Malaria diagnosis using microscopic imaging

https://doi.org/10.53730/ijhs.v6n2.8735

Authors

  • Mosam K. Sangole Sandip Institute of Technology and Research Center, Nashik, India
  • Sanjay T. Gandhe Sandip Institute of Technology and Research Center, Nashik, India

Keywords:

cubic SVM, malaria parasite, microscopy blood smear, Otsu, SAMF

Abstract

Malaria, a dangerous disease caused by Plasmodium, which is spread by being bitten by infected mosquitoes (Female Anopheles). It is crucial to diagnose malaria pathogens quickly and accurately at the right time. Traditional microscopy is commonly used in developing countries to diagnose malaria parasites, where pathologists examine the slide under a light microscope. However, in the case of traditional microscopy, requires more time and careful attention. Here, we have proposed a method to diagnose malaria based on computer vision. As a pre-processing stage, SAMF (Systematically Applied Mean Filter) algorithm is proposed that removes impulse noise from the corrupted malaria-infected images. Otsu method is used to obtain the binary version of images for cropping blood cells from complete image. 17 texture and color features were extracted from these cropped cells and these features were used to train Cubic SVM (Support Vector Machine) classifier. Hence a precise malaria diagnosis system was developed for detecting Plasmodium parasites, identifying their life stages and species using images of thin blood smears. A total of 348 images from CDC (Centre for Disease Control and Prevention) database were used to train and test the performance of the system.

Downloads

Download data is not yet available.

References

Anand, A., Chhaniwal, V. K., Patel, N. R., & Javidi, B. (2012). Automatic identification of malaria-infected RBC with digital holographic microscopy using correlation algorithms. IEEE Photonics Journal, 4(5), 1456-1464.

Arco, J. E., Górriz, J. M., Ramírez, J., Álvarez, I., & Puntonet, C. G. (2015). Digital image analysis for automatic enumeration of malaria parasites using morphological operations. Expert Systems with Applications, 42(6), 3041-3047. https://doi.org/10.1016/j.eswa.2014.11.037

Banoth, E., Jagannadh, V. K., & Gorthi, S. S. (2015). Single-cell optical absorbance characterization with high-throughput microfluidic microscopy. IEEE Journal of Selected Topics in Quantum Electronics, 22(3), 111-116.

Buggenthin, F., Marr, C., Schwarzfischer, M., Hoppe, P. S., Hilsenbeck, O., Schroeder, T., & Theis, F. J. (2013). An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy. BMC bioinformatics, 14(1), 1-12.

Campuzano-Zuluaga, G., Hänscheid, T., & Grobusch, M. P. (2010). Automated haematology analysis to diagnose malaria. Malaria Journal, 9(1), 1-15.

Center of Disease Controal and Prevention. (n.d.). (U.S. Department of Health & Human Services) Retrieved August 2020, from https://www.cdc.gov/dpdx/malaria/index.html

Chen, H. M., Tsao, Y. T., & Tsai, S. N. (2014). Automatic image segmentation and classification based on direction texton technique for hemolytic anemia in thin blood smears. Machine vision and applications, 25(2), 501-510.

Das, D. K., Ghosh, M., Pal, M., Maiti, A. K., & Chakraborty, C. (2013). Machine learning approach for automated screening of malaria parasite using light microscopic images. Micron, 45, 97-106. https://doi.org/10.1016/j.micron.2012.11.002

Delahunt, C., Horning, M. P., Wilson, B. K., Proctor, J. L., & Hegg, M. C. (2014). Limitations of haemozoin-based diagnosis of Plasmodium falciparum using dark-field microscopy. Malaria journal, 13(1), 1-10.

Devi, S. S., Laskar, R. H., & Sheikh, S. A. (2018). Hybrid classifier based life cycle stages analysis for malaria-infected erythrocyte using thin blood smear images. Neural Computing and Applications, 29(8), 217-235.

Elsalamony, H. A. (2016). Healthy and unhealthy red blood cell detection in human blood smears using neural networks. Micron, 83, 32-41. https://doi.org/10.1016/j.micron.2016.01.008

Eluru, G., Srinivasan, R., & Gorthi, S. S. (2015). Deformability Measurement of Single-Cells at High-Throughput With Imaging Flow Cytometry. Journal of Lightwave Technology, 33(16), 3475-3480.

Fatima, T., & Farid, M. S. (2020). Automatic detection of Plasmodium parasites from microscopic blood images. Journal of Parasitic Diseases, 44(1), 69-78.

Gezahegn, Y. G., Medhin, Y. G., Etsub, E. A., & Tekele, G. G. (2018). Malaria Detection and Classification. ICT4DA 2017, LNICST 244, Springer, 24-33.

