Application of anode heel effect (AHE) with stepwedge and variation of x-ray tube voltage to contrast to noise ratio (CNR) in computed radiography (CR)
Keywords:
AHE, CNR, computed radiography (CR), stepwedge, X-ray tube voltageAbstract
A study has been carried out on the application of anode heel effect (AHE) with stepwedge to variations in X-ray tube voltage on contrast to noise ratio (CNR) on computed radiography (CR) images. Stepwedge used with 21 steps with the addition of a thickness of 1.5 mm each step. X-ray tube voltage variations are 40kV, 50 kV, 60 kV, 70 kV, 80 kV, and 90 kV. Analysis of the variation of the X-ray tube voltage on the CNR value was determined using IMB SPSS Statistics 26 with a simple regression test. The results of these tests indicate that the variation of the X-ray tube voltage affects the CNR value, where the greater the variation of the X-ray tube voltage, the lower the CNR value. The CNR value at a thickness of 27.0 mm is the optimal CNR value of 71.113
Downloads
References
Afifi, M. B., Abdelrazek, A., Deiab, N. A., Abd El-Hafez, A. I., & El-Farrash, A. H. (2020). The effects of CT x-ray tube voltage and current variations on the relative electron density (RED) and CT number conversion curves. Journal of Radiation Research and Applied Sciences, 13(1), 1-11. https://doi.org/10.1080/16878507.2019.1693176
Akhadi, Mukhlis. Drs. 2000. Dasar-Dasar Proteksi Radiasi. Jakarta: PT. Renika Cipta.
Alfiati, A. (2013). Studi Efek Heel Pada Film Radiografi (Doctoral dissertation, Universitas Hasanuddin).
Allen, E., Hogg, P., Ma, W. K., & Szczepura, K. (2013). Fact or fiction: an analysis of the 10 kVp ‘rule’in computed radiography. Radiography, 19(3), 223-227. https://doi.org/10.1016/j.radi.2013.05.003
Bourne, R. (2010). Fundamentals of digital imaging in medicine. Springer Science & Business Media.
Campillo-Rivera, G. E., Torres-Cortes, C. O., Vazquez-Bañuelos, J., Garcia-Reyna, M. G., Marquez-Mata, C. A., Vasquez-Arteaga, M., & Vega-Carrillo, H. R. (2021). X-ray Spectra and Gamma Factors from 70 to 120 KV X-ray Tube Voltages. Radiation Physics and Chemistry, 184, 109437. https://doi.org/10.1016/j.radphyschem.2021.109437
Carlton, R. R., & Adler, A. M. (1992). Principles of radiographic imaging: an art and a science. Delmar Publishers.
Dahlan, M. S. (2011). Statistik untuk kedokteran dan kesehatan. Penerbit Salemba.
Dewi, P. S., Ratini, N. N., & Trisnawati, N. L. P. (2022). Effect of x-ray tube voltage variation to value of contrast to noise ratio (CNR) on computed tomography (CT) Scan at RSUD Bali Mandara. International Journal of Physical Sciences and Engineering, 6(2), 82-90.https://doi.org/10.53730/ijpse.v6n2.9656
Fauber, T. L. (2012). Radiographic Imaging and Exposure. United States of America : Mosby Company.
Funama, Y., Sugaya, Y., Miyazaki, O., Utsunomiya, D., Yamashita, Y., & Awai, K. (2013). Automatic exposure control at MDCT based on the contrast-to-noise ratio: theoretical background and phantom study. Physica Medica, 29(1), 39-47. https://doi.org/10.1016/j.ejmp.2011.11.004
Gu, S., Rasimick, B. J., Deutsch, A. S., & Musikant, B. L. (2006). Radiopacity of dental materials using a digital X-ray system. Dental Materials, 22(8), 765-770. https://doi.org/10.1016/j.dental.2005.11.004
Kenneth, L. B. (2014). Textbook of radiographic positioning and related anatomy. Elsevier mosby.
Litasova, S., Hidayanto, E., & Azam, M. (2018). Pengaruh ketebalan dan kombinasi jenis filter terhadap nilai Entrance Skin Exposure (ESE) menggunakan factor eksposi pemeriksaan kepala. Youngster Physics Journal, 7(2), 67-75.
Louk, A. C., & Suparta, G. B. (2014). Pengukuran Kualitas Sistem Pencitraan Radiografi Digital Sinar-X. Bimipa, 24(2), 149-166.
Miles, D., Sforza, D., Wong, J. W., Gabrielson, K., Aziz, K., Mahesh, M., ... & Rezaee, M. (2023). FLASH Effects Induced by Orthovoltage X-Rays: FLASH with x-ray tubes–an in vivo study. International Journal of Radiation Oncology* Biology* Physics. https://doi.org/10.1016/j.ijrobp.2023.06.006
Mraity, H. A., England, A., & Hogg, P. (2017). Gonad dose in AP pelvis radiography: impact of anode heel orientation. Radiography, 23(1), 14-18. https://doi.org/10.1016/j.radi.2016.06.003
Paul, J., Bauer, R. W., Maentele, W., & Vogl, T. J. (2011). Image fusion in dual energy computed tomography for detection of various anatomic structures–effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality. European journal of radiology, 80(2), 612-619. https://doi.org/10.1016/j.ejrad.2011.02.023
Pickering, B. W., Dong, Y., Ahmed, A., Giri, J., Kilickaya, O., Gupta, A., ... & Herasevich, V. (2015). The implementation of clinician designed, human-centered electronic medical record viewer in the intensive care unit: a pilot step-wedge cluster randomized trial. International journal of medical informatics, 84(5), 299-307. https://doi.org/10.1016/j.ijmedinf.2015.01.017
Ratini, N. N., Yuliara, I. M., & Windaryoto, W. (2020). Anode heel effect application with step wedge against effect of signal to noise ratio in computed radiography. International Journal of Health Sciences, 4(3), 75-82. https://doi.org/10.29332/ijhs.v3n3.348
Satwika, L. G. P., Ratini, N. N., & Iffah, M. (2021). Pengaruh Variasi Tegangan Tabung Sinar-X terhadap Signal to Noise Ratio (SNR) dengan Penerapan Anode Heel Effect menggunakan Stepwedge. Buletin Fisika Vol, 22(1), 20-28.
Sudin, A., Widyandari, H., & Muhlisin, Z. (2015). Studi pengaruh ukuran pixel imaging plate terhadap kualitas citra radiograf. Youngster Physics Journal, 4(3), 225-230.
Taylor, N. (2015). The art of rejection: Comparative analysis between Computed Radiography (CR) and Digital Radiography (DR) workstations in the Accident & Emergency and General radiology departments at a district general hospital using customised and standardised reject criteria over a three year period. Radiography, 21(3), 236-241. https://doi.org/10.1016/j.radi.2014.12.003
Wibowo, N. P. E., Susilo, S., & Sunarno, S. (2016). Uji Profisiensi Citra Hasil Eksposi Sistem Radiografi Digital di Laboratorium Fisika Medik Unnes. Unnes Physics Journal, 5(1), 23-29.
Yusnida, A. M., & Suryono, S. (2014). Uji Image Uniformity Perangkat Computed Radiography Dengan Metode Pengolahan Citra Digital. Youngster Physics Journal, 3(4), 251-256.
Published
How to Cite
Issue
Section
Copyright (c) 2023 International journal of health sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.