Malaria diagnosis using microscopic imaging
Keywords:
cubic SVM, malaria parasite, microscopy blood smear, Otsu, SAMFAbstract
Malaria, a dangerous disease caused by Plasmodium, which is spread by being bitten by infected mosquitoes (Female Anopheles). It is crucial to diagnose malaria pathogens quickly and accurately at the right time. Traditional microscopy is commonly used in developing countries to diagnose malaria parasites, where pathologists examine the slide under a light microscope. However, in the case of traditional microscopy, requires more time and careful attention. Here, we have proposed a method to diagnose malaria based on computer vision. As a pre-processing stage, SAMF (Systematically Applied Mean Filter) algorithm is proposed that removes impulse noise from the corrupted malaria-infected images. Otsu method is used to obtain the binary version of images for cropping blood cells from complete image. 17 texture and color features were extracted from these cropped cells and these features were used to train Cubic SVM (Support Vector Machine) classifier. Hence a precise malaria diagnosis system was developed for detecting Plasmodium parasites, identifying their life stages and species using images of thin blood smears. A total of 348 images from CDC (Centre for Disease Control and Prevention) database were used to train and test the performance of the system.
Downloads
References
Anand, A., Chhaniwal, V. K., Patel, N. R., & Javidi, B. (2012). Automatic identification of malaria-infected RBC with digital holographic microscopy using correlation algorithms. IEEE Photonics Journal, 4(5), 1456-1464.
Arco, J. E., Górriz, J. M., Ramírez, J., Álvarez, I., & Puntonet, C. G. (2015). Digital image analysis for automatic enumeration of malaria parasites using morphological operations. Expert Systems with Applications, 42(6), 3041-3047. https://doi.org/10.1016/j.eswa.2014.11.037
Banoth, E., Jagannadh, V. K., & Gorthi, S. S. (2015). Single-cell optical absorbance characterization with high-throughput microfluidic microscopy. IEEE Journal of Selected Topics in Quantum Electronics, 22(3), 111-116.
Buggenthin, F., Marr, C., Schwarzfischer, M., Hoppe, P. S., Hilsenbeck, O., Schroeder, T., & Theis, F. J. (2013). An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy. BMC bioinformatics, 14(1), 1-12.
Campuzano-Zuluaga, G., Hänscheid, T., & Grobusch, M. P. (2010). Automated haematology analysis to diagnose malaria. Malaria Journal, 9(1), 1-15.
Center of Disease Controal and Prevention. (n.d.). (U.S. Department of Health & Human Services) Retrieved August 2020, from https://www.cdc.gov/dpdx/malaria/index.html
Chen, H. M., Tsao, Y. T., & Tsai, S. N. (2014). Automatic image segmentation and classification based on direction texton technique for hemolytic anemia in thin blood smears. Machine vision and applications, 25(2), 501-510.
Das, D. K., Ghosh, M., Pal, M., Maiti, A. K., & Chakraborty, C. (2013). Machine learning approach for automated screening of malaria parasite using light microscopic images. Micron, 45, 97-106. https://doi.org/10.1016/j.micron.2012.11.002
Delahunt, C., Horning, M. P., Wilson, B. K., Proctor, J. L., & Hegg, M. C. (2014). Limitations of haemozoin-based diagnosis of Plasmodium falciparum using dark-field microscopy. Malaria journal, 13(1), 1-10.
Devi, S. S., Laskar, R. H., & Sheikh, S. A. (2018). Hybrid classifier based life cycle stages analysis for malaria-infected erythrocyte using thin blood smear images. Neural Computing and Applications, 29(8), 217-235.
Elsalamony, H. A. (2016). Healthy and unhealthy red blood cell detection in human blood smears using neural networks. Micron, 83, 32-41. https://doi.org/10.1016/j.micron.2016.01.008
Eluru, G., Srinivasan, R., & Gorthi, S. S. (2015). Deformability Measurement of Single-Cells at High-Throughput With Imaging Flow Cytometry. Journal of Lightwave Technology, 33(16), 3475-3480.
Fatima, T., & Farid, M. S. (2020). Automatic detection of Plasmodium parasites from microscopic blood images. Journal of Parasitic Diseases, 44(1), 69-78.
Gezahegn, Y. G., Medhin, Y. G., Etsub, E. A., & Tekele, G. G. (2018). Malaria Detection and Classification. ICT4DA 2017, LNICST 244, Springer, 24-33.
