Automated hematology and radiology synergy in diagnosing anemia in children

https://doi.org/10.53730/ijhs.v4nS1.15006

Authors

  • Musab Abdulgader Alfares KSA, National Guard Health Affairs
  • Khalid Abdulrahman Alsharif KSA, National Guard Health Affairs
  • Motaeb Saqer Alenazi KSA, National Guard Health Affairs
  • Zainab Ali AlQarni KSA, National Guard Health Affairs
  • Ahmed Mufleh Alenazi KSA, National Guard Health Affairs
  • Abdulmohsen Khalaf Ali Alkhalaf KSA, National Guard Health Affairs
  • Sulaiman Ali Sulaiman Alkhateeb KSA, National Guard Health Affairs
  • Ismaile Soleman Alsowailim KSA, National Guard Health Affairs
  • Ohoud Khalid Qassem KSA, National Guard Health Affairs
  • Nouf Ibrahim Alsubie KSA, National Guard Health Affairs
  • Abdulrhman Aref Alsaleh KSA, National Guard Health Affairs
  • Abdulaziz Alangari KSA, National Guard Health Affairs
  • Ola Yousef Fadan KSA, National Guard Health Affairs
  • Rehaf Mesaad Alabdaly KSA, National Guard Health Affairs
  • Salma Ali Khrami KSA, National Guard Health Affairs
  • Abdullah Saad Abunaian KSA, National Guard Health Affairs
  • Mohammed Amaash Alanizi KSA, National Guard Health Affairs
  • Mohammed Rashed Al Otaibi KSA, National Guard Health Affairs

Keywords:

Pediatric anemia, automated hematology analyzers, radiological imaging, reticulocyte count, iron deficiency, artificial intelligence

Abstract

Aim: This review aims to evaluate the role of automated hematology analyzers and radiological imaging techniques in the diagnosis and management of anemia in children, highlighting traditional and advanced parameters. Methods: A comprehensive literature review was conducted, focusing on automated hematological parameters such as hemoglobin, RBC indices, reticulocyte counts, and novel metrics from modern analyzers, alongside radiological assessments such as bone marrow imaging and organ evaluation. The quasi-morphological approach, reticulocyte kinetic analysis, and imaging technologies like digital imaging and artificial intelligence were examined. Results: Traditional parameters, including RDW and MCV, provide initial insights into anemia classification. Advanced metrics, such as reticulocyte hemoglobin content and immature reticulocyte fractions, improve iron status assessment and therapeutic response evaluation. Radiological imaging offers valuable insights into bone marrow activity and organ health, complementing hematological findings. The use of automated analyzers and imaging techniques demonstrates high reproducibility and rapid results, though challenges in standardization persist. Conclusion: Automated hematology analyzers and radiological imaging techniques significantly enhance the diagnostic landscape for pediatric anemia, yet clinical integration and ongoing refinement of reference ranges are essential. Future developments in technology and standardization may further elevate the efficacy of anemia management in children.

Downloads

Download data is not yet available.

References

Brugnara C, Oski FA, Nathan DG. Diagnostic approach to the anemic patient. In: Nathan and Oski’s Hematology and Oncology of Infancy and Childhood, 8th ed, Orkin SH, Fisher DE, Ginsburg D, et al (Eds), WB Saunders, Philadelphia 2015; p293-306.

Beutler E, Waalen J. The definition of anemia: what is the lower limit of normal of the blood hemoglobin concentration? Blood 2006; 107(5):1747-1750.

Sarma PR. Red Cell Indices. In: Walker HK, Hall WD, Hurst JW, eds. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edn. Boston: Butterworths; 1990. Chapter 152. Available from: https://www.ncbi.nlm.nih.gov/books/NBK260/Last

Jamwal M, Sharma P, Das R. Laboratory Approach to Hemolytic Anemia. Indian J Pediatr 2020; 87(1):66-74.

Piva E, Brugnara C, Spolaore F, Plebani M. Clinical utility of reticulocyte parameters. Clin Lab Med 2015; 35(1): 133-163.

Jamwal M, Aggarwal A, Palodhi A, Sharma P, Bansal D, Trehan A, et al. Next-Generation Sequencing-Based Diagnosis of Unexplained Inherited Hemolytic Anemias Reveals Wide Genetic and Phenotypic Heterogeneity. J Mol Diagn 2020; 22(4):579-590.

