Microneedles based drug delivery systems: an updated review

https://doi.org/10.53730/ijhs.v6n7.10813

Authors

  • Puja Gulati Professor School of pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab- 147203
  • Shivani Pannu Assistant Professor School of pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab- 147203
  • Mohit Kumar Ph.D Research Scholar Department of Pharmaceutical sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab-151001
  • Amit Bhatia Associate Professor Department of Pharmaceutical sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab-151001
  • Uttam Kumar Mandal Associate Professor Department of Pharmaceutical sciences & Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU),Bathinda, Punjab-151001
  • Shruti Chopra Assistant Professor Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh- 201313

Keywords:

Microneedle, Transdermal drug delivery, Penetration, In-vitro-in-vivo, Stratum corneum

Abstract

Transdermal drug delivery systems (TDDS) are used to deliver the drug(s) or the therapeutically active substances through topical route primarily through skin. Relatively very small numbers of drugs are administered transdermally because in many cases the physical properties of drugs, including polarity and molecular size, have limited its capacity to deliver the particular dug transdermally. Now a day’s transdermal drug delivery techniques are used in various therapeutic areas like motion sickness management, heart disease treatment, hormones replacement, management of pain and smoking cessation etc. TDDS increases the potency of drugs and decreases the relative side effects. We reviewed different approaches used to enhance the drug delivery transdermally (e.g., particulate and vesicle based method, modified stratum corneum method, electrically based method, vehicle interaction method, removed stratum corneum method). As the stratum corneum is the main barrier in transdermal drug delivery, so the approaches can also be classified in three main categories in order to circumventing the barriers related to stratum corneum only (based on drug vehicle, chemical enhancers, physical enhancers). Here we focused mainly on the microneedles (MNs) based approach for transdermal drug delivery. 

 

Downloads

Download data is not yet available.

References

S. Lewis, N. Udupa, Design and evaluation of matrix type and membrane controlled transdermal delivery systems of nicotine suitable for useinsmoking cessation, Indian J. Pharm. Sci. 68 (2006).

A. Naik, L.A.R.M. Pechtold, R.O. Potts, R.H. Guy, Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans, J. Control. Release. 37 (1995) 299–306.

A.D. Mali, An updated review on transdermal drug delivery systems, Skin (Los. Angeles). 8 (2015).

K.R. Reddy, S. Mutalik, S. Reddy, Once-daily sustained-release matrix tablets of nicorandil: formulation and in vitro evaluation, AAPS Pharmscitech. 4 (2003) 480–488.

R.S. Langer, D.L. Wise, Medical applications of controlled release, CRC Press, 2019.

A.F. Kydonieus, Controlled release technologies: methods, theory, and applications, CRC press, 2019.

K.H. Ramteke, S.N. Dhole, S. V Patil, Transdermal drug delivery system: a review, J. Adv. Sci. Res. 3 (2012) 22–35.

M.B. Brown, G.P. Martin, S.A. Jones, F.K. Akomeah, Dermal and transdermal drug delivery systems: current and future prospects, Drug Deliv. 13 (2006) 175–187.

S. Premjeet, A. Bilandi, K. Sahil, M. Akanksha, Transdermal drug delivery system (patches), applications in present scenario, Int J Res Pharm Chem. 1 (2011) 1139–1151.

V. Chander Jhawat, V. Saini, S. Kamboj, N. Maggon, Transdermal drug delivery systems: Approaches and advancements in drug absorption through skin, Int. J. Pharm. Sci. Rev. Res. 20 (2013) 47–56.

G.M. SHINGADE, Review on: recent trend on transdermal drug delivery system, J. Drug Deliv. Ther. 2 (2012).

N. Sharma, B. Parashar, S. Sharma, U. Mahajan, Blooming pharma industry with transdermal drug delivery system, Indo Glob. J. Pharm. Sci. 2 (2012) 262–278.

E. Touitou, H.E. Junginger, N.D. Weiner, T. Nagai, M. Mezei, Liposomes as carriers for topical and transdermal delivery, J. Pharm. Sci. 83 (1994) 1189–1203.

H.A.E. Benson, Transdermal drug delivery: penetration enhancement techniques, Curr. Drug Deliv. 2 (2005) 23–33.

S.A. Wissing, R.H. Müller, The influence of solid lipid nanoparticles on skin hydration and viscoelasticity–in vivo study, Eur. J. Pharm. Biopharm. 56 (2003) 67–72.

R.H. Guy, Y.N. Kalia, M.B. Delgado-Charro, V. Merino, A. López, D. Marro, Iontophoresis: electrorepulsion and electroosmosis, J. Control. Release. 64 (2000) 129–132.

