Artificial intelligence in drug discovery: Current applications and future directions

https://doi.org/10.53730/ijhs.v6nS10.15290

Authors

  • Ahmad Asri Awad Alanazi ‏Health Informatics technician, ‏National Guard Health Affairs
  • ‏Abdulrahman Ibrahim Abdullah Al Fahad ‏Health Informatics technician, ‏National Guard Health Affairs
  • Abdullah Saleh Abdullah Almorshed ‏Pharmacy Technician, National Guard Health Affairs
  • ‏Abdullah Abdulrahman Mohammed Alrbian ‏Pharmacy Technician, National Guard Health Affairs
  • Ahmed Abdulkarim Sulaiman Alnughaymishi ‏Health Informatics technician, ‏National Guard Health Affairs
  • Nawal Haif Bajad Al-Mutairi ‏National Guard Health Affairs
  • Abdulrahman Amer Alajmi ‏National Guard Health Affairs
  • Sanytan Ghazy Al Otaibi ‏National Guard Health Affairs

Keywords:

Artificial Intelligence, Drug Discovery, Machine Learning, Predictive Modeling, Pharmaceutical Industry

Abstract

Background: The drug discovery process is complex, time-consuming, and costly, traditionally relying on trial-and-error approaches. The integration of artificial intelligence (AI) and machine learning (ML) has emerged as a transformative solution, enhancing efficiency and precision in identifying potential drug candidates. Aim: This review aims to explore the current applications of AI in drug discovery, highlight the AI tools utilized in the process, and discuss the associated challenges. Methods: A comprehensive literature review was conducted, focusing on peer-reviewed articles, clinical studies, and case reports that detail the application of AI and ML in various phases of drug discovery, including target identification, lead optimization, and preclinical evaluation. Results: The review identifies several AI applications, such as predictive modeling, molecular design, and virtual screening, which significantly expedite the discovery process. Tools such as deep learning, natural language processing, and reinforcement learning have been instrumental in analyzing large datasets and predicting drug interactions. However, challenges remain, including data integration issues, skill gaps among professionals, and skepticism regarding AI outcomes. Conclusion: AI has the potential to revolutionize drug discovery by streamlining processes and improving accuracy.

Downloads

Download data is not yet available.

References

Mullard, A. (2014). New drugs cost us $2.6 billion to develop. Nature Reviews Drug Discovery, 13(12), 877. https://doi.org/10.1038/nrd.2014.203 DOI: https://doi.org/10.1038/nrd4507

Dowden, H., & Munro, J. (2019). Trends in clinical success rates and therapeutic focus. Nature Reviews Drug Discovery, 18(7), 495–497. https://doi.org/10.1038/d41573-019-00027-7 DOI: https://doi.org/10.1038/d41573-019-00074-z

Schneider, G. (2018). Automating drug discovery. Nature Reviews Drug Discovery, 17(2), 97. https://doi.org/10.1038/nrd.2017.202 DOI: https://doi.org/10.1038/nrd.2017.232

Chen, H., Engkvist, O., Wang, Y., et al. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039 DOI: https://doi.org/10.1016/j.drudis.2018.01.039

Mater, A. C., & Coote, M. L. (2019). Deep learning in chemistry. Journal of Chemical Information and Modeling, 59(6), 2545–2559. https://doi.org/10.1021/acs.jcim.9b00265 DOI: https://doi.org/10.1021/acs.jcim.9b00266

Vamathevan, J., Clark, D., Czodrowski, P., et al. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-0024-5 DOI: https://doi.org/10.1038/s41573-019-0024-5

Paul, D., Sanap, G., Shenoy, S., et al. (2020). Artificial intelligence in drug discovery and development. Drug Discovery Today, 26(1), 80–93. https://doi.org/10.1016/j.drudis.2020.07.020

Stumpfe, D., & Bajorath, J. (2020). Current trends, overlooked issues, and unmet challenges in virtual screening. Journal of Chemical Information and Modeling, 60(9), 4112–4115. https://doi.org/10.1021/acs.jcim.0c00535 DOI: https://doi.org/10.1021/acs.jcim.9b01101

Schneider, P., Walters, W. P., Plowright, A. T., et al. (2020). Rethinking drug design in the artificial intelligence era. Nature Reviews Drug Discovery, 19(5), 353–364. https://doi.org/10.1038/s41573-020-00083-5 DOI: https://doi.org/10.1038/s41573-019-0050-3

Boström, J., Brown, D. G., Young, R. J., et al. (2018). Expanding the medicinal chemistry synthetic toolbox. Nature Reviews Drug Discovery, 17(10), 709–727. https://doi.org/10.1038/nrd.2018.141 DOI: https://doi.org/10.1038/nrd.2018.116

Strokach, A., Becerra, D., Corbi-Verge, C., et al. (2020). Fast and flexible protein design using deep graph neural networks. Cell Systems, 11(4), 402–411. https://doi.org/10.1016/j.cels.2020.09.003 DOI: https://doi.org/10.1016/j.cels.2020.08.016

Rantanen, J., & Khinast, J. (2015). The future of pharmaceutical manufacturing sciences. Journal of Pharmaceutical Sciences, 104(11), 3612–3638. https://doi.org/10.1002/jps.24594