Sharma P, Singh T, Mishra D, Gaiha M. Parvovirus B-19 induced acute pure red cell aplasia in patients with chronic lymphocytic leukemia and neurofibromatosis type-1. Hematology 2006; 11(4):257-259.

Jamwal M, Aggarwal A, Sharma P, Bansal D, Maitra A, Das R. Phenotypic and genetic heterogeneity arising from a novel substitution at amino acid position Val205 in GATA1 related X-linked thrombocytopenia with dyserythropoietic anemia. Blood Cells Mol Dis 2020; 81:102391.

Sharma P, Das R, Bansal D, Trehan A. Congenital dyserythropoietic anemia, type II with SEC23B exon 12 c.1385 A → G mutation, and pseudo-Gaucher cells in two siblings. Hematology 2015; 20(2):104-107.

Jamwal M, Aggarwal A, Sharma P, Bansal D, Das R. Congenital dyserythropoietic anemia type IV with high fetal hemoglobin caused by heterozygous KLF1p. Glu325Lys: first report in an Indian infant [published online ahead of print, 2020 Mar 27]. Ann Hematol 2020; 10.1007/s00277-020-03982-y.

Sharma P, Das R, Trehan A, Bansal D, Chhabra S, Kaur J, et al. Impact of iron deficiency on hemoglobin A2% in obligate β-thalassemia heterozygotes. Int J Lab Hematol 2015; 37(1):105-111.

Bain BJ. Blood cells - a practical guide, 5th edn. Wiley Blackwell (West Sussex), 2015.

Singh N, Hira JK, Chhabra S, Khadwal AR, Das R, Sharma P. Misdiagnosis of double heterozygous εGγ(Aγδβ)0-thalassemia/β++ thalassemia as homozygous β-thalassemia: A pitfall for molecular diagnostic laboratories. Blood Cells Mol Dis 2020; 81:102394.

Constantino BT. Red Cell Distribution Width, Revisited. Lab Medicine 2013; 44 (2):e2-e9.

Pfeiffer CM, Looker AC. Laboratory methodologies for indicators of iron status: strengths, limitations and analytical challenges. Am J Clin Nutr 2017;106 (Suppl 6):1606S-1614S.

Urrechaga E, Borque L, Escanero JF. Erythrocyte and reticulocyte indices in the assessment of erythropoiesis activity and iron availability. Int J Lab Hematol 2013; 35(2):144-149.

Gaspar BL, Sharma P, Das R. Anemia in malignancies: pathogenetic and diagnostic considerations. Hematology 2015; 20(1):18-25.

Ratcliffe LE, Thomas W, Glen J, Padhi S, Pordes BAJ, Wonderling D, Connell R, Stephens S, Mikhail AI, Fogarty DG, Cooper JK, Dring B, Devonald MAJ, Brown C, Thomas ME. Diagnosis and Management of Iron Deficiency in CKD: A Summary of the NICE Guideline Recommendations and Their Rationale. Am J Kidney Dis 2016; 67(4):548-558.

Urrechaga E, Borque L, Escanero JF. The role of automated measurement of RBC subpopulations in differential diagnosis of microcytic anemia and β-thalassemia screening. Am J Clin Pathol 2011; 135(3):374-379.

Urrechaga E, Borque L, Escanero JF. The role of automated measurement of red cell subpopulations on the Sysmex XE 5000 analyzer in the differential diagnosis of microcytic anemia. Int J Lab Hematol 2011; 33(1):30-36.

Aggarwal A, Jamwal M, Sharma P, Sachdeva MUS, Bansal D, Malhotra P, et al. Deciphering molecular heterogeneity of Indian families with hereditary spherocytosis using targeted next-generation sequencing: First South Asian study. Br J Haematol 2020; 188(5): 784-795.

Nair SC, Arora N, Jain S, Inbakumar D, Mammen J, Sitaram U. Mean reticulocyte volume enhances the utility of red cell mean sphered cell volume in differentiating peripheral blood spherocytes of hereditary spherocytosis from other causes. Indian J Pathol Microbiol 2015; 58(3):307-309.