D.B. Bommannan, J. Tamada, L. Leung, R.O. Potts, Effect of electroporation on transdermal lontophoretic delivery of luteinizing hormone releasing hormone (LHRH) in vitro, Pharm. Res. 11 (1994) 1809–1814.

S.-L. Chang, G.A. Hofmann, L. Zhang, L.J. Deftos, A.K. Banga, The effect of electroporation on iontophoretic transdermal delivery of calcium regulating hormones, J. Control. Release. 66 (2000) 127–133.

A. V Badkar, A.K. Banga, Electrically enhanced transdermal delivery of a macromolecule, J. Pharm. Pharmacol. 54 (2002) 907–912.

J.E. Riviere, N.A. Monteiro-Riviere, R.A. Rogers, D. Bommannan, J.A. Tamada, R.O. Potts, Pulsatile transdermal delivery of LHRH using electroporation: drug delivery and skin toxicology, J. Control. Release. 36 (1995) 229–233.

S. Mitragotri, D. Blankschtein, R. Langer, Ultrasound-mediated transdermal protein delivery, Science (80-. ). 269 (1995) 850–853.

S. Mitragotri, D. Blankschtein, R. Langer, Transdermal drug delivery using low-frequency sonophoresis, Pharm. Res. 13 (1996) 411–420.

W.-R. Lee, S.-C. Shen, H.-H. Lai, C.-H. Hu, J.-Y. Fang, Transdermal drug delivery enhanced and controlled by erbium: YAG laser: a comparative study of lipophilic and hydrophilic drugs, J. Control. Release. 75 (2001) 155–166.

S.L. Jacques, D.J. McAuliffe, I.H. Blank, J.A. Parrish, Controlled removal of human stratum corneum by pulsed laser to enhance percutaneous transport, (1988).

W.-R. Lee, S.-C. Shen, K.-H. Wang, C.-H. Hu, J.-Y. Fang, Lasers and microdermabrasion enhance and control topical delivery of vitamin C, J. Invest. Dermatol. 121 (2003) 1118–1125.

P. Treffel, F. Panisset, P. Humbert, O. Remoussenard, Y. Bechtel, P. Agache, Effect of pressure on in vitro percutaneous absorption of caffeine., Acta Derm. Venereol. 73 (1993) 200–202.

A.C. Sintov, I. Krymberk, D. Daniel, T. Hannan, Z. Sohn, G. Levin, Radiofrequency-driven skin microchanneling as a new way for electrically assisted transdermal delivery of hydrophilic drugs, J. Control. Release. 89 (2003) 311–320.

J.C. Trautman, M.J.N. Cormier, H.L. Kim, M.G. Zuck, Device for enhancing transdermal agent flux, (2000).

J.C. Trautman, P.S.-L. Wong, P.E. Daddona, H.L. Kim, M.G. Zuck, Device for enhancing transdermal agent flux, (2001).

V.V. Yuzhakov, F.F. Sherman, G.D. Owens, V. Gartstein, Apparatus and method for using an intracutaneous microneedle array, (2001).

S. Kaushik, A.H. Hord, D.D. Denson, D. V McAllister, S. Smitra, M.G. Allen, M.R. Prausnitz, Lack of pain associated with microfabricated microneedles, Anesth. Analg. 92 (2001) 502–504.

H.L. Quinn, M.C. Kearney, A.J. Courtenay, M.T. McCrudden, R.F. Donnelly, The role of microneedles for drug and vaccine delivery, Expert Opin. Drug Deliv. 11 (2014) 1769–1780. https://doi.org/10.1517/17425247.2014.938635.

W. Martanto, S.P. Davis, N.R. Holiday, J. Wang, H.S. Gill, M.R. Prausnitz, Transdermal delivery of insulin using microneedles in vivo, Pharm. Res. 21 (2004) 947–952.

M.B. Brown, M.J. Traynor, G.P. Martin, F.K. Akomeah, Transdermal drug delivery systems: skin perturbation devices, in: Drug Deliv. Syst., Springer, 2008: pp. 119–139.

E.L. Giudice, J.D. Campbell, Needle-free vaccine delivery, Adv. Drug Deliv. Rev. 58 (2006) 68–89.

T. Ogiso, T. Hirota, M. Iwaki, T. Hino, T. Tanino, Effect of temperature on percutaneous absorption of terodiline, and relationship between penetration and fluidity of the stratum corneum lipids, Int. J. Pharm. 176 (1998) 63–72.

