Synthesis, biological activity and molecular docking study of some new chalcones, pyrazolines and isoxazolines derivatives bearing 1,2,3- triazoline
Keywords:
Chalcone, Pyrazoline, Isoxazoline, Antibacterial, Antioxidants, Molecular DockingAbstract
In this work a variety of new compounds such as chalcones, pyridine and isooxazoline derivatives has been synthesized. 2-((1-(4-acetylphenyl)-4,5-dihydro-1H-1,2,3-triazol-4-yl)methyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide(1) have been chosen as a starting material. Condensation of compound(1) with aromatic aldehydes namely benzaldehyde, p-chloro benzaldehyde, p-bromo benzaldehyde, p-nitro benzaldehyde, p-hydroxy benzaldehyde, m-hydroxy benzaldehyde, p-N,N-dimethyl benzaldehyde and 2,4-dimethoxy benzaldehyde in the presence of 40% KOH gave chalcone derivatives (2a-h). The cyclization of prepared chalcone derivatives semicarbazide in the presence acetic acid product pyrazoline derivatives(3a-f). Reaction of chalcone derivatives(2a-h) with hydroxylamine hydrochloride in the presence of sodium acetate afforded corresponding isooxazoline derivatives (4a-d). FT-IR, 1HNMR, and 13CNMR were used to characterize the target compounds. The results showed that the target compounds have a good biological activity such as antibacterial and antioxidant. The molecular docking studies of the target 6ul7 with the newly synthesized compounds showed good docking scores with acceptable binding interactions. The present results reveal that the newly synthesized compounds exhibit promising inhibition activity against Escherichia Coli.
Downloads
References
Saleh SS, AL-Salihi SS, Mohammed IA. Biological activity Study for some heterocyclic compounds and their impact on the gram positive and negative bacteria. Energy Procedia. 2019;157:296-306. doi:10.1016/j.egypro.2018.11.194
Mirzaei S, Hadizadeh F, Eisvand F, Mosaffa F, Ghodsi R. Synthesis, structure-activity relationship and molecular docking studies of novel quinoline-chalcone hybrids as potential anticancer agents and tubulin inhibitors. J Mol Struct. 2020;1202(xxxx):127310. doi:10.1016/j.molstruc.2019.127310
Jain S, Kumar S, Lamba BY, Patra J, Mahindroo N. Nanocatalysts: Applications in synthesis of chalcones–a review. Synth Commun. 2021;51(1):1-12. doi:10.1080/00397911.2020.1817941
Ezhilarasi RM, Jayachandramani N, Mahalakshmi S. A green chemical method for the synthesis of chalcones using Amberlite resin. Int J Adv Chem Sci Appl. 2015;3:5-9.
Khan SA, Asiri AM, Al-Ghamdi NSM, et al. Microwave assisted synthesis of chalcone and its polycyclic heterocyclic analogues as promising antibacterial agents: In vitro, in silico and DFT studies. J Mol Struct. 2019;1190:77-85. doi:10.1016/j.molstruc.2019.04.046
Damas L, Rodrigues FMS, Gonzalez ACS, Carrilho RMB, Pineiro M, Pereira MM. Sequential catalytic carbonylation reactions for sustainable synthesis of biologically relevant entities. J Organomet Chem. 2020;923:1-7. doi:10.1016/j.jorganchem.2020.121417
Pragathi YJ, Veronica D, Anitha K, Rao MVB, Raju RR. Synthesis and biological evaluation of chalcone derivatives of 1,2,4-thiadiazol-benzo[d]imidazol-2-yl)quinolin-2(1H)-one as anticancer agents. Chem Data Collect. 2020;30:1-8. doi:10.1016/j.cdc.2020.100556
Higgs J, Wasowski C, Marcos A, et al. Chalcone derivatives: synthesis, in vitro and in vivo evaluation of their anti-anxiety, anti-depression and analgesic effects. Heliyon. 2019;5(3). doi:10.1016/j.heliyon.2019.e01376
Jin H, Jiang X, Yoo H, et al. Synthesis of Chalcone‐Derived Heteroaromatics with Antibacterial Activities. ChemistrySelect. 2020;5(40):12421-12424. doi:10.1002/slct.202003397
Burmaoglu S, Yilmaz AO, Polat MF, Kaya R, Gulcin İ, Algul O. Synthesis and biological evaluation of novel tris-chalcones as potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibitors. Bioorg Chem. 2019;85:191-197. doi:10.1016/j.bioorg.2018.12.035
