Advanced imaging methods and their implications for diagnosing neurodegenerative disorders: A comprehensive review

https://doi.org/10.53730/ijhs.v1nS1.15320

Authors

  • Hamad Huran F Alanazi KSA, National Guard Health Affairs
  • Bader Sayah Alanezi KSA, National Guard Health Affairs
  • Sanytan Ghazy Al Otaibi KSA, National Guard Health Affairs
  • Salman Eid Fadhi Alhejaili KSA, National Guard Health Affairs
  • Abeer Ali Alyehya KSA, National Guard Health Affairs
  • Sultan Abdulaziz Muhanna‏ Al Ahmadi KSA, National Guard Health Affairs
  • Mohammed Amaash Alanizi KSA, National Guard Health Affairs

Keywords:

MRI, high-field MRI, cerebellum, neurodegenerative diseases, posterior craniofossa

Abstract

This review analyzes the use of advanced imaging techniques, specifically high- and ultra-high field MRI, in the diagnosis of neurodegenerative disorders impacting the cerebellum. The intricate anatomy of the cerebellum and its positioning in the posterior cranial fossa pose notable challenges for imaging, particularly due to susceptibility artifacts arising from bone and blood flow. Advancements in MRI techniques, such as fluid-attenuated inversion recovery (FLAIR) and susceptibility-weighted imaging (SWI), address these challenges, facilitating enhanced resolution visualization of cerebellar structures. The review outlines the functional domains of the cerebellum—vestibulocerebellum, spinocerebellum, and cerebrocerebellum—and examines their contributions to motor control and cognitive functions. This paper discusses the clinical implications of cerebellar involvement in neurological disorders, including multiple sclerosis, hereditary ataxias, Parkinson's disease, and Alzheimer's disease. High-field MRI (3T) and ultra-high-field MRI (≥7T) provide enhanced signal-to-noise ratios and spatial resolution, facilitating a comprehensive evaluation of cerebellar atrophy and structural alterations linked to these disorders. The review indicates that advanced MRI techniques are essential for elucidating the cerebellum's involvement in neurodegenerative processes and for formulating targeted therapies.

Downloads

Download data is not yet available.

References

Tomlinson SP, Davis NJ, Bracewell RM. Brain stimulation studies of non-motor cerebellar function: a systematic review. Neuroscience & Biobehavioral Reviews. 2013 Jun 1;37(5):766-89. DOI: https://doi.org/10.1016/j.neubiorev.2013.03.001

Barahona ML, Encinas JM, Pascual RQ, Prado JA. Structural and Functional anatomy of cerebellum. More than a motor conception. European Congress of Radiology-ECR 2011.

Voogd J, Schraa-Tam CK, van der Geest JN, De Zeeuw CI. Visuomotor cerebellum in human and nonhuman primates. The Cerebellum. 2012 Jun;11:392-410. DOI: https://doi.org/10.1007/s12311-010-0204-7

Coffman KA, Dum RP, Strick PL. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proceedings of the National Academy of Sciences. 2011 Sep 20;108(38):16068-73. DOI: https://doi.org/10.1073/pnas.1107904108

Llinas R, Negrello MN. Cerebellum. Scholarpedia. 2015 Jan 12;10(1):4606. DOI: https://doi.org/10.4249/scholarpedia.4606

Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013 Oct 30;80(3):807-15. DOI: https://doi.org/10.1016/j.neuron.2013.10.044

Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. The Cerebellum. 2012 Jun;11:352-65. DOI: https://doi.org/10.1007/s12311-011-0260-7

Noroozian M. The role of the cerebellum in cognition: beyond coordination in the central nervous system. Neurologic clinics. 2014 Nov 1;32(4):1081-104. DOI: https://doi.org/10.1016/j.ncl.2014.07.005

Wright M, Skaggs W, Nielsen FA. The cerebellum. WikiJournal of Medicine. 2016 Jan;3(1):1-5. DOI: https://doi.org/10.15347/wjm/2016.001

D'Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Frontiers in neural circuits. 2013 Jan 10;6:116. DOI: https://doi.org/10.3389/fncir.2012.00116

Morelli JN, Runge VM, Ai F, Attenberger U, Vu L, Schmeets SH, Nitz WR, Kirsch JE. An image-based approach to understanding the physics of MR artifacts. Radiographics. 2011 May;31(3):849-66. DOI: https://doi.org/10.1148/rg.313105115

Zou X. Magnetic Resonance Imaging Applications of Pseudo-Random Amplitude Modulation. Columbia University; 2014.

