Saturation problems for positive linear approximation of function in quasi normed spaces

https://doi.org/10.53730/ijhs.v6nS3.9083

Authors

  • Nada Sadiq Abbas Ministry of Education, General Directorate of Education in Babylon, Iraq
  • Eman Samir Bhaya University of Babylon, College of Education for Pure Sciences, Babilon, Iraq

Keywords:

saturation, positive, approximation, quasi normed spaces

Abstract

Many authors work on constrained approximation such as monotonicity, convexity and k monotoni city, but little works introduced in positive collinear approximation. The aim of our paper is to investigate linear and positive approximation for real functions in , saturation problem between degree of best positive and linear approximation, and find collinear positive best approximation for measurable function in    Lebesgue quasi normed spaces.

Downloads

Download data is not yet available.

References

M. Becker, Global approximation theorems for Sasz-Mirakjan and Baskakov operators in polynomial weighted spaces, Indiana Univ. Math. J. 27 (1978), 127-142.

H. Berens and G. G. Lorentz, Inverse theorems for Bernstein polynomials, Indiana Univ.

Math. J. 21 (1972), 693-708

R. A. De Vore and G. G. Lorentz, ``Constructive Approximation,'' Springer-Verlag, Berlin /New York, 1993.

Z. Ditzian, Rate of approximation of linear processes, Acta Sci. Math. 48 (1985), 103-128.

Z. Ditzian, Rate of convergence for Bernstein polynomials revisited, J. Approx. Theory 50 (1987), 40-48.

Z. Ditzian, Direct estimate for Bernstein polynomials, J. Approx. Theory 79 (1994),165-166.

Z. Ditzian and D. Jiang, Approximation of functions by polynomials in C(&1, 1), Canad. J. Math. 44 (1992), 924-940.

Z. Ditzian, D. Jiang, and D. Leviatan, Simultaneous polynomial approximation, SIAM J. Math. Anal. 24 (1993), 1652-1661.

Z. Ditzian and V. Totik, ``Moduli of Smoothness,'' Springer-Verlag, New York, 1987.

M. Felten, Direct and inverse estimates for Bernstein polynomials, Constr. Approx. 14

(1998), 459-468.

I. Gavrea and D. H. Mache, Generalization of Bernstein-type approximation methods, in ``Approximation Theory, Proceedings, IDoMat 95'' (M. W. Mu ller, M.

Felten, and D. H. Mache, Eds.), Mathematical Research, Vol. 86, pp. 115-126, Akademie Verlag, Berlin, 1995

M. E. H. Ismail and C. P. May, On a family of approximation operators, J. Math. Anal. Appl. 63 (1978), 446-462.

D. H. Mache and D. X. Zhou, Characterization theorems for the approximation by a family of operators, J. Approx. Theory 84 (1996), 145-161.

G. Mastroianni and P. Ve rtesi, Approximation by some operators using a certain new modulus of smoothness, in ``Proceedings Second International Conference in Functional Analysis and Approximation Theory, Acquafredda di Maratea, 1992,'' pp. 387-397.

K. Sato^, Global approximation theorems for some exponential-type operators, J. Approx.Theory 32 (1981), 32-46.

D.-X. Zhou, On a conjecture of Z. Ditzian, J. Approx. Theory 69 (1992), 167-172.

Rinartha, K., Suryasa, W., & Kartika, L. G. S. (2018). Comparative Analysis of String Similarity on Dynamic Query Suggestions. In 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS) (pp. 399-404). IEEE.

Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2021). Get vaccinated when it is your turn and follow the local guidelines. International Journal of Health Sciences, 5(3), x-xv. https://doi.org/10.53730/ijhs.v5n3.2938

Djuraev, A. M., Alpisbaev, K. S., & Tapilov, E. A. (2021). The choice of surgical tactics for the treatment of children with destructive pathological dislocation of the hip after hematogenous osteomyelitis. International Journal of Health & Medical Sciences, 5(1), 15-20. https://doi.org/10.21744/ijhms.v5n1.1813

Published

16-06-2022

How to Cite

Abbas, N. S., & Bhaya, E. S. (2022). Saturation problems for positive linear approximation of function in quasi normed spaces. International Journal of Health Sciences, 6(S3), 12070–12077. https://doi.org/10.53730/ijhs.v6nS3.9083

Issue

Section

Peer Review Articles