Rooney S, Hoffmann JJ, Cormack OM, McMahon C. Screening and confirmation of hereditary spherocytosis in children using a CELL-DYN Sapphire haematology analyzer. Int J Lab Hematol 2015; 37(1):98-104.

Sottiaux JY, Favresse J, Chevalier C, Chatelain B, Jacqmin H, Mullier F. Evaluation of a hereditary spherocytosis screening algorithm by automated blood count using reticulocytes and erythrocytic parameters on the Sysmex XN-series. Int J Lab Hematol 2020; 42(2): e88-e91.

Da Rin G, Vidali M, Balboni F, Benegiamo A, Borin M, Ciardelli ML, et al. Performance evaluation of the automated nucleated red blood cell count of five commercial hematological analyzers. Int J Lab Hematol 2017; 39(6):663-670.

Bahr TM, Judkins AJ, Christensen RD, Baer VL, Henry E, Minton SD, et al. Neonates with suspected microangiopathic disorders: performance of standard manual schistocyte enumeration vs. the automated fragmented red cell count. J Perinatol 2019; 39(11): 1555-1561.

Lee W, Kim JH, Sung IK, Park SK, Oh ST, Park HH, et al. Quantitative detection of target cells using unghosted cells (UGCs) of DxH 800 (Beckman Coulter). Clin Chem Lab Med 2014; 52(5):693-699.

Kakkar N, Makkar M. Red Cell Cytograms Generated by an ADVIA 120 Automated Hematology Analyzer: Characteristic Patterns in Common Hematological Conditions. Laboratory Medicine 2009; 40(9):549-555.

Zandecki M, Genevieve F, Gerard J, Godon A. Spurious counts and spurious results on haematology analyzers: a review. Part II: white blood cells, red blood cells, red cell indices and reticulocytes. Int J Lab Hemato 2007; 29(1):21-41.

Banday AZ, Tyagi R, Jogu S, Sudhakar M, Patra PK, Pandiarajan V, et al. Childhood venous thromboembolism A careful look at complete blood count can reveal the underlying risk factor. Pediatr Blood Cancer 2020; 67(8):e28472.

Sharma P, Sharma P, Das R, Kumar V. False-positive negative control in a direct antiglobulin test. Transfusion 2018; 58(8):1834.

Sehgal T, Sharma P, Naseem S, Varma N. Giant ribbonlike platelets mimicking microfilaria in a JAK2-positive myeloproliferative neoplasm. Hematol Oncol Stem Cell Ther 2016; 9(2):80-81.

Kratz A, Lee SH, Zini G, Riedl JA, Hur M, Machin S. International Council for Standardization in Haematology. Digital morphology analyzers in hematology: ICSH review and recommendations. Int J Lab Hematol 2019; 41(4): 437-447.

Acevedo A, Alférez S, Merino A, Puigví L, Rodellar J. Recognition of peripheral blood cell images using convolutional neural networks. Comput Methods Programs Biomed 2019; 180:105020.

Das R, Datta S, Kaviraj A, Sanyal SN, Nielsen P, Nielsen I, et al. A decision support scheme for beta thalassemia and HbE carrier screening. J Adv Res 2020; 24:183-190.

Sharma P. Summary and Review of the Abstracts on Disorders of Red Cells and Erythropoiesis Presented at Hematocon 2016-2017. Indian J Hematol Blood Transfus 2018; 34(1):8-12

Published

15-01-2020

How to Cite

Alfares, M. A., Alsharif, K. A., Alenazi, M. S., AlQarni, Z. A., Alenazi, A. M., Alkhalaf, A. K. A., Alkhateeb, S. A. S., Alsowailim, I. S., Qassem, O. K., Alsubie, N. I., Alsaleh, A. A., Alangari, A., Fadan, O. Y., Alabdaly, R. M., Khrami, S. A., Abunaian, A. S., Alanizi, M. A., & Al Otaibi, M. R. (2020). Automated hematology and radiology synergy in diagnosing anemia in children. International Journal of Health Sciences, 4(S1), 22–33. https://doi.org/10.53730/ijhs.v4nS1.15006

Issue

Section

Peer Review Articles

Most read articles by the same author(s)

1 2 > >>