Ghosh, P., Bhattacharjee, D., & Nasipuri, M. (2017). Automatic system for plasmodium species identification from microscopic images of blood-smear samples. Journal of Healthcare Informatics Research, 1(2), 231-259.
Gonzalez-Hidalgo, M., Guerrero-Pena, F. A., Herold-García, S., Jaume-i-Capó, A., & Marrero-Fernández, P. D. (2014). Red blood cell cluster separation from digital images for use in sickle cell disease. IEEE journal of biomedical and health informatics, 19(4), 1514-1525.
Hartati, S., Harjoko, A., Rosnelly, R., & Chandradewi, I. (2018, August). Performance of SVM and ANFIS for classification of malaria parasite and its life-cycle-stages in blood smear. In International Conference on Soft Computing in Data Science (pp. 110-121). Springer, Singapore.
Hung, Y. W., Wang, C. L., Wang, C. M., Chan, Y. K., Tseng, L. Y., Lee, C. W., & Tung, K. C. (2015). Parasite and infected-erythrocyte image segmentation in stained blood smears. Journal of Medical and Biological Engineering, 35(6), 803-815.
Kanojia, M., Gandhi, N., Armstrong, L. J., & Pednekar, P. (2017, December). Automatic identification of malaria using image processing and artificial neural network. In International Conference on Intelligent Systems Design and Applications (pp. 846-857). Springer, Cham.
Kaur, D., & Walia, G. K. (2020). A hybrid aco-svm approach for detecting and classifying malaria parasites. In Computational Network Application Tools for Performance Management (pp. 139-152). Springer, Singapore.
Khanna, P., & Kumar, S. (2020). Malaria parasite classification employing chan–vese algorithm and SVM for healthcare. In Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019) (pp. 697-711). Springer, Singapore.
Khashman, A. (2008). IBCIS: Intelligent blood cell identification system. Progress in Natural Science, 18(10), 1309-1314. https://doi.org/10.1016/j.pnsc.2008.03.026
Lee, H., & Chen, Y. P. P. (2014). Cell morphology based classification for red cells in blood smear images. Pattern Recognition Letters, 49, 155-161. https://doi.org/10.1016/j.patrec.2014.06.010
Lee, S., & Lu, W. (2011). Using elastic light scattering of red blood cells to detect infection of malaria parasite. IEEE transactions on biomedical engineering, 59(1), 150-155.
Lorenzo-Ginori, J. V., Chinea-Valdés, L., Izquierdo-Torres, Y., Orozco-Morales, R., Mollineda-Diogo, N., Sifontes-Rodríguez, S., & Meneses-Marcel, A. (2019, October). Classification of Plasmodium-Infected Erythrocytes Through Digital Image Processing. In Latin American Conference on Biomedical Engineering (pp. 351-360). Springer, Cham.
Madhu, G. (2020). Computer vision and machine learning approach for malaria diagnosis in thin blood smears from microscopic blood images. In Machine learning for intelligent decision science (pp. 191-209). Springer, Singapore.
Malihi, L., Ansari-Asl, K., & Behbahani, A. (2013, September). Malaria parasite detection in giemsa-stained blood cell images. In 2013 8th Iranian conference on machine vision and image processing (MVIP) (pp. 360-365). IEEE.
Manning, K., Zhai, X., & Yu, W. (2019). Image Analysis Based System for Assessing Malaria. In Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health (pp. 466-486). Springer, Singapore.
Mas, D., Ferrer, B., Cojoc, D., Finaurini, S., Mico, V., Garcia, J., & Zalevsky, Z. (2015). Novel image processing approach to detect malaria. Optics Communications, 350, 13-18.https://doi.org/10.1016/j.optcom.2015.03.064
Memeu, D. M. (2014). A rapid malaria diagnostic method based on automatic detection and classification of plasmodium parasites in stained thin blood smear images (Doctoral dissertation, University of Nairobi).
Moon, I., Anand, A., Cruz, M., & Javidi, B. (2013). Identification of malaria-infected red blood cells via digital shearing interferometry and statistical inference. IEEE Photonics Journal, 5(5), 6900207-6900207.
Nag, S., Basu, N., & Bandyopadhyay, S. K. (2020). Application of machine intelligence in digital pathology: Identification of falciparum malaria in thin blood smear image. In Advancement of machine intelligence in interactive medical image analysis (pp. 65-97). Springer, Singapore.
Nanoti, A., Jain, S., Gupta, C., & Vyas, G. (2016, August). Detection of malaria parasite species and life cycle stages using microscopic images of thin blood smear. In 2016 International Conference on Inventive Computation Technologies (ICICT) (Vol. 1, pp. 1-6). IEEE.
