Artificial intelligence in drug discovery: Current applications and future directions
Keywords:
Artificial Intelligence, Drug Discovery, Machine Learning, Predictive Modeling, Pharmaceutical IndustryAbstract
Background: The drug discovery process is complex, time-consuming, and costly, traditionally relying on trial-and-error approaches. The integration of artificial intelligence (AI) and machine learning (ML) has emerged as a transformative solution, enhancing efficiency and precision in identifying potential drug candidates. Aim: This review aims to explore the current applications of AI in drug discovery, highlight the AI tools utilized in the process, and discuss the associated challenges. Methods: A comprehensive literature review was conducted, focusing on peer-reviewed articles, clinical studies, and case reports that detail the application of AI and ML in various phases of drug discovery, including target identification, lead optimization, and preclinical evaluation. Results: The review identifies several AI applications, such as predictive modeling, molecular design, and virtual screening, which significantly expedite the discovery process. Tools such as deep learning, natural language processing, and reinforcement learning have been instrumental in analyzing large datasets and predicting drug interactions. However, challenges remain, including data integration issues, skill gaps among professionals, and skepticism regarding AI outcomes. Conclusion: AI has the potential to revolutionize drug discovery by streamlining processes and improving accuracy.
Downloads
References
Mullard, A. (2014). New drugs cost us $2.6 billion to develop. Nature Reviews Drug Discovery, 13(12), 877. https://doi.org/10.1038/nrd.2014.203 DOI: https://doi.org/10.1038/nrd4507
Dowden, H., & Munro, J. (2019). Trends in clinical success rates and therapeutic focus. Nature Reviews Drug Discovery, 18(7), 495–497. https://doi.org/10.1038/d41573-019-00027-7 DOI: https://doi.org/10.1038/d41573-019-00074-z
Schneider, G. (2018). Automating drug discovery. Nature Reviews Drug Discovery, 17(2), 97. https://doi.org/10.1038/nrd.2017.202 DOI: https://doi.org/10.1038/nrd.2017.232
Chen, H., Engkvist, O., Wang, Y., et al. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250. https://doi.org/10.1016/j.drudis.2018.01.039 DOI: https://doi.org/10.1016/j.drudis.2018.01.039
Mater, A. C., & Coote, M. L. (2019). Deep learning in chemistry. Journal of Chemical Information and Modeling, 59(6), 2545–2559. https://doi.org/10.1021/acs.jcim.9b00265 DOI: https://doi.org/10.1021/acs.jcim.9b00266
Vamathevan, J., Clark, D., Czodrowski, P., et al. (2019). Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-0024-5 DOI: https://doi.org/10.1038/s41573-019-0024-5
Paul, D., Sanap, G., Shenoy, S., et al. (2020). Artificial intelligence in drug discovery and development. Drug Discovery Today, 26(1), 80–93. https://doi.org/10.1016/j.drudis.2020.07.020
Stumpfe, D., & Bajorath, J. (2020). Current trends, overlooked issues, and unmet challenges in virtual screening. Journal of Chemical Information and Modeling, 60(9), 4112–4115. https://doi.org/10.1021/acs.jcim.0c00535 DOI: https://doi.org/10.1021/acs.jcim.9b01101
Schneider, P., Walters, W. P., Plowright, A. T., et al. (2020). Rethinking drug design in the artificial intelligence era. Nature Reviews Drug Discovery, 19(5), 353–364. https://doi.org/10.1038/s41573-020-00083-5 DOI: https://doi.org/10.1038/s41573-019-0050-3