Greenhill, A. T., & Edmunds, B. R. (2020). A primer of artificial intelligence in medicine. Technology Innovations in Gastrointestinal Endoscopy, 22(2), 85–89. https://doi.org/10.1016/j.tgie.2019.150642 DOI: https://doi.org/10.1016/j.tgie.2019.150642

Solanki, P., Baldaniya, D., Jogani, D., et al. (2021). Artificial intelligence: New age of transformation in petroleum upstream. Petroleum Research. https://doi.org/10.1016/j.ptlrs.2021.07.002 DOI: https://doi.org/10.1016/j.ptlrs.2021.07.002

Kshirsagar, A., & Shah, M. (2021). Anatomized study of security solutions for multimedia: Deep learning-enabled authentication, cryptography and information hiding. In Advances in Security Solutions for Multimedia (pp. 1–19). https://doi.org/10.1088/978-0-7503-3735-9CH7 DOI: https://doi.org/10.1088/978-0-7503-3735-9ch7

Anthony, C. C. (2016). Big data in medicine: The upcoming artificial intelligence. Progress in Pediatric Cardiology, 43, 91–94. https://doi.org/10.1016/j.ppedcard.2016.08.021 DOI: https://doi.org/10.1016/j.ppedcard.2016.08.021

Hughes, J. P., Rees, S., Kalindjian, S. B., et al. (2011). Principles of early drug discovery. British Journal of Pharmacology, 162(6), 1239–1249. DOI: https://doi.org/10.1111/j.1476-5381.2010.01127.x

Pereira, D. A., & Williams, J. A. (2007). Origin and evolution of high throughput screening. British Journal of Pharmacology, 152(1), 53–61. DOI: https://doi.org/10.1038/sj.bjp.0707373

Bender, A., Bojanic, D., Davies, J. W., et al. (2008). Which aspects of HTS are empirically correlated with downstream success? Current Opinion in Drug Discovery & Development, 11(3), 327.

Wang, Y., Bryant, S. H., Cheng, T., et al. (2017). PubChem bioassay: 2017 update. Nucleic Acids Research, 45(D1), D955–D963.

Sterling, T., & Irwin, J. J. (2015). ZINC 15—Ligand discovery for everyone. Journal of Chemical Information and Modeling, 55(11), 2324–2337. DOI: https://doi.org/10.1021/acs.jcim.5b00559

Kim, S. (2016). Getting the most out of PubChem for virtual screening. Expert Opinion on Drug Discovery, 11(9), 843–855. DOI: https://doi.org/10.1080/17460441.2016.1216967

Scior, T., Bender, A., Tresadern, G., et al. (2012). Recognizing pitfalls in virtual screening: A critical review. Journal of Chemical Information and Modeling, 52(4), 867–881. DOI: https://doi.org/10.1021/ci200528d

Salahudeen, M. S., & Nishtala, P. S. (2017). An overview of pharmacodynamic modeling, ligand-binding approach, and its application in clinical practice. Saudi Pharmaceutical Journal, 25(2), 165–175. DOI: https://doi.org/10.1016/j.jsps.2016.07.002

Hu, Y., & Bajorath, J. (2013). Compound promiscuity: What can we learn from current data? Drug Discovery Today, 18(13–14), 644–650. DOI: https://doi.org/10.1016/j.drudis.2013.03.002

Yusof, I., Shah, F., Hashimoto, T., et al. (2014). Finding the rules for successful drug optimization. Drug Discovery Today, 19(5), 680–687. DOI: https://doi.org/10.1016/j.drudis.2014.01.005

Nicolaou, C. A., & Brown, N. (2013). Multi-objective optimization methods in drug design. Drug Discovery Today: Technologies, 10(3), e427–e435. DOI: https://doi.org/10.1016/j.ddtec.2013.02.001

Muratov, E. N., Bajorath, J., Sheridan, R. P., et al. (2020). QSAR without borders. Chemical Society Reviews, 49(11), 3525–3564. DOI: https://doi.org/10.1039/D0CS00098A

Schneider, G., & Fechner, U. (2005). Computer-based de novo design of drug-like molecules. Nature Reviews Drug Discovery, 4(8), 649–663. DOI: https://doi.org/10.1038/nrd1799

Dobson, C. M. (2004). Chemical space and biology. Nature, 432(7019), 824–828. DOI: https://doi.org/10.1038/nature03192

Sliwoski, G., Kothiwale, S., Meiler, J., et al. (2014). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395. DOI: https://doi.org/10.1124/pr.112.007336

Van Drie, J. H. (2007). Computer-aided drug design: The next 20 years. Journal of Computer-Aided Molecular Design, 21(10), 591–601. DOI: https://doi.org/10.1007/s10822-007-9142-y

Jiménez-Luna, J., Grisoni, F., & Schneider, G. (2020). Drug discovery with explainable artificial intelligence. Nature Machine Intelligence, 2(10), 573–584. DOI: https://doi.org/10.1038/s42256-020-00236-4