T.O. Klemsdal, K. Gjesdal, J.-E. Bredesen, Heating and cooling of the nitroglycerin patch application area modify the plasma level of nitroglycerin, Eur. J. Clin. Pharmacol. 43 (1992) 625–628.

W. Hull, Heat enhanced transdermal drug delivery: a survey paper, J Appl Res. 2 (2002).

M. Paranjape, J. Garra, S. Brida, T. Schneider, R. White, J. Currie, A PDMS dermal patch for non-intrusive transdermal glucose sensing, Sensors Actuators A Phys. 104 (2003) 195–204.

N.A. Godshall, R.R. Anderson, Method and apparatus for disruption of the epidermis, (1999).

G.F. Bernabei, Method and apparatus for skin absorption enhancement and transdermal drug delivery, (2006).

F.K. Akomeah, G.P. Martin, A.G. Muddle, M.B. Brown, Effect of abrasion induced by a rotating brush on the skin permeation of solutes with varying physicochemical properties, Eur. J. Pharm. Biopharm. 68 (2008) 724–734.

P. Svedman, C. Svedman, Skin mini-erosion sampling technique: feasibility study with regard to serial glucose measurement, Pharm. Res. 15 (1998) 883–888.

J.A. Down, N.G. Harvey, Minimally invasive systems for transdermal drug delivery, Transdermal Drug Deliv. 123 (2002) 327–359.

A.P. Neukermans, A.I. Poutiatine, S. Sendelbeck, J. Trautman, L.L. Wai, B.P. Edwards, K.P. Eng, J.R. Gyory, K.L. Hyunok, W.Q. Lin, Device and method for enhancing microprotrusion skin piercing, Pat. WO. 141863 (2001).

K. Van Der Maaden, W. Jiskoot, J. Bouwstra, Microneedle technologies for (trans)dermal drug and vaccine delivery, J. Control. Release. 161 (2012) 645–655. https://doi.org/10.1016/j.jconrel.2012.01.042.

R.F. Donnelly, T.R. Raj Singh, A.D. Woolfson, Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety, Drug Deliv. 17 (2010) 187–207. https://doi.org/10.3109/10717541003667798.

S.H. Bariya, M.C. Gohel, T.A. Mehta, O.P. Sharma, Microneedles: an emerging transdermal drug delivery system, J. Pharm. Pharmacol. 64 (2012) 11–29.

Q.Y. Li, J.N. Zhang, B.Z. Chen, Q.L. Wang, X.D. Guo, A solid polymer microneedle patch pretreatment enhances the permeation of drug molecules into the skin, Rsc Adv. 7 (2017) 15408–15415.

Z. Zhao, Y. Chen, Y. Shi, Microneedles: a potential strategy in transdermal delivery and application in the management of psoriasis, RSC Adv. 10 (2020) 14040–14049.

X. Chen, L. Wang, H. Yu, C. Li, J. Feng, F. Haq, A. Khan, R.U. Khan, Preparation, properties and challenges of the microneedles-based insulin delivery system, J. Control. Release. 288 (2018) 173–188.

A.M. de Groot, G. Du, J. Mönkäre, A.C.M. Platteel, F. Broere, J.A. Bouwstra, A.J.A.M. Sijts, Hollow microneedle-mediated intradermal delivery of model vaccine antigen-loaded PLGA nanoparticles elicits protective T cell-mediated immunity to an intracellular bacterium, J. Control. Release. 266 (2017) 27–35.

C.G. Li, C.Y. Lee, K. Lee, H. Jung, An optimized hollow microneedle for minimally invasive blood extraction, Biomed. Microdevices. 15 (2013) 17–25.

Y. Hao, W. Li, X. Zhou, F. Yang, Z. Qian, Microneedles-based transdermal drug delivery systems: a review, J. Biomed. Nanotechnol. 13 (2017) 1581–1597.

Y. Ito, M. Hirono, K. Fukushima, N. Sugioka, K. Takada, Two-layered dissolving microneedles formulated with intermediate-acting insulin, Int. J. Pharm. 436 (2012) 387–393.

Y. Zhang, K. Brown, K. Siebenaler, A. Determan, D. Dohmeier, K. Hansen, Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action, Pharm. Res. 29 (2012) 170–177.

P.C. DeMuth, Y. Min, B. Huang, J.A. Kramer, A.D. Miller, D.H. Barouch, P.T. Hammond, D.J. Irvine, Polymer multilayer tattooing for enhanced DNA vaccination, Nat. Mater. 12 (2013) 367–376.

M.T. Hoang, K.B. Ita, D.A. Bair, Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride, Pharmaceutics. 7 (2015) 379–396.