Varghese B, Al-Busafi SN, Suliman FEO, Al-Kindy SMZ. Synthesis, spectroscopic characterization and photophysics of a novel environmentally sensitive dye 3-naphthyl-1-phenyl-5-(4-carboxyphenyl)-2-pyrazoline. J Lumin. 2015;159:9-16. doi:10.1016/j.jlumin.2014.10.045
Li Y, Wei L, Wan JP, Wen C. Water-acetic acid mediated chemoselective synthesis of pyrazolines via multimolecular domino reactions of enaminones and sulfonyl hydrazines. Tetrahedron. 2017;73(16):2323-2328. doi:10.1016/j.tet.2017.03.019
Dofe VS, Sarkate AP, Tiwari S V., et al. Ultrasound assisted synthesis of tetrazole based pyrazolines and isoxazolines as potent anticancer agents via inhibition of tubulin polymerization. Bioorganic Med Chem Lett. 2020;30(22):1-8. doi:10.1016/j.bmcl.2020.127592
Kumari P, Mishra VS, Narayana C, Khanna A, Chakrabarty A, Sagar R. Publisher Correction: Design and efficient synthesis of pyrazoline and isoxazole bridged indole C-glycoside hybrids as potential anticancer agents (Scientific Reports, (2020), 10, 1, (6660), 10.1038/s41598-020-63377-x). Sci Rep. 2020;10(1):1-16. doi:10.1038/s41598-020-67068-5
Tanwer N, Kaur R, Rana D, et al. Synthesis and characterization of Pyrazoline derivatives. J Integr Sci Technol. 2015;3(2):39-41. http://pubs.iscience.in/journal/index.php/jist/article/view/313
Abunada NM, Hassaneen HM, Abu Samaha ASM, Miqdad OA. Synthesis and antimicrobial evaluation of some new pyrazole, pyrazoline and chromeno[3,4-c]pyrazole derivatives. J Braz Chem Soc. 2009;20(5):975-987. doi:10.1590/S0103-50532009000500024
Revanasiddappa B, Kumar MV, Kumar H. Synthesis and Antidepressant Activity of Pyrazoline Derivatives. Dhaka Univ J Pharm Sci. 2020;19(2):179-184. doi:10.3329/dujps.v19i2.50634
Salian V V., Narayana B, Sarojini BK, Kumar MS, Sharath Chandra K, Lobo AG. Tailor made biheterocyclic pyrazoline-thiazolidinones as effective inhibitors of Escherichia coli FabH: Design, synthesis and structural studies. J Mol Struct. 2019;1192:91-104. doi:10.1016/j.molstruc.2019.04.105
Raghuvanshi DS, Verma N, Singh SV, Khare S, Pal A, Negi AS. Synthesis of thymol-based pyrazolines: An effort to perceive novel potent-antimalarials. Bioorg Chem. 2019;88(September 2018):102933. doi:10.1016/j.bioorg.2019.102933
Nocentini A, Moi D, Balboni G, Salvadori S, Onnis V, Supuran CT. Synthesis and biological evaluation of novel pyrazoline-based aromatic sulfamates with potent carbonic anhydrase isoforms II, IV and IX inhibitory efficacy. Bioorg Chem. 2018;77:633-639. doi:10.1016/j.bioorg.2018.02.021
Krishna PR, Prapurna YL. DABCO catalyzed facile synthesis of highly functionalized pyrazolines from Baylis-Hillman acetates and ethyl diazoacetate. Tetrahedron Lett. 2010;51(50):6507-6510. doi:10.1016/j.tetlet.2010.10.006
Moi D, Nocentini A, Deplano A, Balboni G, Supuran CT, Onnis V. Structure-activity relationship with pyrazoline-based aromatic sulfamates as carbonic anhydrase isoforms I, II, IX and XII inhibitors: Synthesis and biological evaluation. Eur J Med Chem. 2019;182:1-11. doi:10.1016/j.ejmech.2019.111638
Havrylyuk D, Zimenkovsky B, Karpenko O, Grellier P, Lesyk R. Synthesis of pyrazoline-thiazolidinone hybrids with trypanocidal activity. Eur J Med Chem. 2014;85:245-254. doi:10.1016/j.ejmech.2014.07.103
Patel VM, Desai KR. Eco-friendly synthesis of fluorine-containing pyrazoline derivatives over potassium carbonate. Arkivoc. 2004;1:123-129. doi:10.3998/ark.5550190.0005.111
Gaamoussi I, Fichtali I, Tama A Ben, et al. Synthesis, characterization and X-ray structure of glycosyl-1, 2-isoxazoles and glycosyl-1,2-isoxazolines prepared via 1,3-dipolar cycloaddition. J Mol Struct. 2013;1048:130-137. doi:10.1016/j.molstruc.2013.05.043
Chowdhury P, Das AM, Goswami P. Synthesis of some new steroidal [16α,17α-d]-isoxazolines. Steroids. 2005;70(8):494-498. doi:10.1016/j.steroids.2005.01.003
Aarjane M, Slassi S, Ghaleb A, Tazi B, Amine A. Synthesis, biological evaluation, molecular docking and in silico ADMET screening studies of novel isoxazoline derivatives from acridone. Arab J Chem. 2021;14(4):1-13. doi:10.1016/j.arabjc.2021.103057