Göller, A. H., Kuhnke, L., Montanari, F., et al. (2020). Bayer’s in silico ADMET platform: A journey of machine learning over the past two decades. Drug Discovery Today, 25(9), 1702–1709. https://doi.org/10.1016/j.drudis.2020.07.001 DOI: https://doi.org/10.1016/j.drudis.2020.07.001

Abu-Elezz, I., Hassan, A., Nazeemudeen, A., et al. (2020). The benefits and threats of blockchain technology in healthcare: A scoping review. International Journal of Medical Informatics, 142, Article 104246. https://doi.org/10.1016/j.ijmedinf.2020.104246 DOI: https://doi.org/10.1016/j.ijmedinf.2020.104246

Park, B. J., Choi, H. J., Moon, S. J., et al. (2018). Pharmaceutical applications of 3D printing technology: Current understanding and future perspectives. Journal of Pharmaceutical Investigation, 49(6), 575–585. https://doi.org/10.1007/S40005-018-00414-Y DOI: https://doi.org/10.1007/s40005-018-00414-y

Zimmerling, A., & Chen, X. (2020). Bioprinting for combating infectious diseases. Bioprinting, 20, e00104. https://doi.org/10.1016/j.bprint.2020.e00104 DOI: https://doi.org/10.1016/j.bprint.2020.e00104

Ma, J., Sheridan, R. P., Liaw, A., et al. (2015). Deep neural nets as a method for quantitative structure–activity relationships. Journal of Chemical Information and Modeling, 55(2), 263–274. https://doi.org/10.1021/ci5006002 DOI: https://doi.org/10.1021/ci500747n

Lavecchia, A. (2015). Machine-learning approaches in drug discovery: Methods and applications. Drug Discovery Today, 20(3), 318–331. https://doi.org/10.1016/j.drudis.2014.11.007 DOI: https://doi.org/10.1016/j.drudis.2014.10.012

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (Vol. 25, pp. 1097–1105).

Alom, M. Z., Taha, T. M., Yakopcic, C., et al. (2018). The history began from AlexNet: A comprehensive survey on deep learning approaches. arXiv preprint arXiv:1803.01164.

Öztürk, H., Özgür, A., Schwaller, P., et al. (2020). Exploring chemical space using natural language processing methodologies for drug discovery. Drug Discovery Today, 25(4), 689–705. https://doi.org/10.1016/j.drudis.2019.12.010 DOI: https://doi.org/10.1016/j.drudis.2020.01.020

Jiménez-Luna, J., Grisoni, F., Weskamp, N., et al. (2021). Artificial intelligence in drug discovery: Recent advances and future perspectives. Expert Opinion on Drug Discovery, 1–11. https://doi.org/10.1080/17460441.2021.1872984 DOI: https://doi.org/10.1080/17460441.2021.1909567

Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., et al. (2019). Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology, 37(9), 1038–1040. https://doi.org/10.1038/s41587-019-0238-5

Stokes, J. M., Yang, K., Swanson, K., et al. (2020). A deep learning approach to antibiotic discovery. Cell, 180(4), 688–702. https://doi.org/10.1016/j.cell.2020.01.007 DOI: https://doi.org/10.1016/j.cell.2020.01.021

Chuang, K. V., Gunsalus, L. M., & Keiser, M. J. (2020). Learning molecular representations for medicinal chemistry: Miniperspective. Journal of Medicinal Chemistry, 63(16), 8705–8722. https://doi.org/10.1021/acs.jmedchem.0c00601 DOI: https://doi.org/10.1021/acs.jmedchem.0c00385

Mayr, A., Klambauer, G., Unterthiner, T., et al. (2016). Deeptox: Toxicity prediction using deep learning. Frontiers in Environmental Science, 3, 80. https://doi.org/10.3389/fenvs.2016.00080 DOI: https://doi.org/10.3389/fenvs.2015.00080

Andrade, R. J., Chalasani, N., Björnsson, E. S., et al. (2019). Drug-induced liver injury. Nature Reviews Disease Primers, 5(1), 1–22. https://doi.org/10.1038/s41572-019-0070-8 DOI: https://doi.org/10.1038/s41572-019-0105-0

Elton, D. C., Boukouvalas, Z., Fuge, M. D., et al. (2019). Deep learning for molecular design: A review of the state of the art. Molecular Systems Design & Engineering, 4(4), 828–849. https://doi.org/10.1039/C9ME00011F DOI: https://doi.org/10.1039/C9ME00039A

Mercado, R., Rastemo, T., Lindelöf, E., et al. (2020). Practical notes on building molecular graph generative models. Applied AI Letters, 1(2). https://doi.org/10.1002/ail2.15 DOI: https://doi.org/10.1002/ail2.18

Schaduangrat, N., Lampa, S., Simeon, S., et al. (2020). Towards reproducible computational drug discovery. Journal of Chemical Information, 12(1), 9. https://doi.org/10.3390/jcce12010009 DOI: https://doi.org/10.1186/s13321-020-0408-x

Bender, A., & Cortes-Ciriano, I. (2021). Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Discovery Today, 26(2), 511–524. https://doi.org/10.1016/j.drudis.2020.11.021 DOI: https://doi.org/10.1016/j.drudis.2020.12.009

Bender, A., & Cortes-Ciriano, I. (2021). Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 2: A discussion of chemical and biological data used for AI in drug discovery. Drug Discovery Today, 26(4), 1040–1052. https://doi.org/10.1016/j.drudis.2020.11.022

Walters, W. P., & Barzilay, R. (2021). Critical assessment of AI in drug discovery. Expert Opinion on Drug Discovery, 1–11. https://doi.org/10.1080/17460441.2021.1872984 DOI: https://doi.org/10.1080/17460441.2021.1915982

Elbadawi M, Gaisford S, Basit AW. Advanced machine-learning techniques in drug discovery. Drug Discov Today 2021;26(3):769-777. doi:10.1016/j.drudis.2020.12.003.