J.-H. Shin, J.-Y. Noh, K.-H. Kim, J.-K. Park, J.-H. Lee, S.D. Jeong, D.-Y. Jung, C.-S. Song, Y.-C. Kim, Effect of zymosan and poly (I: C) adjuvants on responses to microneedle immunization coated with whole inactivated influenza vaccine, J. Control. Release. 265 (2017) 83–92.

R. Ali, P. Mehta, M.S. Arshad, I. Kucuk, M.W. Chang, Z. Ahmad, Transdermal microneedles—a materials perspective, Aaps Pharmscitech. 21 (2020) 12.

H. Chen, H. Zhu, J. Zheng, D. Mou, J. Wan, J. Zhang, T. Shi, Y. Zhao, H. Xu, X. Yang, Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin, J. Control. Release. 139 (2009) 63–72.

S. Zhang, Y. Qiu, Y. Gao, Enhanced delivery of hydrophilic peptides in vitro by transdermal microneedle pretreatment, Acta Pharm. Sin. B. 4 (2014) 100–104.

C.-J. Ke, Y.-J. Lin, Y.-C. Hu, W.-L. Chiang, K.-J. Chen, W.-C. Yang, H.-L. Liu, C.-C. Fu, H.-W. Sung, Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres, Biomaterials. 33 (2012) 5156–5165.

P.C. DeMuth, X. Su, R.E. Samuel, P.T. Hammond, D.J. Irvine, Nano‐layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA, Adv. Mater. 22 (2010) 4851–4856.

L. Xin, J.-Q. Cao, C. Liu, F. Zeng, H. Cheng, X.-Y. Hu, J.-H. Shao, Evaluation of rMETase-loaded stealth PLGA/liposomes modified with anti-CAGE scFV for treatment of gastric carcinoma, J. Biomed. Nanotechnol. 11 (2015) 1153–1161.

P.C. DeMuth, A. V Li, P. Abbink, J. Liu, H. Li, K.A. Stanley, K.M. Smith, C.L. Lavine, M.S. Seaman, J.A. Kramer, Vaccine delivery with microneedle skin patches in nonhuman primates, Nat. Biotechnol. 31 (2013) 1082–1085.

Y. Yu, X. Lü, F. Ding, Influence of poly (L-lactic acid) aligned nanofibers on PC12 differentiation, J. Biomed. Nanotechnol. 11 (2015) 816–827.

M.-C. Chen, K.-W. Wang, D.-H. Chen, M.-H. Ling, C.-Y. Liu, Remotely triggered release of small molecules from LaB6@ SiO2-loaded polycaprolactone microneedles, Acta Biomater. 13 (2015) 344–353.

V. Leszczak, D.A. Baskett, K.C. Popat, Endothelial cell growth and differentiation on collagen-immobilized polycaprolactone nanowire surfaces, J. Biomed. Nanotechnol. 11 (2015) 1080–1092.

J. Amirian, S.-Y. Lee, B.-T. Lee, Designing of combined nano and microfiber network by immobilization of oxidized cellulose nanofiber on polycaprolactone fibrous scaffold, J. Biomed. Nanotechnol. 12 (2016) 1864–1875.

R.D. Boehm, P. Jaipan, S.A. Skoog, S. Stafslien, L. VanderWal, R.J. Narayan, Inkjet deposition of itraconazole onto poly (glycolic acid) microneedle arrays, Biointerphases. 11 (2016) 11008.

R.D. Boehm, J. Daniels, S. Stafslien, A. Nasir, J. Lefebvre, R.J. Narayan, Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings, Biointerphases. 10 (2015) 11004.

J. Yu, Y. Zhang, Y. Ye, R. DiSanto, W. Sun, D. Ranson, F.S. Ligler, J.B. Buse, Z. Gu, Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery, Proc. Natl. Acad. Sci. 112 (2015) 8260–8265.

Y. Gao, M.K. Sarfraz, S.-D. Clas, W. Roa, R. Löbenberg, Hyaluronic acid-tocopherol succinate-based self-assembling micelles for targeted delivery of rifampicin to alveolar macrophages, J. Biomed. Nanotechnol. 11 (2015) 1312–1329.

H. Zheng, L. Yin, X. Zhang, H. Zhang, R. Hu, Y. Yin, T. Qiu, X. Xiong, Q. Wang, Redox sensitive shell and core crosslinked hyaluronic acid nanocarriers for tumor-targeted drug delivery, J. Biomed. Nanotechnol. 12 (2016) 1641–1653.

F. Chen, B. Fu, J. Xia, D. Wu, S. Wu, Y. Zhang, H. Sun, Y. Liu, X. Fang, B. Qin, Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects, Sci. China Earth Sci. (2019) 1–37.