Boström, J., Brown, D. G., Young, R. J., et al. (2018). Expanding the medicinal chemistry synthetic toolbox. Nature Reviews Drug Discovery, 17(10), 709–727. https://doi.org/10.1038/nrd.2018.141 DOI: https://doi.org/10.1038/nrd.2018.116
Strokach, A., Becerra, D., Corbi-Verge, C., et al. (2020). Fast and flexible protein design using deep graph neural networks. Cell Systems, 11(4), 402–411. https://doi.org/10.1016/j.cels.2020.09.003 DOI: https://doi.org/10.1016/j.cels.2020.08.016
Rantanen, J., & Khinast, J. (2015). The future of pharmaceutical manufacturing sciences. Journal of Pharmaceutical Sciences, 104(11), 3612–3638. https://doi.org/10.1002/jps.24594
Greenhill, A. T., & Edmunds, B. R. (2020). A primer of artificial intelligence in medicine. Technology Innovations in Gastrointestinal Endoscopy, 22(2), 85–89. https://doi.org/10.1016/j.tgie.2019.150642 DOI: https://doi.org/10.1016/j.tgie.2019.150642
Solanki, P., Baldaniya, D., Jogani, D., et al. (2021). Artificial intelligence: New age of transformation in petroleum upstream. Petroleum Research. https://doi.org/10.1016/j.ptlrs.2021.07.002 DOI: https://doi.org/10.1016/j.ptlrs.2021.07.002
Kshirsagar, A., & Shah, M. (2021). Anatomized study of security solutions for multimedia: Deep learning-enabled authentication, cryptography and information hiding. In Advances in Security Solutions for Multimedia (pp. 1–19). https://doi.org/10.1088/978-0-7503-3735-9CH7 DOI: https://doi.org/10.1088/978-0-7503-3735-9ch7
Anthony, C. C. (2016). Big data in medicine: The upcoming artificial intelligence. Progress in Pediatric Cardiology, 43, 91–94. https://doi.org/10.1016/j.ppedcard.2016.08.021 DOI: https://doi.org/10.1016/j.ppedcard.2016.08.021
Hughes, J. P., Rees, S., Kalindjian, S. B., et al. (2011). Principles of early drug discovery. British Journal of Pharmacology, 162(6), 1239–1249. DOI: https://doi.org/10.1111/j.1476-5381.2010.01127.x
Pereira, D. A., & Williams, J. A. (2007). Origin and evolution of high throughput screening. British Journal of Pharmacology, 152(1), 53–61. DOI: https://doi.org/10.1038/sj.bjp.0707373
Bender, A., Bojanic, D., Davies, J. W., et al. (2008). Which aspects of HTS are empirically correlated with downstream success? Current Opinion in Drug Discovery & Development, 11(3), 327.
Wang, Y., Bryant, S. H., Cheng, T., et al. (2017). PubChem bioassay: 2017 update. Nucleic Acids Research, 45(D1), D955–D963.
Sterling, T., & Irwin, J. J. (2015). ZINC 15—Ligand discovery for everyone. Journal of Chemical Information and Modeling, 55(11), 2324–2337. DOI: https://doi.org/10.1021/acs.jcim.5b00559
Kim, S. (2016). Getting the most out of PubChem for virtual screening. Expert Opinion on Drug Discovery, 11(9), 843–855. DOI: https://doi.org/10.1080/17460441.2016.1216967
Scior, T., Bender, A., Tresadern, G., et al. (2012). Recognizing pitfalls in virtual screening: A critical review. Journal of Chemical Information and Modeling, 52(4), 867–881. DOI: https://doi.org/10.1021/ci200528d
Salahudeen, M. S., & Nishtala, P. S. (2017). An overview of pharmacodynamic modeling, ligand-binding approach, and its application in clinical practice. Saudi Pharmaceutical Journal, 25(2), 165–175. DOI: https://doi.org/10.1016/j.jsps.2016.07.002