Bender A, Cortes-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data. Drug Discov Today 2021;26(4):1040-1052. doi:10.1016/j.drudis.2020.11.037. DOI: https://doi.org/10.1016/j.drudis.2020.11.037

Reker D. Practical considerations for active machine learning in drug discovery. Drug Discov Today Technol 2019;32-33:73-79. doi:10.1016/j.ddtec.2020.06.001. DOI: https://doi.org/10.1016/j.ddtec.2020.06.001

Margulis E, Dagan-Wiener A, Ives RS, et al. Intense bitterness of molecules: machine learning for expediting drug discovery. Comput Struct Biotechnol J 2020;19:568-576. doi:10.1016/j.csbj.2020.12.030. DOI: https://doi.org/10.1016/j.csbj.2020.12.030

Raschka S, Kaufman B. Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition. Methods 2020;180:89-110. doi:10.1016/j.ymeth.2020.06.016. DOI: https://doi.org/10.1016/j.ymeth.2020.06.016

Raschka S. Automated discovery of GPCR bioactive ligands. Curr Opin Struct Biol 2019;55:17-24. doi:10.1016/j.sbi.2019.02.011. DOI: https://doi.org/10.1016/j.sbi.2019.02.011

Rantanen J, Khinast J. The future of pharmaceutical manufacturing sciences. J Pharm Sci 2015;104(11):3612-3638. doi:10.1002/jps.24594. DOI: https://doi.org/10.1002/jps.24594

Turki T, Taguchi YH. Machine learning algorithms for predicting drugs–tissues relationships. Expert Syst Appl 2019;127:167-186. doi:10.1016/j.eswa.2019.02.013. DOI: https://doi.org/10.1016/j.eswa.2019.02.013

Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv 2018;4(7) . doi:10.1126/sciadv.aap7885. DOI: https://doi.org/10.1126/sciadv.aap7885

Taroni JN, Grayson PC, Hu Q, et al. MultiPLIER: a transfer learning framework for transcriptomics reveals systemic features of rare disease. Cell Syst 2019;8(5):380-394.e4. doi:10.1016/j.cels.2019.04.003. DOI: https://doi.org/10.1016/j.cels.2019.04.003

Li L, He X, Borgwardt K. Multi-target drug repositioning by bipartite block-wise sparse multi-task learning. BMC Syst Biol 2018;12(Suppl 4):55. doi:10.1186/s12918-018-0569-7. DOI: https://doi.org/10.1186/s12918-018-0569-7

Weng Y, Lin C, Zeng X, et al. Drug Target interaction prediction using multi-task learning and co-attention. Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2019;528-533. doi:10.1109/BIBM47256.2019.8983254. n DOI: https://doi.org/10.1109/BIBM47256.2019.8983254

Han L, Zhang Y. Learning multi-level task groups in multi-task learning. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015. Available from: https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9510. DOI: https://doi.org/10.1609/aaai.v29i1.9581

Mak, K. K., & Pichika, M. R. (2019). Artificial intelligence in drug development: Present status and future prospects. Drug Discovery Today, 24(3), 773-780. https://doi.org/10.1016/j.drudis.2018.11.014 DOI: https://doi.org/10.1016/j.drudis.2018.11.014

Paul, D., Sanap, G., Shenoy, S., et al. (2021). Artificial intelligence in drug discovery and development. Drug Discovery Today, 26(1), 80-93. https://doi.org/10.1016/j.drudis.2020.10.010

Dnyaneshwar, K., Gaurav, S., Debleena, P., et al. (2020). Artificial intelligence in the pharmaceutical sector: Current scene and future prospect. In The future of pharmaceutical product development and research (pp. 73-107). Elsevier. https://doi.org/10.1016/B978-0-12-814455-8.00003-7 DOI: https://doi.org/10.1016/B978-0-12-814455-8.00003-7

Cui, R. B., & Zhu, F. (2021). Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends in Food Science & Technology, 107, 491-508. https://doi.org/10.1016/J.TIFS.2020.11.018 DOI: https://doi.org/10.1016/j.tifs.2020.11.018

Lusci, A., Pollastri, G., & Baldi, P. (2013). Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules. Journal of Chemical Information and Modeling, 53(7), 1563-1575. https://doi.org/10.1021/ci400187y DOI: https://doi.org/10.1021/ci400187y