M.G. McGrath, S. Vucen, A. Vrdoljak, A. Kelly, C. O’Mahony, A.M. Crean, A. Moore, Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration, Eur. J. Pharm. Biopharm. 86 (2014) 200–211.

H. Xu, X. Li, H. Kong, X. Zeng, Y. Jin, X. Qi, H. Wang, W. Xie, Characterization of the Uptake Efficiency and Cytotoxicity of Tetrandrine-Loaded Poly (N-vinylpyrrolidone)-Block-Poly (ε-caprolactone)(PVP-b-PCL) Nanoparticles in the A549 Lung Adenocarcinoma Cell Line, J. Biomed. Nanotechnol. 12 (2016) 1699–1707.

W. Chen, C. Wang, L. Yan, L. Huang, X. Zhu, B. Chen, H.J. Sant, X. Niu, G. Zhu, K.N. Yu, Improved polyvinylpyrrolidone microneedle arrays with non-stoichiometric cyclodextrin, J. Mater. Chem. B. 2 (2014) 1699–1705.

M. Dangol, H. Yang, C.G. Li, S.F. Lahiji, S. Kim, Y. Ma, H. Jung, Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles, J. Control. Release. 223 (2016) 118–125.

K. van der Maaden, W. Jiskoot, J. Bouwstra, Microneedle technologies for (trans) dermal drug and vaccine delivery, J. Control. Release. 161 (2012) 645–655.

S.M. Bal, Z. Ding, E. van Riet, W. Jiskoot, J.A. Bouwstra, Advances in transcutaneous vaccine delivery: do all ways lead to Rome?, J. Control. Release. 148 (2010) 266–282.

J.-H. Park, M.G. Allen, M.R. Prausnitz, Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery, J. Control. Release. 104 (2005) 51–66.

W. Martanto, J.S. Moore, O. Kashlan, R. Kamath, P.M. Wang, J.M. O’Neal, M.R. Prausnitz, Microinfusion using hollow microneedles, Pharm. Res. 23 (2006) 104–113.

D.B. Muchmore, D.E. Vaughn, Review of the mechanism of action and clinical efficacy of recombinant human hyaluronidase coadministration with current prandial insulin formulations, J. Diabetes Sci. Technol. 4 (2010) 419–428.

A.J. Guillot, A.S. Cordeiro, R.F. Donnelly, M.C. Montesinos, T.M. Garrigues, A. Melero, Microneedle-based delivery: An overview of current applications and trends, Pharmaceutics. 12 (2020) 569.

N.J. Vickers, Animal communication: when i’m calling you, will you answer too?, Curr. Biol. 27 (2017) R713–R715.

M. Shakeel, N. Pathan Dilnawaz, A.R. Ziyaurrrahman, B. Akber, S. Bushra, Microneedle as a novel drug delivery system: a review, Int Res J Pharm. 2 (2011) 72–77.

J. Gupta, H.S. Gill, S.N. Andrews, M.R. Prausnitz, Kinetics of skin resealing after insertion of microneedles in human subjects, J. Control. Release. 154 (2011) 148–155.

H. Kalluri, A.K. Banga, Formation and closure of microchannels in skin following microporation, Pharm. Res. 28 (2011) 82–94.

R.F. Donnelly, T.R.R. Singh, M.J. Garland, K. Migalska, R. Majithiya, C.M. McCrudden, P.L. Kole, T.M.T. Mahmood, H.O. McCarthy, A.D. Woolfson, Hydrogel‐forming microneedle arrays for enhanced transdermal drug delivery, Adv. Funct. Mater. 22 (2012) 4879–4890.

M.G. McGrath, A. Vrdoljak, C. O’Mahony, J.C. Oliveira, A.C. Moore, A.M. Crean, Determination of parameters for successful spray coating of silicon microneedle arrays, Int. J. Pharm. 415 (2011) 140–149.

H.S. Gill, M.R. Prausnitz, Coating formulations for microneedles, Pharm. Res. 24 (2007) 1369–1380.

H.S. Gill, M.R. Prausnitz, Coated microneedles for transdermal delivery, J. Control. Release. 117 (2007) 227–237.

X. Chen, T.W. Prow, M.L. Crichton, D.W.K. Jenkins, M.S. Roberts, I.H. Frazer, G.J.P. Fernando, M.A.F. Kendall, Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin, J. Control. Release. 139 (2009) 212–220.

M.R. Prausnitz, Microneedles for transdermal drug delivery, Adv. Drug Deliv. Rev. 56 (2004) 581–587. https://doi.org/10.1016/j.addr.2003.10.023.