Hu, Y., & Bajorath, J. (2013). Compound promiscuity: What can we learn from current data? Drug Discovery Today, 18(13–14), 644–650. DOI: https://doi.org/10.1016/j.drudis.2013.03.002
Yusof, I., Shah, F., Hashimoto, T., et al. (2014). Finding the rules for successful drug optimization. Drug Discovery Today, 19(5), 680–687. DOI: https://doi.org/10.1016/j.drudis.2014.01.005
Nicolaou, C. A., & Brown, N. (2013). Multi-objective optimization methods in drug design. Drug Discovery Today: Technologies, 10(3), e427–e435. DOI: https://doi.org/10.1016/j.ddtec.2013.02.001
Muratov, E. N., Bajorath, J., Sheridan, R. P., et al. (2020). QSAR without borders. Chemical Society Reviews, 49(11), 3525–3564. DOI: https://doi.org/10.1039/D0CS00098A
Schneider, G., & Fechner, U. (2005). Computer-based de novo design of drug-like molecules. Nature Reviews Drug Discovery, 4(8), 649–663. DOI: https://doi.org/10.1038/nrd1799
Dobson, C. M. (2004). Chemical space and biology. Nature, 432(7019), 824–828. DOI: https://doi.org/10.1038/nature03192
Sliwoski, G., Kothiwale, S., Meiler, J., et al. (2014). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395. DOI: https://doi.org/10.1124/pr.112.007336
Van Drie, J. H. (2007). Computer-aided drug design: The next 20 years. Journal of Computer-Aided Molecular Design, 21(10), 591–601. DOI: https://doi.org/10.1007/s10822-007-9142-y
Jiménez-Luna, J., Grisoni, F., & Schneider, G. (2020). Drug discovery with explainable artificial intelligence. Nature Machine Intelligence, 2(10), 573–584. DOI: https://doi.org/10.1038/s42256-020-00236-4
Göller, A. H., Kuhnke, L., Montanari, F., et al. (2020). Bayer’s in silico ADMET platform: A journey of machine learning over the past two decades. Drug Discovery Today, 25(9), 1702–1709. https://doi.org/10.1016/j.drudis.2020.07.001 DOI: https://doi.org/10.1016/j.drudis.2020.07.001
Abu-Elezz, I., Hassan, A., Nazeemudeen, A., et al. (2020). The benefits and threats of blockchain technology in healthcare: A scoping review. International Journal of Medical Informatics, 142, Article 104246. https://doi.org/10.1016/j.ijmedinf.2020.104246 DOI: https://doi.org/10.1016/j.ijmedinf.2020.104246
Park, B. J., Choi, H. J., Moon, S. J., et al. (2018). Pharmaceutical applications of 3D printing technology: Current understanding and future perspectives. Journal of Pharmaceutical Investigation, 49(6), 575–585. https://doi.org/10.1007/S40005-018-00414-Y DOI: https://doi.org/10.1007/s40005-018-00414-y
Zimmerling, A., & Chen, X. (2020). Bioprinting for combating infectious diseases. Bioprinting, 20, e00104. https://doi.org/10.1016/j.bprint.2020.e00104 DOI: https://doi.org/10.1016/j.bprint.2020.e00104
Ma, J., Sheridan, R. P., Liaw, A., et al. (2015). Deep neural nets as a method for quantitative structure–activity relationships. Journal of Chemical Information and Modeling, 55(2), 263–274. https://doi.org/10.1021/ci5006002 DOI: https://doi.org/10.1021/ci500747n
Lavecchia, A. (2015). Machine-learning approaches in drug discovery: Methods and applications. Drug Discovery Today, 20(3), 318–331. https://doi.org/10.1016/j.drudis.2014.11.007 DOI: https://doi.org/10.1016/j.drudis.2014.10.012
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (Vol. 25, pp. 1097–1105).
Alom, M. Z., Taha, T. M., Yakopcic, C., et al. (2018). The history began from AlexNet: A comprehensive survey on deep learning approaches. arXiv preprint arXiv:1803.01164.
