Improved skin cancer detection using CNN

https://doi.org/10.53730/ijhs.v6nS2.8762

Authors

  • Juveriya Shaikh Modern Education Society’s College of Engineering, Pune
  • Rubeena Khan Modern Education Society’s College of Engineering, Pune
  • Yashwant Ingle Modern Education Society’s College of Engineering, Pune
  • Nuzhat Shaikh Modern Education Society’s College of Engineering, Pune

Keywords:

image segmentation, convolutional neural network, skin cancer

Abstract

Pollution, an unhealthy lifestyle, UV radiation, and other factors can contribute to skin cancer. A variety of machine learning techniques have been developed in the past to detect such malignancies before they worsen. The goal of this article is to utilize a convolutional neural network to segment skin lesion images. The purpose of this study is to see how deep learning may be utilized to segment skin lesion photos. People may discover what skin diseases they may have, how to protect themselves from it, and what measures they can take early on to successfully treat the disease using Artificial Intelligence. Machine learning may be used to diagnose the problem and help us predict the result. The most widely used classification technology is the support vector machine. The discoveries might help doctors treat sickness early on and avoid further deterioration.

Downloads

Download data is not yet available.

References

Miller DD, Brown EW. Artificial intelligence in medical practice: the question to the answer? Am J Med. (2018)

Kulkarni S, Seneviratne N, Baig MS, Khan AHA. Artificial intelligence in medicine: where are we now?" Acad Radiol. (2019)

Prayer F, Röhrich S, Pan J, Hofmanninger J, Langs G, Prosch HJD, et al. Artificial intelligence in lung imaging. Radiologe. (2019)

Petrone JJNB. FDA approves stroke-detecting AI software. Nat Biotechnol. (2018)

McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. (2020)

Shrivastava VK, Londhe ND, Sonawane RS, Suri JS. A novel and robust Bayesian approach for segmentation of psoriasis lesions and its risk stratification. Comput Methods Prog Biomed. (2017)

Han SS, Park GH, LimW, KimMS, ImNa J, Park I, et al.Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: automatic construction of onychomycosis datasets by region-based convolutional deep neural network. PLoS ONE. (2018)

Hogarty DT, Su JC, Phan K, Attia M, Hossny M, Nahavandi S, et al. Artificial intelligence in dermatology—where we are and the way to the future: a review. Am J Clin Dermatol. (2019)

Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. (2017)

Brinker TJ, Hekler A, Enk AH, Berking C, Haferkamp S, Hauschild A, et al. Deep neural networks are superior to dermatologists in melanoma image classification. Eur J Cancer. (2019)

Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C, et al. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur J Cancer. (2019)

Lau AY, Staccini P. Artificial intelligence in health: new opportunities, challenges, and practical implications. Yearb Med Inform. (2019)

Cath C. Governing artificial intelligence: ethical, legal and technical opportunities and challenges. Phil Trans R Soc A. (2018)

Argenziano G, Zalaudek I, Hofmann-Wellenhof R, Bakos RM, Bergman W, Blum A, Broganelli P, Cabo H, Caltagirone F, Catricalà C, Coppini M, Dewes L, Francia MG, Garrone A, Turk BG, Ghigliotti G, Giacomel J, Gourhant JY, Hlavin G, Kukutsch N, Lipari D, Melchionda G, Ozdemir F, Pellacani G, Pellicano R, Puig S, Scalvenzi M, Sortino-Rachou AM, Virgili AR, Kittler H. Total body skin examination for skin cancer screening in patients with focused symptoms. J Am Acad Dermatol. 2012 Feb;66(2):212-9. doi: 10.1016/j.jaad.2010.12.039. Epub 2011 Jul 14. PMID: 21757257

Miller AJ, Mihm MC Jr. Melanoma. N Engl J Med. 2006 Jul 6;355(1):51-65. doi: 10.1056/NEJMra052166. PMID: 16822996.

Rigel DS, Russak J, Friedman R. The evolution of melanoma diagnosis: 25 years beyond the ABCDs. CA Cancer J Clin. 2010 Sep-Oct;60(5):301-16. doi: 10.3322/caac.20074. Epub 2010 Jul 29. PMID: 20671054.

Daldrup-Link, H.E., Henning, T. & Link, T.M. MR imaging of therapy-induced changes of bone marrow. Eur Radiol 17, 743–761 (2007). https://doi.org/10.1007/s00330-006-0404-1

Vestergaard, M.E. & E, Macaskill & Holt, P.E. & Menzies, S. W. (2008). Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: A meta-analysis of studies performed in a clinical setting. The British journal of dermatology. 159. 669-76. 10.1111/j.1365-2133.2008.08713.x.

H. A. Daanen and F. B. Ter Haar, “3d whole body scanners revisited,” Displays, 2013.

T. Ching, D. S. Himmelstein, B. K. Beaulieu-Jones, A. A. Kalinin, B. T. Do, G. P. Way, E. Ferrero, P.-M. Agapow, M. Zietz, M. M. Hoffman et al., “Opportunities and obstacles for deep learning in biology and medicine,” Journal of The Royal Society Interface, 2018.