M.R. Prausnitz, H.S. Gill, J.-H. Park, Microneedles for drug delivery, Modif. Release Drug Deliv. Inf. Heal. New York. (2008).

S. Katikaneni, G. Li, A. Badkar, A.K. Banga, Transdermal delivery of a~ 13 kDa protein—an in vivo comparison of physical enhancement methods, J. Drug Target. 18 (2010) 141–147.

B. Chen, J. Wei, F.E.H. Tay, Y.T. Wong, C. Iliescu, Silicon microneedle array with biodegradable tips for transdermal drug delivery, Microsyst. Technol. 14 (2008) 1015–1019.

K. Lee, J.D. Kim, C.Y. Lee, S. Her, H. Jung, A high-capacity, hybrid electro-microneedle for in-situ cutaneous gene transfer, Biomaterials. 32 (2011) 7705–7710.

J.-H. Park, S.-O. Choi, R. Kamath, Y.-K. Yoon, M.G. Allen, M.R. Prausnitz, Polymer particle-based micromolding to fabricate novel microstructures, Biomed. Microdevices. 9 (2007) 223–234.

M. Shirkhanzadeh, Microneedles coated with porous calcium phosphate ceramics: effective vehicles for transdermal delivery of solid trehalose, J. Mater. Sci. Mater. Med. 16 (2005) 37–45.

H.S. Gill, M.R. Prausnitz, Pocketed microneedles for drug delivery to the skin, J. Phys. Chem. Solids. 69 (2008) 1537–1541.

M.J. Madou, Fundamentals of microfabrication: the science of miniaturization, CRC press, 2018.

S.M. Sze, VLSI technology, McGraw-hill, 1988.

J.B. Alarcon, A.W. Hartley, N.G. Harvey, J.A. Mikszta, Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines, Clin. Vaccine Immunol. 14 (2007) 375–381.

D. Banks, Microengineering, MEMS, and interfacing. A practical guide. CRC, (2009).

S. Aoyagi, H. Izumi, S. Nakahara, M. Ochi, H. Ogawa, Laser microfabrication of long thin holes on biodegradable polymer in vacuum for preventing clogginess and its application to blood collection, Sensors Actuators A Phys. 145 (2008) 464–472.

S. Ma, Y. Xia, Y. Wang, K. Ren, R. Luo, L. Song, X. Chen, J. Chen, Y. Jin, Fabrication and characterization of a tungsten microneedle array based on deep reactive ion etching technology, J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 34 (2016) 52002.

M. Steinert, J. Acker, M. Krause, S. Oswald, K. Wetzig, Reactive species generated during wet chemical etching of silicon in HF/HNO3 mixtures, J. Phys. Chem. B. 110 (2006) 11377–11382.

C.K. Choi, J.B. Kim, E.H. Jang, Y. Youn, W.H. Ryu, Curved biodegradable microneedles for vascular drug delivery, Small. 8 (2012) 2483–2488.

X. Zhao, S.A. Coulman, S.J. Hanna, F.S. Wong, C.M. Dayan, J.C. Birchall, Formulation of hydrophobic peptides for skin delivery via coated microneedles, J. Control. Release. 265 (2017) 2–13.

K. Tsuchiya, S. Jinnin, H. Yamamoto, Y. Uetsuji, E. Nakamachi, Design and development of a biocompatible painless microneedle by the ion sputtering deposition method, Precis. Eng. 34 (2010) 461–466.

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, R. Morita, Metal microneedle fabrication using twisted light with spin, Opt. Express. 18 (2010) 17967–17973.

C.-T. Lin, L.-W. Ko, J.-C. Chiou, J.-R. Duann, R.-S. Huang, S.-F. Liang, T.-W. Chiu, T.-P. Jung, Noninvasive neural prostheses using mobile and wireless EEG, Proc. IEEE. 96 (2008) 1167–1183.

C. O’Mahony, F. Pini, A. Blake, C. Webster, J. O’Brien, K.G. McCarthy, Microneedle-based electrodes with integrated through-silicon via for biopotential recording, Sensors Actuators A Phys. 186 (2012) 130–136.

I. Mansoor, Y. Liu, U.O. Häfeli, B. Stoeber, Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures, J. Micromechanics Microengineering. 23 (2013) 85011.

J.J. Norman, S.-O. Choi, N.T. Tong, A.R. Aiyar, S.R. Patel, M.R. Prausnitz, M.G. Allen, Hollow microneedles for intradermal injection fabricated by sacrificial micromolding and selective electrodeposition, Biomed. Microdevices. 15 (2013) 203–210.