Ghosh, P., Bhattacharjee, D., & Nasipuri, M. (2017). Automatic system for plasmodium species identification from microscopic images of blood-smear samples. Journal of Healthcare Informatics Research, 1(2), 231-259.

Gonzalez-Hidalgo, M., Guerrero-Pena, F. A., Herold-García, S., Jaume-i-Capó, A., & Marrero-Fernández, P. D. (2014). Red blood cell cluster separation from digital images for use in sickle cell disease. IEEE journal of biomedical and health informatics, 19(4), 1514-1525.

Hartati, S., Harjoko, A., Rosnelly, R., & Chandradewi, I. (2018, August). Performance of SVM and ANFIS for classification of malaria parasite and its life-cycle-stages in blood smear. In International Conference on Soft Computing in Data Science (pp. 110-121). Springer, Singapore.

Hung, Y. W., Wang, C. L., Wang, C. M., Chan, Y. K., Tseng, L. Y., Lee, C. W., & Tung, K. C. (2015). Parasite and infected-erythrocyte image segmentation in stained blood smears. Journal of Medical and Biological Engineering, 35(6), 803-815.

Kanojia, M., Gandhi, N., Armstrong, L. J., & Pednekar, P. (2017, December). Automatic identification of malaria using image processing and artificial neural network. In International Conference on Intelligent Systems Design and Applications (pp. 846-857). Springer, Cham.

Kaur, D., & Walia, G. K. (2020). A hybrid aco-svm approach for detecting and classifying malaria parasites. In Computational Network Application Tools for Performance Management (pp. 139-152). Springer, Singapore.

Khanna, P., & Kumar, S. (2020). Malaria parasite classification employing chan–vese algorithm and SVM for healthcare. In Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019) (pp. 697-711). Springer, Singapore.

Khashman, A. (2008). IBCIS: Intelligent blood cell identification system. Progress in Natural Science, 18(10), 1309-1314. https://doi.org/10.1016/j.pnsc.2008.03.026

Lee, H., & Chen, Y. P. P. (2014). Cell morphology based classification for red cells in blood smear images. Pattern Recognition Letters, 49, 155-161. https://doi.org/10.1016/j.patrec.2014.06.010

Lee, S., & Lu, W. (2011). Using elastic light scattering of red blood cells to detect infection of malaria parasite. IEEE transactions on biomedical engineering, 59(1), 150-155.

Lorenzo-Ginori, J. V., Chinea-Valdés, L., Izquierdo-Torres, Y., Orozco-Morales, R., Mollineda-Diogo, N., Sifontes-Rodríguez, S., & Meneses-Marcel, A. (2019, October). Classification of Plasmodium-Infected Erythrocytes Through Digital Image Processing. In Latin American Conference on Biomedical Engineering (pp. 351-360). Springer, Cham.

Madhu, G. (2020). Computer vision and machine learning approach for malaria diagnosis in thin blood smears from microscopic blood images. In Machine learning for intelligent decision science (pp. 191-209). Springer, Singapore.

Malihi, L., Ansari-Asl, K., & Behbahani, A. (2013, September). Malaria parasite detection in giemsa-stained blood cell images. In 2013 8th Iranian conference on machine vision and image processing (MVIP) (pp. 360-365). IEEE.

Manning, K., Zhai, X., & Yu, W. (2019). Image Analysis Based System for Assessing Malaria. In Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health (pp. 466-486). Springer, Singapore.

Mas, D., Ferrer, B., Cojoc, D., Finaurini, S., Mico, V., Garcia, J., & Zalevsky, Z. (2015). Novel image processing approach to detect malaria. Optics Communications, 350, 13-18.https://doi.org/10.1016/j.optcom.2015.03.064

Memeu, D. M. (2014). A rapid malaria diagnostic method based on automatic detection and classification of plasmodium parasites in stained thin blood smear images (Doctoral dissertation, University of Nairobi).

Moon, I., Anand, A., Cruz, M., & Javidi, B. (2013). Identification of malaria-infected red blood cells via digital shearing interferometry and statistical inference. IEEE Photonics Journal, 5(5), 6900207-6900207.

Nag, S., Basu, N., & Bandyopadhyay, S. K. (2020). Application of machine intelligence in digital pathology: Identification of falciparum malaria in thin blood smear image. In Advancement of machine intelligence in interactive medical image analysis (pp. 65-97). Springer, Singapore.

Nanoti, A., Jain, S., Gupta, C., & Vyas, G. (2016, August). Detection of malaria parasite species and life cycle stages using microscopic images of thin blood smear. In 2016 International Conference on Inventive Computation Technologies (ICICT) (Vol. 1, pp. 1-6). IEEE.