Bengio, I. Goodfellow, and A. Courville, Deep learning. Citeseer, 2017

Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25. Erratum in: Nature. 2017 Jun 28;546(7660):686. PMID: 28117445; PMCID: PMC8382232.

Narayanamurthy, Vigneswaran & Padmapriya, Padmapriya & Noorasafrin, A & Pooja, B & Hema, K & Khan, Al'aina & Nithyakalyani, K & Samsuri, Fahmi. (2018). Skin cancer detection using non-invasive techniques. RSC Advances. 8. 28095-28130. 10.1039/c8ra04164d.

Ries L Melbert , D. Krapcho M et al. SEER Cancer Statistics Review, 1975-2004. Bethesda, MDNational Cancer Institute, based on November 2006 SEER data submission, posted to the SEER Web site2007;http://seer.cancer.gov/csr/1975_2004/Accessed October 6, 2007

Tang, P.; Liang, Q.; Yan, X.; Xiang, S.; Zhang, D. GP-CNN-DTEL: Global-part CNN model with data-transformed ensemble learning for skin lesion classification. IEEE J. Biomed. Health Inform. 2020, 24, 2870–2882.

Siegel R.L, Miller K.D., Jemal A., Cancer statistics, 2020. CA Cancer J. Clin. 2020; 70: 7-30

Smith L., MacNeil S. State of the art in non-invasive imaging of cutaneous melanoma. Skin Res. Technol. 2011;17:257–269. doi: 10.1111/j.1600-0846.2011.00503.x.

Friedman RJ, Rigel DS, Kopf AW. Early detection of malignant melanoma: the role of physician examination and self-examination of the skin. CA Cancer J Clin. 1985 May-Jun;35(3):130-51. doi: 10.3322/canjclin.35.3.130. PMID: 3921200.

Al-masni, Mohammed & Kim, Dong-Hyun & Kim, Tae-Seong. (2020). Multiple Skin Lesions Diagnostics via Integrated Deep Convolutional Networks for Segmentation and Classification. Computer Methods and Programs in Biomedicine. 190. 105351. 10.1016/j.cmpb.2020.105351.

Sharifi, M., Hasan, A., Nanakali, N.M.Q. et al. Combined chemo-magnetic field-photothermal breast cancer therapy based on porous magnetite nanospheres. Sci Rep 10, 5925 (2020). https://doi.org/10.1038/s41598-020-62429-6

Mishra, Nabin Kumar & Celebi, M. Emre. (2016). An Overview of Melanoma Detection in Dermoscopy Images Using Image Processing and Machine Learning. arXiv e-print. arXiv:1601.07843.

Rehman, M.; Khan, S.H.; Danish Rizvi, S.M.; Abbas, Z.; Zafar, A. Classification of Skin Lesion by Interference of Segmentation and Convolotion Neural Network. In Proceedings of the 2018 2nd International Conference on Engineering Innovation (ICEI), Bangkok, Thailand, 5–6 July 2018; pp. 81–85.

Harley, A.W. An Interactive Node-Link Visualization of Convolutional Neural Networks. In Advances in Visual Computing; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9474, pp. 867–877.

Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. arXiv 2013, arXiv:1311.2901. Available online: http://arxiv.org/abs/1311.2901

Nasr-Esfahani, E.; Samavi, S.; Karimi, N.; Soroushmehr, S.M.R.; Jafari, M.H.; Ward, K.; Najarian, K. Melanoma Detection by Analysis of Clinical Images Using Convolutional Neural Network. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; p. 1373.

Yu, L.; Chen, H.; Dou, Q.; Qin, J.; Heng, P.-A. Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks. IEEE Trans. Med. Imaging 2017, 36, 994–1004.

DeVries, T.; Ramachandram, D. Skin Lesion Classification Using Deep Multi-Scale Convolutional Neural Networks. arXiv 2017, arXiv:1703.01402. Available online: http://arxiv.org/abs/1703.01402 (accessed on 13 February 2021).

Gonog, L.; Zhou, Y. A Review: Generative Adversarial Networks. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 20 June 2019; pp. 505–510.

Goodfellow, I. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv 2017, arXiv:1701.00160. Available online: http: //arxiv.org/abs/1701.00160

Ingle, Y. S., & Shaikh, N. F. (2022). Review on skin cancer detection using AI. International Journal of Health Sciences, 6(S2), 262–277. https://doi.org/10.53730/ijhs.v6nS2.5008

Rinartha, K., & Suryasa, W. (2017). Comparative study for better result on query suggestion of article searching with MySQL pattern matching and Jaccard similarity. In 2017 5th International Conference on Cyber and IT Service Management (CITSM) (pp. 1-4). IEEE.

Published

10-06-2022

How to Cite

Shaikh, J., Khan, R., Ingle, Y., & Shaikh, N. (2022). Improved skin cancer detection using CNN. International Journal of Health Sciences, 6(S2), 14347–14360. https://doi.org/10.53730/ijhs.v6nS2.8762

Issue

Section

Peer Review Articles

Most read articles by the same author(s)