X.-X. Yan, J.-Q. Liu, X.-C. Shen, C.-S. Yang, Hollow metallic microneedles fabricated by combining bulk silicon micromachining and UV–LIGA technology, Microsyst. Technol. 18 (2012) 37–42.

M. Shikida, T. Hasada, K. Sato, Fabrication of a hollow needle structure by dicing, wet etching and metal deposition, J. Micromechanics Microengineering. 16 (2006) 2230.

K. Kim, J.-B. Lee, High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector, Microsyst. Technol. 13 (2007) 231–235.

S. Chandrasekaran, J.D. Brazzle, A.B. Frazier, Surface micromachined metallic microneedles, J. Microelectromechanical Syst. 12 (2003) 281–288.

J.D. Brazzle, I. Papautsky, A.B. Frazier, Hollow metallic micromachined needle arrays, Biomed. Microdevices. 2 (2000) 197–205.

P.-C. Wang, B.A. Wester, S. Rajaraman, S.-J. Paik, S.-H. Kim, M.G. Allen, Hollow polymer microneedle array fabricated by photolithography process combined with micromolding technique, in: 2009 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., IEEE, 2009: pp. 7026–7029.

B.P. Chaudhri, F. Ceyssens, P. De Moor, C. Van Hoof, R. Puers, A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction, J. Micromechanics Microengineering. 20 (2010) 64006.

I. Mansoor, U.O. Hafeli, B. Stoeber, Hollow out-of-plane polymer microneedles made by solvent casting for transdermal drug delivery, J. Microelectromechanical Syst. 21 (2011) 44–52.

F. Perennes, B. Marmiroli, M. Matteucci, M. Tormen, L. Vaccari, E. Di Fabrizio, Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol, J. Micromechanics Microengineering. 16 (2006) 473.

K.L. Yung, Y. Xu, C. Kang, H. Liu, K.F. Tam, S.M. Ko, F.Y. Kwan, T.M.H. Lee, Sharp tipped plastic hollow microneedle array by microinjection moulding, J. Micromechanics Microengineering. 22 (2011) 15016.

J.W. Lee, J.-H. Park, M.R. Prausnitz, Dissolving microneedles for transdermal drug delivery, Biomaterials. 29 (2008) 2113–2124.

X. You, J. Chang, B.-K. Ju, J.J. Pak, Rapidly dissolving fibroin microneedles for transdermal drug delivery, Mater. Sci. Eng. C. 31 (2011) 1632–1636.

Y. Ito, T. Yamazaki, N. Sugioka, K. Takada, Self-dissolving micropile array tips for percutaneous administration of insulin, J. Mater. Sci. Mater. Med. 21 (2010) 835–841.

R.F. Donnelly, D.I.J. Morrow, T.R.R. Singh, K. Migalska, P.A. McCarron, C. O’Mahony, A.D. Woolfson, Processing difficulties and instability of carbohydrate microneedle arrays, Drug Dev. Ind. Pharm. 35 (2009) 1242–1254.

S.P. Sullivan, N. Murthy, M.R. Prausnitz, Minimally invasive protein delivery with rapidly dissolving polymer microneedles, Adv. Mater. 20 (2008) 933–938.

I.K. Ramöller, I.A. Tekko, H.O. McCarthy, R.F. Donnelly, Rapidly dissolving bilayer microneedle arrays–A minimally invasive transdermal drug delivery system for vitamin B12, Int. J. Pharm. 566 (2019) 299–306.

G. Yao, G. Quan, S. Lin, T. Peng, Q. Wang, H. Ran, H. Chen, Q. Zhang, L. Wang, X. Pan, Novel dissolving microneedles for enhanced transdermal delivery of levonorgestrel: In vitro and in vivo characterization, Int. J. Pharm. 534 (2017) 378–386.

S. Liu, M. Jin, Y. Quan, F. Kamiyama, H. Katsumi, T. Sakane, A. Yamamoto, The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin, J. Control. Release. 161 (2012) 933–941.

A.D. Permana, I.A. Tekko, M.T.C. McCrudden, Q.K. Anjani, D. Ramadon, H.O. McCarthy, R.F. Donnelly, Solid lipid nanoparticle-based dissolving microneedles: A promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic filariasis, J. Control. Release. 316 (2019) 34–52.

A.J. Courtenay, M.T.C. McCrudden, K.J. McAvoy, H.O. McCarthy, R.F. Donnelly, Microneedle-mediated transdermal delivery of bevacizumab, Mol. Pharm. 15 (2018) 3545–3556.

