Laboratory procedures and reference ranges for COVID-19 for diverse patient populations

Review

https://doi.org/10.53730/ijhs.v4nS1.14929

Authors

  • Mohammed Mishal Hamoud Alnihier KSA, National Guard Health Affairs
  • Ahmed Turki Alotaibi KSA, National Guard Health Affairs
  • Awad Shehab B Alanzi KSA, National Guard Health Affairs

Keywords:

COVID-19, SARS-CoV-2, In Vitro Diagnostic Testing, RT-qPCR, Serology Immunoassays

Abstract

Background: Reliable and precise laboratory testing for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is crucial in managing Coronavirus Disease 2019 (COVID-19). It assists in making informed clinical decisions for infection control in healthcare settings and identifying asymptomatic individuals. This facilitates appropriate interventions, timely quarantines, and helps slow the spread of the epidemic. Laboratory tests can detect the genetic material of SARS-CoV-2 in samples and identify specific anti-viral antibodies in blood or serum. Point-of-care diagnostics (POCD) advancements have expedited clinical decision-making and strategic planning for nationwide preventive actions. Aim of Work: This review aims to provide a concise overview and comparison of existing Point-of-Care Diagnostic (POCD) methods and those currently in development. These methods, including quantitative reverse transcription PCR (RT-qPCR), serology immunoassays (SIAs), and protein microarray method (PMM), are designed for diagnosing COVID-19, offering options for both conventional and rapid testing. Methods: The review evaluates the performance and utility of quantitative RT-qPCR, serology immunoassays (SIAs), and protein microarray method (PMM) in diagnosing COVID-19. It compares the sensitivity, specificity, turnaround time, and ease of use of these POCD methods. Additionally, it discusses the potential impact of these methods on clinical decision-making and epidemic control strategies.

Downloads

Download data is not yet available.

References

Lau, S.K.P.; Woo, P.C.Y.; Yip, C.C.Y.; Tse, H.; Tsoi, H.; Cheng, V.C.C.; Lee, P.; Tang, B.S.F.; Cheung, C.H.Y.; Lee, R.A.; et al. Coronavirus HKU1 and Other Coronavirus Infections in Hong Kong. J. Clin. Microbiol. 2006, 44, 2063–2071.

Singhal, T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J. Pediatr. 2020, 87, 281–286.

COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). Available online: https://coronavirus.jhu.edu/map.html (accessed on 13 June 2020).

World Health Organization. Advice on the Use of Point-Of-Care Immunodiagnostic Tests for COVID-19. Available online: https://www.who.int/news-room/commentaries/detail/advice-on-the-use-of-point-of-care-immunodiagnostic-tests-for-covid-19 (accessed on 13 June 2020).

Corman, V.; Bleicker, T.; Brünink, S.; Drosten, C.; Landt, O.; Koopmans, M.; Zambon, M. Diagnostic Detection of 2019-nCoV by Real-Time RT-PCR. Protocol and Preliminary Evaluationas of 17 January 2020. Available online: https://www.who.int/docs/default-source/coronaviruse/protocol-v2-1.pdf?sfvrsn=a9ef618c_2. (accessed on 23 June 2020).

Lu, X.; Chen, Y.; Bai, B.; Hu, H.; Tao, L.; Yang, J.; Chen, J.; Chen, Z.; Hu, Z.; Wang, H. Immune responses against severe acute respiratory syndrome coronavirus induced by virus-like particles in mice. Immunology 2007, 122, 496–502.

Liu, W.; Liu, L.; Kou, G.; Zheng, Y.; Ding, Y.; Ni, W.; Wang, Q.; Tan, L.; Wu, W.; Tang, S.; et al. Evaluation of Nucleocapsid and Spike Protein-based ELISAs for detecting antibodies against SARS-CoV-2. J. Clin. Microbiol. 2020, 58, e00461-20.

Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045.

Vashist, S.K. In Vitro Diagnostic Assays for COVID-19: Recent Advances and Emerging Trends. Diagnostics 2020, 10, 202.

Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 2020, 24, 91–98. [Google Scholar] [CrossRef] [PubMed]

Diagnostic Detection of Wuhan Coronavirus 2019 by Real-Time RT-PCR. Available online: https://www.who.int/docs/default-source/coronaviruse/wuhan-virus-assay-v1991527e5122341d99287a1b17c111902.pdf (accessed on 13 June 2020).

COVID-19 Diagnostics Resource Centre. Available online: https://www.finddx.org/covid-19/ (accessed on 13 June 2020).

Deepak, S.A.; Kottapalli, K.R.; Rakwal, R.; Oros, G.; Rangappa, K.S.; Iwahashi, H.; Masuo, Y.; Agrawal, G.K. Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes. Curr. Genom. 2007, 8, 234–251. [Google Scholar] [CrossRef] [PubMed]

Rapid Test for COVID-19 (SARS-CoV-2). Available online: https://www.bosch-vivalytic.com/en/product/vivalytic-tests/vri-multiplex-test/ (accessed on 9 May 2020).

SARS-CoV-2 Real Time PCR LAB-KIT™. Available online: https://www.biomaxima.com/736-koronawirus-sars-cov-2.html (accessed on 28 April 2020).

Novel Corona Virus SARS-CoV-2 (COVID-19). Available online: http://www.ox.ac.uk/news/2020-03-18-oxford-scientists-develop-rapid-testing-technology-covid-19 (accessed on 9 May 2020).

Huang, W.E.; Lim, B.; Hsu, C.C.; Xiong, D.; Wu, W.; Yu, Y.; Jia, H.; Wang, Y.; Zeng, Y.; Ji, M.; et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb. Biotechnol. 2020, 13, 950–961.