Öztürk, H., Özgür, A., Schwaller, P., et al. (2020). Exploring chemical space using natural language processing methodologies for drug discovery. Drug Discovery Today, 25(4), 689–705. https://doi.org/10.1016/j.drudis.2019.12.010 DOI: https://doi.org/10.1016/j.drudis.2020.01.020
Jiménez-Luna, J., Grisoni, F., Weskamp, N., et al. (2021). Artificial intelligence in drug discovery: Recent advances and future perspectives. Expert Opinion on Drug Discovery, 1–11. https://doi.org/10.1080/17460441.2021.1872984 DOI: https://doi.org/10.1080/17460441.2021.1909567
Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., et al. (2019). Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology, 37(9), 1038–1040. https://doi.org/10.1038/s41587-019-0238-5
Stokes, J. M., Yang, K., Swanson, K., et al. (2020). A deep learning approach to antibiotic discovery. Cell, 180(4), 688–702. https://doi.org/10.1016/j.cell.2020.01.007 DOI: https://doi.org/10.1016/j.cell.2020.01.021
Chuang, K. V., Gunsalus, L. M., & Keiser, M. J. (2020). Learning molecular representations for medicinal chemistry: Miniperspective. Journal of Medicinal Chemistry, 63(16), 8705–8722. https://doi.org/10.1021/acs.jmedchem.0c00601 DOI: https://doi.org/10.1021/acs.jmedchem.0c00385
Mayr, A., Klambauer, G., Unterthiner, T., et al. (2016). Deeptox: Toxicity prediction using deep learning. Frontiers in Environmental Science, 3, 80. https://doi.org/10.3389/fenvs.2016.00080 DOI: https://doi.org/10.3389/fenvs.2015.00080
Andrade, R. J., Chalasani, N., Björnsson, E. S., et al. (2019). Drug-induced liver injury. Nature Reviews Disease Primers, 5(1), 1–22. https://doi.org/10.1038/s41572-019-0070-8 DOI: https://doi.org/10.1038/s41572-019-0105-0
Elton, D. C., Boukouvalas, Z., Fuge, M. D., et al. (2019). Deep learning for molecular design: A review of the state of the art. Molecular Systems Design & Engineering, 4(4), 828–849. https://doi.org/10.1039/C9ME00011F DOI: https://doi.org/10.1039/C9ME00039A
Mercado, R., Rastemo, T., Lindelöf, E., et al. (2020). Practical notes on building molecular graph generative models. Applied AI Letters, 1(2). https://doi.org/10.1002/ail2.15 DOI: https://doi.org/10.1002/ail2.18
Schaduangrat, N., Lampa, S., Simeon, S., et al. (2020). Towards reproducible computational drug discovery. Journal of Chemical Information, 12(1), 9. https://doi.org/10.3390/jcce12010009 DOI: https://doi.org/10.1186/s13321-020-0408-x
Bender, A., & Cortes-Ciriano, I. (2021). Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Discovery Today, 26(2), 511–524. https://doi.org/10.1016/j.drudis.2020.11.021 DOI: https://doi.org/10.1016/j.drudis.2020.12.009
Bender, A., & Cortes-Ciriano, I. (2021). Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 2: A discussion of chemical and biological data used for AI in drug discovery. Drug Discovery Today, 26(4), 1040–1052. https://doi.org/10.1016/j.drudis.2020.11.022
Walters, W. P., & Barzilay, R. (2021). Critical assessment of AI in drug discovery. Expert Opinion on Drug Discovery, 1–11. https://doi.org/10.1080/17460441.2021.1872984 DOI: https://doi.org/10.1080/17460441.2021.1915982
Elbadawi M, Gaisford S, Basit AW. Advanced machine-learning techniques in drug discovery. Drug Discov Today 2021;26(3):769-777. doi:10.1016/j.drudis.2020.12.003.
Bender A, Cortes-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data. Drug Discov Today 2021;26(4):1040-1052. doi:10.1016/j.drudis.2020.11.037. DOI: https://doi.org/10.1016/j.drudis.2020.11.037
Reker D. Practical considerations for active machine learning in drug discovery. Drug Discov Today Technol 2019;32-33:73-79. doi:10.1016/j.ddtec.2020.06.001. DOI: https://doi.org/10.1016/j.ddtec.2020.06.001
Margulis E, Dagan-Wiener A, Ives RS, et al. Intense bitterness of molecules: machine learning for expediting drug discovery. Comput Struct Biotechnol J 2020;19:568-576. doi:10.1016/j.csbj.2020.12.030. DOI: https://doi.org/10.1016/j.csbj.2020.12.030
Raschka S, Kaufman B. Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition. Methods 2020;180:89-110. doi:10.1016/j.ymeth.2020.06.016. DOI: https://doi.org/10.1016/j.ymeth.2020.06.016