S.L. Banks, R.R. Pinninti, H.S. Gill, K.S. Paudel, P.A. Crooks, N.K. Brogden, M.R. Prausnitz, A.L. Stinchcomb, Transdermal delivery of naltrexol and skin permeability lifetime after microneedle treatment in hairless guinea pigs, J. Pharm. Sci. 99 (2010) 3072–3080.

A. Panda, P.K. Sharma, H.N. Shivakumar, M.A. Repka, S.N. Murthy, Nicotine loaded Dissolving Microneedles for Nicotine Replacement therapy, J. Drug Deliv. Sci. Technol. (2020) 102300.

J. Kennedy, E. Larrañeta, M.T.C. McCrudden, C.M. McCrudden, A.J. Brady, S.J. Fallows, H.O. McCarthy, A. Kissenpfennig, R.F. Donnelly, In vivo studies investigating biodistribution of nanoparticle-encapsulated rhodamine B delivered via dissolving microneedles, J. Control. Release. 265 (2017) 57–65.

P. Mikolajewska, R.F. Donnelly, M.J. Garland, D.I.J. Morrow, T.R.R. Singh, V. Iani, J. Moan, A. Juzeniene, Microneedle pre-treatment of human skin improves 5-aminolevulininc acid (ALA)-and 5-aminolevulinic acid methyl ester (MAL)-induced PpIX production for topical photodynamic therapy without increase in pain or erythema, Pharm. Res. 27 (2010) 2213–2220.

H.X. Nguyen, A.K. Banga, Delivery of methotrexate and characterization of skin treated by fabricated PLGA microneedles and fractional ablative laser, Pharm. Res. 35 (2018) 68.

C. Uppuluri, A.S. Shaik, T. Han, A. Nayak, K.J. Nair, B.R. Whiteside, B.N. Nalluri, D.B. Das, Effect of microneedle type on transdermal permeation of rizatriptan, AAPS PharmSciTech. 18 (2017) 1495–1506.

X. Li, R. Zhao, Z. Qin, J. Zhang, S. Zhai, Y. Qiu, Y. Gao, B. Xu, S.H. Thomas, Microneedle pretreatment improves efficacy of cutaneous topical anesthesia, Am. J. Emerg. Med. 28 (2010) 130–134.

D.P. Wermeling, S.L. Banks, D.A. Hudson, H.S. Gill, J. Gupta, M.R. Prausnitz, A.L. Stinchcomb, Microneedles permit transdermal delivery of a skin-impermeant medication to humans, Proc. Natl. Acad. Sci. 105 (2008) 2058–2063.

M.T.C. McCrudden, A.Z. Alkilani, C.M. McCrudden, E. McAlister, H.O. McCarthy, A.D. Woolfson, R.F. Donnelly, Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs, J. Control. Release. 180 (2014) 71–80.

S. Naito, Y. Ito, T. Kiyohara, M. Kataoka, M. Ochiai, K. Takada, Antigen-loaded dissolving microneedle array as a novel tool for percutaneous vaccination, Vaccine. 30 (2012) 1191–1197.

Y.A. Gomaa, M.J. Garland, F. McInnes, L.K. El-Khordagui, C. Wilson, R.F. Donnelly, Laser-engineered dissolving microneedles for active transdermal delivery of nadroparin calcium, Eur. J. Pharm. Biopharm. 82 (2012) 299–307.

S.H. Shin, S. Thomas, S.G. Raney, P. Ghosh, D.C. Hammell, S.S. El-Kamary, W.H. Chen, M.M. Billington, H.E. Hassan, A.L. Stinchcomb, In vitro–in vivo correlations for nicotine transdermal delivery systems evaluated by both in vitro skin permeation (IVPT) and in vivo serum pharmacokinetics under the influence of transient heat application, J. Control. Release. 270 (2018) 76–88.

Y.H. Feng, J.L. Liu, D.D. Zhu, Y.Y. Hao, X.D. Guo, Multiscale simulations of drug distributions in polymer dissolvable microneedles, Colloids Surfaces B Biointerfaces. 189 (2020) 110844.

Suryasa, I. W., Rodríguez-Gámez, M., & Koldoris, T. (2021). The COVID-19 pandemic. International Journal of Health Sciences, 5(2), vi-ix. https://doi.org/10.53730/ijhs.v5n2.2937

Published

19-07-2022

How to Cite

Gulati, P., Pannu, S., Kumar, M., Bhatia, A., Mandal, U. K., & Chopra, S. (2022). Microneedles based drug delivery systems: an updated review. International Journal of Health Sciences, 6(S7), 209–242. https://doi.org/10.53730/ijhs.v6n7.10813

Issue

Section

Peer Review Articles