Polykovskiy, D., Zhebrak, A., Vetrov, D., et al. (2018). Entangled conditional adversarial autoencoder for de novo drug discovery. Molecular Pharmaceutics, 15(10), 4398-4405. https://doi.org/10.1021/acs.molpharmaceut.8b00839 DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00839

Daynac, M., Cortes-Cabrera, A., & Prieto, J. M. (2015). Application of artificial intelligence to the prediction of the antimicrobial activity of essential oils. Evidence-Based Complementary and Alternative Medicine, 2015, Article 561024. https://doi.org/10.1155/2015/561024 DOI: https://doi.org/10.1155/2015/561024

Pu, L., Naderi, M., Liu, T., et al. (2019). eToxPred: A machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacology and Toxicology, 20(1), 2. https://doi.org/10.1186/s40360-018-0282-6 DOI: https://doi.org/10.1186/s40360-018-0282-6

Kadurin, I., Rothwell, S., Ferron, L., et al. (2017). Investigation of the proteolytic cleavage of α2δ subunits: A mechanistic switch from inhibition to activation of voltage-gated calcium channels? Biophysical Journal, 112(3), 244a. https://doi.org/10.1016/j.bpj.2016.11.1335 DOI: https://doi.org/10.1016/j.bpj.2016.11.1335

Maram, Y., & Hamdy, H. (2021). The role of artificial intelligence in revealing the results of the interaction of biological materials with each other or with chemicals. Materials Today: Proceedings, 45, 4954-4959. https://doi.org/10.1016/j.matpr.2021.01.387 DOI: https://doi.org/10.1016/j.matpr.2021.01.387

Unterthiner, T., Mayr, A., Klambauer, G., et al. (2015). Toxicity prediction using deep learning. Retrieved from https://arxiv.org/abs/1503.01445v1

Avdagic, Z., Begic Fazlic, L., & Konjicija, S. (2009). Optimized detection of tar content in the manufacturing process using adaptive neuro-fuzzy inference systems. Studies in Health Technology and Informatics, 150, 615-619.

Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., et al. (2019). Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology, 37(9), 1038-1040. https://doi.org/10.1038/s41587-019-0224-x DOI: https://doi.org/10.1038/s41587-019-0224-x

Lee, H., & Kim, W. (2019). Comparison of target features for predicting drug-target interactions by deep neural network based on large-scale drug-induced transcriptome data. Pharmaceutics, 11(8), 377. https://doi.org/10.3390/pharmaceutics11080377 DOI: https://doi.org/10.3390/pharmaceutics11080377

Putin, E., Asadulaev, A., Ivanenkov, Y., et al. (2018). Reinforced adversarial neural computer for de novo molecular design. Journal of Chemical Information and Modeling, 58(6), 1194-1204. https://doi.org/10.1021/acs.jcim.7b00690 DOI: https://doi.org/10.1021/acs.jcim.7b00690

Sellwood, M. A., Ahmed, M., Segler, M. H., & Brown, N. (2018). Artificial intelligence in drug discovery. Future Medicinal Chemistry, 10(20), 2025-2028. https://doi.org/10.4155/fmc-2018-0168 DOI: https://doi.org/10.4155/fmc-2018-0212

Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., & Tekade, R. K. (2021). Artificial intelligence in drug discovery and development. Drug Discovery Today, 26(1), 80-93. https://doi.org/10.1016/j.drudis.2020.10.010 DOI: https://doi.org/10.1016/j.drudis.2020.10.010

Edfeldt, F. N., Folmer, R. H., & Breeze, A. L. (2011). Fragment screening to predict druggability (ligandability) and lead discovery success. Drug Discovery Today, 16(6), 284-287. https://doi.org/10.1016/j.drudis.2011.02.003 DOI: https://doi.org/10.1016/j.drudis.2011.02.002

Vukovic, S., & Huggins, D. J. (2018). Quantitative metrics for drug-target ligandability. Drug Discovery Today, 23(7), 1258-1266. https://doi.org/10.1016/j.drudis.2018.01.003 DOI: https://doi.org/10.1016/j.drudis.2018.02.015

UniProt. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480-D489. https://doi.org/10.1093/nar/gkaa1099 DOI: https://doi.org/10.1093/nar/gkaa1099

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., & others. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235-242. https://doi.org/10.1093/nar/28.1.235 DOI: https://doi.org/10.1093/nar/28.1.235

Hillisch, A., Pineda, L. F., & Hilgenfeld, R. (2004). Utility of homology models in the drug discovery process. Drug Discovery Today, 9(14), 659-669. https://doi.org/10.1016/j.drudis.2004.06.002 DOI: https://doi.org/10.1016/S1359-6446(04)03196-4

Kuhlman, B., & Bradley, P. (2019). Advances in protein structure prediction and design. Nature Reviews Molecular Cell Biology, 20(11), 681-697. https://doi.org/10.1038/s41580-019-0150-5 DOI: https://doi.org/10.1038/s41580-019-0163-x

Kinch, L. N., Kryshtafovych, A., Monastyrskyy, B., & Grishin, N. V. (2019). CASP 13 target classification into tertiary structure prediction categories. Proteins, 87(10), 1021-1036. https://doi.org/10.1002/prot.25725 DOI: https://doi.org/10.1002/prot.25775

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Tunyasuvunakool, K., & others. (2020). High accuracy protein structure prediction using deep learning. In Fourteenth Critical Assessment of Techniques for Protein Structure Prediction (pp. 22–24). Davis: Protein Structure Prediction Center.