Basappa, Sadashiva MP, Mantelingu K, Nanjunda Swamy S, Rangappa KS. Solution-phase synthesis of novel Δ2-isoxazoline libraries via 1,3-dipolar cycloaddition and their antifungal properties. Bioorganic Med Chem. 2003;11(21):4539-4544. doi:10.1016/j.bmc.2003.08.007
Bakht MA, Ansari MJ, Riadi Y, Ajmal N, Ahsan MJ, Yar MS. Physicochemical characterization of benzalkonium chloride and urea based deep eutectic solvent (DES): A novel catalyst for the efficient synthesis of isoxazolines under ultrasonic irradiation. J Mol Liq. 2016;224:1249-1255. doi:10.1016/j.molliq.2016.10.105
Guirado A, Martiz B, Andreu R, Bautista D. A new and efficient approach to isoxazolines. First synthesis of 3-aryl-5-dichloromethyl-2-isoxazolines. Tetrahedron. 2011;67(32):5811-5815. doi:10.1016/j.tet.2011.05.110
Dofe VS, Sarkate AP, Tiwari S V., et al. Ultrasound assisted synthesis of tetrazole based pyrazolines and isoxazolines as potent anticancer agents via inhibition of tubulin polymerization. Bioorganic Med Chem Lett. 2020;30(22):127592. doi:10.1016/j.bmcl.2020.127592
Thari FZ, Tachallait H, El Alaoui NE, et al. Ultrasound-assisted one-pot green synthesis of new N- substituted-5-arylidene-thiazolidine-2,4-dione-isoxazoline derivatives using NaCl/Oxone/Na3PO4 in aqueous media. Ultrason Sonochem. 2020;68(May):105222. doi:10.1016/j.ultsonch.2020.105222
Krompiec S, Bujak P, Malarz J, et al. An isomerization-1,3-dipolar cycloaddition tandem reaction towards the synthesis of 3-aryl-4-methyl-5-O-substituted isoxazolines from O-allyl compounds. Tetrahedron. 2012;68(30):6018-6031. doi:10.1016/j.tet.2012.05.027
Dadiboyena S, Nefzi A. Solid phase synthesis of isoxazole and isoxazoline-carboxamides via [2+3]-dipolar cycloaddition using resin-bound alkynes or alkenes. Tetrahedron Lett. 2012;53(16):2096-2099. doi:10.1016/j.tetlet.2012.02.041
Karthikeyan K, Veenus Seelan T, Lalitha KG, Perumal PT. Synthesis and antinociceptive activity of pyrazolyl isoxazolines and pyrazolyl isoxazoles. Bioorganic Med Chem Lett. 2009;19(13):3370-3373. doi:10.1016/j.bmcl.2009.05.055
Salotra R, Utreja D, Sharma P. A Convenient One-Pot Synthesis of Chalcones and Their Derivatives and Their Antimicrobial Activity. Russ J Org Chem. 2020;56(12):2207-2211. doi:10.1134/S1070428020120258
Ozmen Ozgun D, Gul HI, Yamali C, et al. Synthesis and bioactivities of pyrazoline benzensulfonamides as carbonic anhydrase and acetylcholinesterase inhibitors with low cytotoxicity. Bioorg Chem. 2019;84:511-517. doi:10.1016/j.bioorg.2018.12.028
Bano S, Alam MS, Javed K, Dudeja M, Das AK, Dhulap A. Synthesis, biological evaluation and molecular docking of some substituted pyrazolines and isoxazolines as potential antimicrobial agents. Eur J Med Chem. 2015;95:96-103. doi:10.1016/j.ejmech.2015.03.031
Mustafa K. Shneshil*, Ahmed W. Naser, Saadon A. Aowda. Synthesis of some saccharin derivatives containing 1 , 2 , 3-triazoline ring Synthesis and Characterization of New 1 , 2 , 4-Triazole Derivatives Form 2- Naphthol View project prodrug polym ... Int J ChemTech Res. 2020;9(9):389-393.
Mustafa K. Shneshil*, Ahmed W. Naser SAA. Synthesis of some saccharin derivatives containing 1 , 2 , 3-triazoline ring Synthesis and Characterization of New 1 , 2 , 4-Triazole Derivatives Form 2- Naphthol View project prodrug polym ... Int J ChemTech Res. 2016;9(9):389-393.
Radhi MM, Abdullah HN, Al-Asadi SA, Al-Mulla EAJ. Electrochemical oxidation effect of ascorbic acid on mercury ions in blood sample using cyclic voltammetry. Int J Ind Chem. 2015;6(4):311-316. doi:10.1007/s40090-015-0053-9
Singh R, Bansal R. 16,17-N′-(alky/arylsulfonyl)pyrazoline substituted neuroprotective heterosteroids: Synthesis, molecular docking and preclinical efficacy/toxicity studies in rodents. Steroids. 2019;148(April):114-124. doi:10.1016/j.steroids.2019.05.002
Published
How to Cite
Issue
Section
Copyright (c) 2022 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.