Cui, Z.; Chang, H.; Wang, H.; Lim, B.; Hsu, C.C.; Yu, Y.; Jia, H.; Wang, Y.; Zeng, Y.; Ji, M.; et al. Development of a rapid test kit for SARS-CoV-2: An example of product design. Biodes. Manuf. 2020, 1–4.

Moran, A.; Beavis, K.G.; Matushek, S.M.; Ciaglia, C.; Francois, N.; Tesic, V.; Love, N. The Detection of SARS-CoV-2 using the Cepheid Xpert Xpress SARS-CoV-2 and Roche cobas SARS-CoV-2 Assays. J. Clin. Microbiol. 2020.

Watson, J.; Whiting, P.F.; Brush, J.E. Interpreting a covid-19 test result. BMJ 2020, 369, m1808.

West, C.P.; Montori, V.M.; Sampathkumar, P. COVID-19 Testing: TheThreat of False-Negative Results. Mayo Clin. Proc. 2020.

Lippi, G.; Salvagno, G.L.; Pegoraro, M.; Militello, V.; Caloi, C.; Peretti, A.; Gaino, S.; Bassi, A.; Bovo, C.; Lo Cascio, G. Assessment of immune response to SARS-CoV-2 with fully automated MAGLUMI 2019-nCoV IgG and IgM chemiluminescence immunoassays. Clin. Chem. Lab. Med. 2020.

Hsueh, P.R.; Huang, L.M.; Chen, P.J.; Kao, C.L.; Yang, P.C. Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus. Clin. Microbiol. Infect. 2004, 10, 1062–1066.

Guan, M.; Chen, H.Y.; Foo, S.Y.; Tan, Y.J.; Goh, P.Y.; Wee, S.H. Recombinant protein-based enzyme-linked immunosorbent assay and immunochromatographic tests for detection of immunoglobulin G antibodies to severe acute respiratory syndrome (SARS) coronavirus in SARS patients. Clin. Diagnost. Lab. Immunol. 2004, 11, 287–291.

Kogaki, H.; Uchida, Y.; Fujii, N.; Kurano, Y.; Miyake, K.; Kido, Y.; Kariwa, H.; Takashima, I.; Tamashiro, H.; Ling, A.-E.; et al. Novel rapid immunochromatographic test based on an enzyme immunoassay for detecting nucleocapsid antigen in SARS-associated coronavirus. J. Clin. Lab. Anal. 2005, 19, 150–159.

Koczula, K.M.; Gallotta, A. Lateral flow assays. Essays Biochem. 2016, 60, 111–120.

Oh, J.-S.; Ha, G.-W.; Cho, Y.-S.; Kim, M.J.; An, D.J.; Hwang, K.K.; Lim, Y.K.; Park, B.K.; Kang, B.; Song, D.S. One Step Immunochromatography Assay Kit for Detecting Antibodies to Canine Parvovirus. Clin. Vaccine Immunol. 2006, 13, 520–524.

Posthuma-Trumpie, G.A.; Korf, J.; van Amerongen, A. Lateral flow (immuno)assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 2009, 393, 569–582.

Stürenburg, E.; Junker, R. Point-of-care testing in microbiology: The advantages and disadvantages of immunochromatographic test strips. Dtsch. Arztebl. Int. 2009, 106, 48–54.

Li, Z.; Yi, Y.; Luo, X.; Xiong, N.; Liu, Y.; Li, S.; Sun, R.; Wang, Y.; Hu, B.; Chen, W.; et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J. Med. Virol. 2020.

Independent Evaluations of COVID-19 Serological Tests. Available online: https://open.fda.gov/apis/device/covid19serology/ (accessed on 13 June 2020).

Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 2020.

Melton, L. Protein arrays: Proteomics in multiplex. Nature 2004, 429, 101–107.

Hall, D.A.; Ptacek, J.; Snyder, M. Protein microarray technology. Mech. Ageing. Dev. 2007, 128, 161–167.

Zhu, H.; Hu, S.; Jona, G.; Zhu, X.; Kreiswirth, N.; Willey, B.M.; Mazzulli, T.; Liu, G.; Song, Q.; Chen, P.; et al. Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray. Proc. Natl. Acad. Sci. USA 2006, 103, 4011–4016.

Molecular and Antibody Point-Of-Care Tests to Support the Screening, Diagnosis and Monitoring of COVID-19. Available online: https://www.cebm.net/covid-19/molecular-and-antibody-point-of-care-tests-to-support-the-screening-diagnosis-and-monitoring-of-covid-19/ (accessed on 13 June 2020).

Wang, X.; Zhong, M.; Liu, Y.; Ma, P.; Dang, L.; Meng, Q.; Wan, W.; Ma, X.; Liu, J.; Yang, G.; et al. Rapid and Sensitive Detection of COVID-19 Using CRISPR/Cas12a-based Detection with Naked Eye Readout, CRISPR/Cas12a-NER. Sci. Bull. (Beijing) 2020.

Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Ghanbari, R.; Jouyban, A. Exhaled breath condensate as a potential specimen for diagnosing COVID-19. Bioanalysis 2020. Jerzyńska, J.; Brzozowska, A.; Bobrowska-Korzeniowska, M.; Grzelewski, T.; Stelmach, I. Usefulness of exhaled breath condensate for evaluation of markers of airway inflammation in children with asthma. Pediatr. Pol. 2009, 84, 437–445.

Published

25-02-2022

How to Cite

Alnihier, M. M. H., Alotaibi, A. T., & Alanzi, A. S. B. (2022). Laboratory procedures and reference ranges for COVID-19 for diverse patient populations: Review. International Journal of Health Sciences, 6(S9), 5108–5120. https://doi.org/10.53730/ijhs.v4nS1.14929

Issue

Section

Peer Review Articles

Most read articles by the same author(s)