Nixon, M. (2008). Feature extraction & image processing. Cambridge: Academic press.
Okhabska, I., Budzyn, V., Rybchych, I., Zyma, I., & Kalichak, Y. (2022). Management of medical institutions on context of provision medical and preventive care in COVID-19 condition. International Journal of Health Sciences, 6(1), 347-356. https://doi.org/10.53730/ijhs.v6n1.4381
Omucheni, D. L., Kaduki, K. A., Bulimo, W. D., & Angeyo, H. K. (2014). Application of principal component analysis to multispectral-multimodal optical image analysis for malaria diagnostics. Malaria journal, 13(1), 1-11.
Prasad, K., Winter, J., Bhat, U. M., Acharya, R. V., & Prabhu, G. K. (2012). Image analysis approach for development of a decision support system for detection of malaria parasites in thin blood smear images. Journal of digital imaging, 25(4), 542-549.
Purwar, Y., Shah, S. L., Clarke, G., Almugairi, A., & Muehlenbachs, A. (2011). Automated and unsupervised detection of malarial parasites in microscopic images. Malaria journal, 10(1), 1-11.
Rakshit, P., & Bhowmik, K. (2013). Detection of presence of parasites in human RBC in case of diagnosing malaria using image processing. In 2013 IEEE Second International Conference on Image Information Processing (ICIIP-2013) (pp. 329-334). IEEE.
Ross, N. E., Pritchard, C. J., Rubin, D. M., & Duse, A. G. (2006). Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Medical and Biological Engineering and Computing, 44(5), 427-436.
Sadiq, M. J., & Balaram, V. V. S. S. S. (2018). OFS-Z: Optimal Features Selection by Z-Score for Malaria-Infected Erythrocyte Detection Using Supervised. In Proceedings of the Second International Conference on Computational Intelligence and Informatics: ICCII 2017 (Vol. 712, p. 221). Springer.
Sio, S. W., Sun, W., Kumar, S., Bin, W. Z., Tan, S. S., Ong, S. H., ... & Tan, K. S. (2007). MalariaCount: an image analysis-based program for the accurate determination of parasitemia. Journal of microbiological methods, 68(1), 11-18. https://doi.org/10.1016/j.mimet.2006.05.017
Somasekar, J., & Reddy, B. E. (2015). Segmentation of erythrocytes infected with malaria parasites for the diagnosis using microscopy imaging. Computers & Electrical Engineering, 45, 336-351. https://doi.org/10.1016/j.compeleceng.2015.04.009
Srivastava, B., Anvikar, A. R., Ghosh, S. K., Mishra, N., Kumar, N., Houri-Yafin, A., ... & Valecha, N. (2015). Computer-vision-based technology for fast, accurate and cost effective diagnosis of malaria. Malaria journal, 14(1), 1-6.
Tek, F. B., Dempster, A. G., & Kale, I. (2009). Computer vision for microscopy diagnosis of malaria. Malaria journal, 8(1), 1-14.
Tek, F. B., Dempster, A. G., & Kale, I. (2010). Parasite detection and identification for automated thin blood film malaria diagnosis. Computer vision and image understanding, 114(1), 21-32. https://doi.org/10.1016/j.cviu.2009.08.003
Tomari, R., Zakaria, W. N. W., Jamil, M. M. A., Nor, F. M., & Fuad, N. F. N. (2014). Computer aided system for red blood cell classification in blood smear image. Procedia Computer Science, 42, 206-213. https://doi.org/10.1016/j.procs.2014.11.053
Tsai, M. H., Yu, S. S., Chan, Y. K., & Jen, C. C. (2015). Blood smear image based malaria parasite and infected-erythrocyte detection and segmentation. Journal of medical systems, 39(10), 1-14.
Varma, S. L., & Chavan, S. S. (2019). Detection of malaria parasite based on thick and thin blood smear images using local binary pattern. In Computing, Communication and Signal Processing (pp. 967-975). Springer, Singapore.
World Malaria Report. (2019). Switzerland.: World Health Organization http://www.who.int/malaria.
Xiong, W., Ong, S. H., Lim, J. H., Foong, K. W. C., Liu, J., Racoceanu, D., ... & Tan, K. S. (2010). Automatic area classification in peripheral blood smears. IEEE Transactions on Biomedical Engineering, 57(8), 1982-1990.
Published
How to Cite
Issue
Section
Copyright (c) 2022 International journal of health sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.