Nixon, M. (2008). Feature extraction & image processing. Cambridge: Academic press.

Okhabska, I., Budzyn, V., Rybchych, I., Zyma, I., & Kalichak, Y. (2022). Management of medical institutions on context of provision medical and preventive care in COVID-19 condition. International Journal of Health Sciences, 6(1), 347-356. https://doi.org/10.53730/ijhs.v6n1.4381

Omucheni, D. L., Kaduki, K. A., Bulimo, W. D., & Angeyo, H. K. (2014). Application of principal component analysis to multispectral-multimodal optical image analysis for malaria diagnostics. Malaria journal, 13(1), 1-11.

Prasad, K., Winter, J., Bhat, U. M., Acharya, R. V., & Prabhu, G. K. (2012). Image analysis approach for development of a decision support system for detection of malaria parasites in thin blood smear images. Journal of digital imaging, 25(4), 542-549.

Purwar, Y., Shah, S. L., Clarke, G., Almugairi, A., & Muehlenbachs, A. (2011). Automated and unsupervised detection of malarial parasites in microscopic images. Malaria journal, 10(1), 1-11.

Rakshit, P., & Bhowmik, K. (2013). Detection of presence of parasites in human RBC in case of diagnosing malaria using image processing. In 2013 IEEE Second International Conference on Image Information Processing (ICIIP-2013) (pp. 329-334). IEEE.

Ross, N. E., Pritchard, C. J., Rubin, D. M., & Duse, A. G. (2006). Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Medical and Biological Engineering and Computing, 44(5), 427-436.

Sadiq, M. J., & Balaram, V. V. S. S. S. (2018). OFS-Z: Optimal Features Selection by Z-Score for Malaria-Infected Erythrocyte Detection Using Supervised. In Proceedings of the Second International Conference on Computational Intelligence and Informatics: ICCII 2017 (Vol. 712, p. 221). Springer.

Sio, S. W., Sun, W., Kumar, S., Bin, W. Z., Tan, S. S., Ong, S. H., ... & Tan, K. S. (2007). MalariaCount: an image analysis-based program for the accurate determination of parasitemia. Journal of microbiological methods, 68(1), 11-18. https://doi.org/10.1016/j.mimet.2006.05.017

Somasekar, J., & Reddy, B. E. (2015). Segmentation of erythrocytes infected with malaria parasites for the diagnosis using microscopy imaging. Computers & Electrical Engineering, 45, 336-351. https://doi.org/10.1016/j.compeleceng.2015.04.009

Srivastava, B., Anvikar, A. R., Ghosh, S. K., Mishra, N., Kumar, N., Houri-Yafin, A., ... & Valecha, N. (2015). Computer-vision-based technology for fast, accurate and cost effective diagnosis of malaria. Malaria journal, 14(1), 1-6.

Tek, F. B., Dempster, A. G., & Kale, I. (2009). Computer vision for microscopy diagnosis of malaria. Malaria journal, 8(1), 1-14.

Tek, F. B., Dempster, A. G., & Kale, I. (2010). Parasite detection and identification for automated thin blood film malaria diagnosis. Computer vision and image understanding, 114(1), 21-32. https://doi.org/10.1016/j.cviu.2009.08.003

Tomari, R., Zakaria, W. N. W., Jamil, M. M. A., Nor, F. M., & Fuad, N. F. N. (2014). Computer aided system for red blood cell classification in blood smear image. Procedia Computer Science, 42, 206-213. https://doi.org/10.1016/j.procs.2014.11.053

Tsai, M. H., Yu, S. S., Chan, Y. K., & Jen, C. C. (2015). Blood smear image based malaria parasite and infected-erythrocyte detection and segmentation. Journal of medical systems, 39(10), 1-14.

Varma, S. L., & Chavan, S. S. (2019). Detection of malaria parasite based on thick and thin blood smear images using local binary pattern. In Computing, Communication and Signal Processing (pp. 967-975). Springer, Singapore.

World Malaria Report. (2019). Switzerland.: World Health Organization http://www.who.int/malaria.

Xiong, W., Ong, S. H., Lim, J. H., Foong, K. W. C., Liu, J., Racoceanu, D., ... & Tan, K. S. (2010). Automatic area classification in peripheral blood smears. IEEE Transactions on Biomedical Engineering, 57(8), 1982-1990.

Published

10-06-2022

How to Cite

Sangole, M. K., & Gandhe, S. T. (2022). Malaria diagnosis using microscopic imaging. International Journal of Health Sciences, 6(2), 880–897. https://doi.org/10.53730/ijhs.v6n2.8735

Issue

Section

Peer Review Articles