The AlphaFold Team. (2021). AlphaFold: A solution to a 50-year-old grand challenge in biology. https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., & others. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-020-2649-2 DOI: https://doi.org/10.1038/s41586-021-03819-2

Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Zidek, A., & others. (2021). Highly accurate protein structure prediction for the human proteome. Nature, 596(7873), 590-596. https://doi.org/10.1038/s41586-020-2649-2 DOI: https://doi.org/10.1038/s41586-021-03828-1

Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., & others. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373(6559), 871-876. https://doi.org/10.1126/science.abj8754 DOI: https://doi.org/10.1126/science.abj8754

Andreeva, A., Kulesha, E., Gough, J., & Murzin, A. G. (2020). The SCOP database in 2020: Expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Research, 48(D1), D376-D382. https://doi.org/10.1093/nar/gkz900 DOI: https://doi.org/10.1093/nar/gkz1064

Grant, A., Lee, D., & Orengo, C. (2004). Progress towards mapping the universe of protein folds. Genome Biology, 5(9), 107. https://doi.org/10.1186/gb-2004-5-9-107 DOI: https://doi.org/10.1186/gb-2004-5-5-107

Ehrt, C., Brinkjost, T., & Koch, O. (2016). Impact of binding site comparisons on medicinal chemistry and rational molecular design. Journal of Medicinal Chemistry, 59(9), 4121-4151. https://doi.org/10.1021/acs.jmedchem.5b01283 DOI: https://doi.org/10.1021/acs.jmedchem.6b00078

Simonovsky, M., & Meyers, J. (2020). DeeplyTough: Learning structural comparison of protein binding sites. Journal of Chemical Information and Modeling, 60(5), 2356-2366. https://doi.org/10.1021/acs.jcim.0c00111 DOI: https://doi.org/10.1021/acs.jcim.9b00554

Zhu, T., Cao, S., Su, P. C., Patel, R., Shah, D., Chokshi, H. B., & others. (2013). Hit identification and optimization in virtual screening: Practical recommendations based on a critical literature analysis. Journal of Medicinal Chemistry, 56(16), 6560-6572. https://doi.org/10.1021/jm401358t DOI: https://doi.org/10.1021/jm301916b

Ripphausen, P., Nisius, B., Peltason, L., & Bajorath, J. (2010). Quo vadis, virtual screening? A comprehensive survey of prospective applications. Journal of Medicinal Chemistry, 53(23), 8461-8467. https://doi.org/10.1021/jm100646j DOI: https://doi.org/10.1021/jm101020z

Damm-Ganamet, K. L., Arora, N., Becart, S., Edwards, J. P., Lebsack, A. D., McAllister, H. M., et al. (2019). Accelerating lead identification by high throughput virtual screening: Prospective case studies from the pharmaceutical industry. Journal of Chemical Information and Modeling, 59(5), 2046-2062. https://doi.org/10.1021/acs.jcim.9b00051 DOI: https://doi.org/10.1021/acs.jcim.8b00941

Gorgulla, C., Boeszoermenyi, A., Wang, Z. F., Fischer, P. D., Coote, P. W., Padmanabha Das, K. M., et al. (2020). An open-source drug discovery platform enables ultra-large virtual screens. Nature, 580(7805), 663-668. https://doi.org/10.1038/s41586-020-2155-5 DOI: https://doi.org/10.1038/s41586-020-2117-z

Wang, Y., Bryant, S. H., Cheng, T., Wang, J., Gindulyte, A., Shoemaker, B. A., et al. (2017). PubChem bioassay: 2017 update. Nucleic Acids Research, 45(D1), D955-D963. https://doi.org/10.1093/nar/gkw1019 DOI: https://doi.org/10.1093/nar/gkw1118

Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., De Veij, M., Felix, E., et al. (2019). ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Research, 47(D1), D930-D940. https://doi.org/10.1093/nar/gky1078 DOI: https://doi.org/10.1093/nar/gky1075

Zhang, L., Fourches, D., Sedykh, A., Zhu, H., Golbraikh, A., Ekins, S., et al. (2013). Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. Journal of Chemical Information and Modeling, 53(3), 475-492. https://doi.org/10.1021/ci300677s DOI: https://doi.org/10.1021/ci300421n

Anantpadma, M., Lane, T., Zorn, K. M., Lingerfelt, M. A., Clark, A. M., Freundlich, J. S., et al. (2019). Ebola virus Bayesian machine learning models enable new in vitro leads. ACS Omega, 4(4), 2353-2361. https://doi.org/10.1021/acsomega.8b03395 DOI: https://doi.org/10.1021/acsomega.8b02948

Chen, X., Xie, W., Yang, Y., Hua, Y., Xing, G., Liang, L., et al. (2020). Discovery of dual FGFR4 and EGFR inhibitors by machine learning and biological evaluation. Journal of Chemical Information and Modeling, 60(10), 4640-4652. https://doi.org/10.1021/acs.jcim.0c00749 DOI: https://doi.org/10.1021/acs.jcim.0c00652