Naganawa S. The technical and clinical features of 3D-FLAIR in neuroimaging. Magnetic Resonance in Medical Sciences. 2015;14(2):93-106. DOI: https://doi.org/10.2463/mrms.2014-0132

Chen W, Wang L, Zhu W, Xia L, Qi J, Feng D, Luo X. Multicontrast single-slab 3D MRI to detect cerebral metastasis. American Journal of Roentgenology. 2012 Jan;198(1):27-32. DOI: https://doi.org/10.2214/AJR.11.7030

Mascott CR, Summers LE. Image fusion of fluid-attenuated inversion recovery magnetic resonance imaging sequences for surgical image guidance. Surgical neurology. 2007 Jun 1;67(6):589-603. DOI: https://doi.org/10.1016/j.surneu.2006.12.064

Edelman RR, Flanagan O, Grodzki D, Giri S, Gupta N, Koktzoglou I. Projection MR imaging of peripheral arterial calcifications. Magnetic Resonance in Medicine. 2015 May;73(5):1939-45. DOI: https://doi.org/10.1002/mrm.25320

Marques JP, Gruetter R, van der Zwaag W. In vivo structural imaging of the cerebellum, the contribution of ultra-high fields. The Cerebellum. 2012 Jun;11:384-91. DOI: https://doi.org/10.1007/s12311-010-0189-2

Garcia M, Naraghi R, Zumbrunn T, Rösch J, Hastreiter P, Dörfler A. High-resolution 3D-constructive interference in steady-state MR imaging and 3D time-of-flight MR angiography in neurovascular compression: a comparison between 3T and 1.5 T. American journal of neuroradiology. 2012 Aug 1;33(7):1251-6. DOI: https://doi.org/10.3174/ajnr.A2974

Tintore M, Otero-Romero S, Río J, Arrambide G, Pujal B, Tur C, Galán I, Comabella M, Nos C, Arévalo MJ, Vidal-Jordana A. Contribution of the symptomatic lesion in establishing MS diagnosis and prognosis. Neurology. 2016 Sep 27;87(13):1368-74. DOI: https://doi.org/10.1212/WNL.0000000000003144

Sweet JA, Walter BL, Gunalan K, Chaturvedi A, McIntyre CC, Miller JP. Fiber tractography of the axonal pathways linking the basal ganglia and cerebellum in Parkinson disease: implications for targeting in deep brain stimulation. Journal of neurosurgery. 2014 Apr 1;120(4):988-96. DOI: https://doi.org/10.3171/2013.12.JNS131537

Colloby SJ, Taylor JP. Patterns of cerebellar volume loss in dementia with Lewy bodies and Alzheimer׳ s disease: A VBM-DARTEL study. Psychiatry Research: Neuroimaging. 2014 Sep 30;223(3):187-91. DOI: https://doi.org/10.1016/j.pscychresns.2014.06.006

Published

15-01-2017

How to Cite

Alanazi, H. H. F., Alanezi, B. S., Al Otaibi, S. G., Alhejaili, S. E. F., Alyehya, A. A., Al Ahmadi, S. A. M., & Alanizi, M. A. (2017). Advanced imaging methods and their implications for diagnosing neurodegenerative disorders: A comprehensive review. International Journal of Health Sciences, 1(S1), 239–245. https://doi.org/10.53730/ijhs.v1nS1.15320

Issue

Section

Peer Review Articles

Most read articles by the same author(s)

1 2 3 4 > >>