F.D.; Pagès, V.P. (2020). Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLoS ONE, 15(10): e0240886. https://doi.org/10.1371.
Al-Arjani, A.B.F.; Hashem, A.; Abd_Allah, E.F. (2020). Arbuscular mycorrhizal fungi modulate dynamics tolerance expression to mitigate drought stress in Ephedra foliata Boiss. Saudi J. Biol. Sci. 27, 380-394.
Saia, S., Aissa, E., Luziatelli, F., Ruzzi, M., Colla, G., Ficca, A. G., et al. (2020). Growth-promoting bacteria and arbuscular mycorrhizal fungi differentially benefit tomato and corn depending upon the supplied form of phosphorus. Mycorrhiza 30, 133-147.
Porcel, R.; Aroca, R.; Azcon, R.; Ruiz-Lozano, J.M. (2016). Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza, 26, 673-684.
Chen, S.; Zhao, H.; Zou, C.; Li, Y.; Chen, Y.; Wang, Z.; Jiang, Y.; Liu, A.; Zhao, P.; Wang, M. (2017). Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front. Microbiol. 8, 1-11.
Hashem, A.; Allah, E.F.A.; Alqarawi, A.A.; Egamberdieva, D. (2018). Arbuscular mycorrhizal fungi and plant stress tolerance. In Plant Microbiome: Stress Response, Microorganisms for Sustainability; Springer Nature: Singapore, pp. 81-103
Bharti, N.; Barnawal, D.; Wasnik, K.; Tewari, S.K.; Kalra, A. (2016). Co-inoculation of Dietzia natronolimnaea and Glomus intraradices with vermicompost positively influences Ocimum basilicum growth and resident microbial community structure in salt affected low fertility soils. Appl. Soil Ecol. 100, 211-225.
Toubali, S., Abdel-ilah Tahiri 1,3 , Anli, M., Symanczik, S., Boutasknit, A., Ait-El-Mokhtar, M., Ben-Laouane, R., Oufdou, K., Ait-Rahou, Y., Ben-Ahmed, H., Jemo, M., Hafidi, M., and Meddich, A. (2020). Physiological and Biochemical Behaviors of Date Palm Vitro plants Treated with Microbial Consortia and Compost in Response to Salt Stress. Appl. Sci. 10, 8665
Nadeem, S.M.; Ahmad, M.; Zahir, Z.A.; Javaid, A.; Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32, 429-448.
El- Hamahmy, A.F.; Ghanem, Kh. M.; Massoud, O.N.; Hassn, E. A. and Shoeip. M.O. (2014). A. improving the productivity of wheat (Triticum aesitivum L.) cultivated under saline soil using some N2-Fixers halophillic bacteria and compost. Middle East Journal of Agriculture Research, 3, 827-837.
Raklami, A., Bechtaoui, N., Tahiri, A., Anli, M., Meddich, A., and Oufdou, K. (2019). Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Front. Microbiol. 10:1106.
Yang, W., Gu, S., Xin, Y., Bello, A., Sun, W., and Xu, X. (2018). Compost addition enhanced hyphal growth and sporulation of arbuscular mycorrhizal fungi without affecting their community composition in the soil. Front. Microbiol. 9,169.
Yu, Y. Y., Li, S. M., Qiu, J. P., Li, J. G., Luo, Y. M., and Guo, J. H. (2019). Combination of agricultural waste compost and biofertilizer improves yield and enhances the sustainability of a pepper field. J. Plant Nutr. Soil Sci. 182, 560–569. doi: 10.1002/jpln.201800223
Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25, 239-250
Silini, A., Silini-Cherif, H. and Ghoul, M. (2012). Effect of Azotobacter vinelandii compatible solutes on germination wheat seeds and root concentrations of sodium and potassium under salt stress. Pakistan Journal of Biological Sciences. 15, 132-140.
Published
How to Cite
Issue
Section
Copyright (c) 2022 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.