Donlin, M. J., Lane, T. R., Riabova, O., Lepioshkin, A., Xu, E., Lin, J., et al. (2021). Discovery of 5-nitro-6-thiocyanatopyrimidines as inhibitors of Cryptococcus neoformans and Cryptococcus gattii. ACS Medicinal Chemistry Letters, 12(7), 774-781. https://doi.org/10.1021/acsmedchemlett.0c00609 DOI: https://doi.org/10.1021/acsmedchemlett.1c00038

Liu, Z., Huang, D., Zheng, S., Song, Y., Liu, B., Sun, J., et al. (2021). Deep learning enables discovery of highly potent anti-osteoporosis natural products. European Journal of Medicinal Chemistry, 210, Article 112982. https://doi.org/10.1016/j.ejmech.2020.112982 DOI: https://doi.org/10.1016/j.ejmech.2020.112982

Verkhivker, G. M., Bouzida, D., Gehlhaar, D. K., Rejto, P. A., Arthurs, S., Colson, A. B., et al. (2000). Deciphering common failures in molecular docking of ligand-protein complexes. Journal of Computer-Aided Molecular Design, 14(8), 731-751. https://doi.org/10.1023/A:1008995515685 DOI: https://doi.org/10.1023/A:1008158231558

Wicht, K. J., Combrinck, J. M., Smith, P. J., & Egan, T. J. (2015). Bayesian models trained with HTS data for predicting beta-haematin inhibition and in vitro antimalarial activity. Bioorganic & Medicinal Chemistry, 23(18), 5210-5217. https://doi.org/10.1016/j.bmc.2015.07.017 DOI: https://doi.org/10.1016/j.bmc.2014.12.020

Yang, M., Tao, B., Chen, C., Jia, W., Sun, S., Zhang, T., et al. (2019). Machine learning models based on molecular fingerprints and an extreme gradient boosting method lead to the discovery of JAK2 inhibitors. Journal of Chemical Information and Modeling, 59(10), 5002-5012. https://doi.org/10.1021/acs.jcim.9b00408 DOI: https://doi.org/10.1021/acs.jcim.9b00798

Liu, Z., Du, J., Fang, J., Yin, Y., Xu, G., & Xie, L. (2019). Deepscreening: A deep learning-based screening web server for accelerating drug discovery. Database (Oxford), 2019, baz104. https://doi.org/10.1093/database/baz104 DOI: https://doi.org/10.1093/database/baz104

Soufan, O., Ba-Alawi, W., Magana-Mora, A., Essack, M., & Bajic, V. B. (2018). DPubChem: A web tool for QSAR modeling and high-throughput virtual screening. Scientific Reports, 8, 9110. https://doi.org/10.1038/s41598-018-27480-3 DOI: https://doi.org/10.1038/s41598-018-27495-x

Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews Drug Discovery, 3(11), 935-949. https://doi.org/10.1038/nrd1540 DOI: https://doi.org/10.1038/nrd1549

Halperin, I., Ma, B., Wolfson, H., & Nussinov, R. (2002). Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins, 47(4), 409-443. https://doi.org/10.1002/prot.10154 DOI: https://doi.org/10.1002/prot.10115.abs

Pereira, J. C., Caffarena, E. R., & Dos Santos, C. N. (2016). Boosting docking-based virtual screening with deep learning. Journal of Chemical Information and Modeling, 56(12), 2495-2506. https://doi.org/10.1021/acs.jcim.6b00455 DOI: https://doi.org/10.1021/acs.jcim.6b00355

Wang, Z., Sun, H., Yao, X., Li, D., Xu, L., Li, Y., et al. (2016). Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power. Physical Chemistry Chemical Physics, 18(18), 12964-12975. https://doi.org/10.1039/C6CP01312A DOI: https://doi.org/10.1039/C6CP01555G

Wallach, I., Dzamba, M., & Heifets, A. (2015). AtomNet: A deep, convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv, arXiv:1510.02855v1. https://arxiv.org/abs/1510.02855

Gilson, M. K., Given, J. A., Bush, B. L., & McCammon, J. A. (1997). The statistical-thermodynamic basis for computation of binding affinities: A critical review. Biophysical Journal, 72(3), 1047–1069. DOI: https://doi.org/10.1016/S0006-3495(97)78756-3

Ashtawy, H. M., & Mahapatra, N. R. (2015). Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins. BMC Bioinformatics, 16(Suppl. 6), S3. DOI: https://doi.org/10.1186/1471-2105-16-S6-S3

Bao, J., He, X., & Zhang, J. Z. H. (2021). DeepBSP—a machine learning method for accurate prediction of protein-ligand docking structures. Journal of Chemical Information and Modeling, 61(5), 2231–2240. DOI: https://doi.org/10.1021/acs.jcim.1c00334

Trott, O., & Olson, A. J. (2010). Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. DOI: https://doi.org/10.1002/jcc.21334

Adeshina, Y. O., Deeds, E. J., & Karanicolas, J. (2020). Machine learning classification can reduce false positives in structure-based virtual screening. Proceedings of the National Academy of Sciences of the United States of America, 117(36), 18477–18488. DOI: https://doi.org/10.1073/pnas.2000585117

Ballester, P. J., & Mitchell, J. B. (2010). A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics, 26(10), 1169–1175. DOI: https://doi.org/10.1093/bioinformatics/btq112

Stepniewska-Dziubinska, M. M., Zielenkiewicz, P., & Siedlecki, P. (2018). Development and evaluation of a deep learning model for protein-ligand binding affinity prediction. Bioinformatics, 34(20), 3666–3674. DOI: https://doi.org/10.1093/bioinformatics/bty374

Zheng, L., Fan, J., & Mu, Y. (2019). Onionnet: A multiple-layer intermolecular-contact-based convolutional neural network for protein-ligand binding affinity prediction. ACS Omega, 4(27), 15956–15965. DOI: https://doi.org/10.1021/acsomega.9b01997

Durrant, J. D., & McCammon, J. A. (2011). NNScore 2.0: A neural-network receptor-ligand scoring function. Journal of Chemical Information and Modeling, 51(12), 2897–2903. DOI: https://doi.org/10.1021/ci2003889

Wang, C., & Zhang, Y. (2017). Improving scoring-docking-screening powers of protein–ligand scoring functions using random forest. Journal of Computational Chemistry, 38(3), 169–177. DOI: https://doi.org/10.1002/jcc.24667

Shen, C., Hu, Y., Wang, Z., Zhang, X. J., Zhong, H. Y., Wang, G. A., et al. (2021). Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions. Briefings in Bioinformatics, 22(2), 497–514. DOI: https://doi.org/10.1093/bib/bbz173

Wang, R., Fang, X., Lu, Y., Yang, C. Y., & Wang, S. (2005). The PDBbind database: Methodologies and updates. Journal of Medicinal Chemistry, 48(12), 4111–4119. DOI: https://doi.org/10.1021/jm048957q

Benson, M. L., Smith, R. D., Khazanov, N. A., Dimcheff, B., Beaver, J., Dresslar, P., et al. (2008). Binding MOAD, a high-quality protein-ligand database. Nucleic Acids Research, 36(Database issue), D674–D678. DOI: https://doi.org/10.1093/nar/gkm911

Li, H. J., Sze, K. H., Lu, G., & Ballester, P. J. (2021). Machine-learning scoring functions for structure-based virtual screening. Wiley Interdisciplinary Reviews: Computational Molecular Science, 11(3), Article e1478. DOI: https://doi.org/10.1002/wcms.1478

Lyu, J., Wang, S., Balius, T. E., Singh, I., Levit, A., Moroz, Y. S., et al. (2019). Ultra-large library docking for discovering new chemotypes. Nature, 566(7745), 224–229. DOI: https://doi.org/10.1038/s41586-019-0917-9

Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., et al. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. DOI: https://doi.org/10.1021/jm0306430

Ramsundar, B., Eastman, P., Walters, P., Pande, V., Leswing, K., & Wu, Z. (2019). Deep learning for the life sciences. O'Reilly Media.

Darvas, F. (1974). Application of the sequential simplex method in designing drug analogs. Journal of Medicinal Chemistry, 17(8), 799–804. DOI: https://doi.org/10.1021/jm00254a004

Böhm, H. J. (1992). Ludi: Rule-based automatic design of new substituents for enzyme inhibitor leads. Journal of Computer-Aided Molecular Design, 6(6), 593–606. DOI: https://doi.org/10.1007/BF00126217

Elbadawi, M., Gaisford, S., & Basit, A. W. (2021). Advanced machine-learning techniques in drug discovery. Drug Discovery Today, 26(4), 769–777. DOI: https://doi.org/10.1016/j.drudis.2020.12.003

Meyers, J., Fabian, B., & Brown, N. (2021). De novo molecular design and generative models. Drug Discovery Today, 26(11), 2707–2715. DOI: https://doi.org/10.1016/j.drudis.2021.05.019

Young, R. J., Green, D. V. S., Luscombe, C. N., & Hill, A. P. (2011). Getting physical in drug discovery II: The impact of chromatographic hydrophobicity measurements and aromaticity. Drug Discovery Today, 16(18), 822–830. DOI: https://doi.org/10.1016/j.drudis.2011.06.001

Henstock, P. V. (2019). Artificial intelligence for pharma: Time for internal investment. Trends in Pharmacological Sciences, 40(8), 543–546. https://doi.org/10.1016/j.tips.2019.05.003 DOI: https://doi.org/10.1016/j.tips.2019.05.003

Published

15-01-2022

How to Cite

Alanazi, A. A. A., Al Fahad, ‏Abdulrahman I. A., Almorshed, A. S. A., Alrbian, ‏Abdullah A. M., Alnughaymishi, A. A. S., Al-Mutairi, N. H. B., Alajmi, A. A., & Al Otaibi, S. G. (2022). Artificial intelligence in drug discovery: Current applications and future directions. International Journal of Health Sciences, 6(S10), 2011–2040. https://doi.org/10.53730/ijhs.v6nS10.15290

Issue

Section

Peer Review Articles

Most read articles by the same author(s)