Raschka S. Automated discovery of GPCR bioactive ligands. Curr Opin Struct Biol 2019;55:17-24. doi:10.1016/j.sbi.2019.02.011. DOI: https://doi.org/10.1016/j.sbi.2019.02.011
Rantanen J, Khinast J. The future of pharmaceutical manufacturing sciences. J Pharm Sci 2015;104(11):3612-3638. doi:10.1002/jps.24594. DOI: https://doi.org/10.1002/jps.24594
Turki T, Taguchi YH. Machine learning algorithms for predicting drugs–tissues relationships. Expert Syst Appl 2019;127:167-186. doi:10.1016/j.eswa.2019.02.013. DOI: https://doi.org/10.1016/j.eswa.2019.02.013
Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv 2018;4(7) . doi:10.1126/sciadv.aap7885. DOI: https://doi.org/10.1126/sciadv.aap7885
Taroni JN, Grayson PC, Hu Q, et al. MultiPLIER: a transfer learning framework for transcriptomics reveals systemic features of rare disease. Cell Syst 2019;8(5):380-394.e4. doi:10.1016/j.cels.2019.04.003. DOI: https://doi.org/10.1016/j.cels.2019.04.003
Li L, He X, Borgwardt K. Multi-target drug repositioning by bipartite block-wise sparse multi-task learning. BMC Syst Biol 2018;12(Suppl 4):55. doi:10.1186/s12918-018-0569-7. DOI: https://doi.org/10.1186/s12918-018-0569-7
Weng Y, Lin C, Zeng X, et al. Drug Target interaction prediction using multi-task learning and co-attention. Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2019;528-533. doi:10.1109/BIBM47256.2019.8983254. n DOI: https://doi.org/10.1109/BIBM47256.2019.8983254
Han L, Zhang Y. Learning multi-level task groups in multi-task learning. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015. Available from: https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9510. DOI: https://doi.org/10.1609/aaai.v29i1.9581
Mak, K. K., & Pichika, M. R. (2019). Artificial intelligence in drug development: Present status and future prospects. Drug Discovery Today, 24(3), 773-780. https://doi.org/10.1016/j.drudis.2018.11.014 DOI: https://doi.org/10.1016/j.drudis.2018.11.014
Paul, D., Sanap, G., Shenoy, S., et al. (2021). Artificial intelligence in drug discovery and development. Drug Discovery Today, 26(1), 80-93. https://doi.org/10.1016/j.drudis.2020.10.010
Dnyaneshwar, K., Gaurav, S., Debleena, P., et al. (2020). Artificial intelligence in the pharmaceutical sector: Current scene and future prospect. In The future of pharmaceutical product development and research (pp. 73-107). Elsevier. https://doi.org/10.1016/B978-0-12-814455-8.00003-7 DOI: https://doi.org/10.1016/B978-0-12-814455-8.00003-7
Cui, R. B., & Zhu, F. (2021). Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends in Food Science & Technology, 107, 491-508. https://doi.org/10.1016/J.TIFS.2020.11.018 DOI: https://doi.org/10.1016/j.tifs.2020.11.018
Lusci, A., Pollastri, G., & Baldi, P. (2013). Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules. Journal of Chemical Information and Modeling, 53(7), 1563-1575. https://doi.org/10.1021/ci400187y DOI: https://doi.org/10.1021/ci400187y
Polykovskiy, D., Zhebrak, A., Vetrov, D., et al. (2018). Entangled conditional adversarial autoencoder for de novo drug discovery. Molecular Pharmaceutics, 15(10), 4398-4405. https://doi.org/10.1021/acs.molpharmaceut.8b00839 DOI: https://doi.org/10.1021/acs.molpharmaceut.8b00839
Daynac, M., Cortes-Cabrera, A., & Prieto, J. M. (2015). Application of artificial intelligence to the prediction of the antimicrobial activity of essential oils. Evidence-Based Complementary and Alternative Medicine, 2015, Article 561024. https://doi.org/10.1155/2015/561024 DOI: https://doi.org/10.1155/2015/561024
Pu, L., Naderi, M., Liu, T., et al. (2019). eToxPred: A machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacology and Toxicology, 20(1), 2. https://doi.org/10.1186/s40360-018-0282-6 DOI: https://doi.org/10.1186/s40360-018-0282-6
Kadurin, I., Rothwell, S., Ferron, L., et al. (2017). Investigation of the proteolytic cleavage of α2δ subunits: A mechanistic switch from inhibition to activation of voltage-gated calcium channels? Biophysical Journal, 112(3), 244a. https://doi.org/10.1016/j.bpj.2016.11.1335 DOI: https://doi.org/10.1016/j.bpj.2016.11.1335
Maram, Y., & Hamdy, H. (2021). The role of artificial intelligence in revealing the results of the interaction of biological materials with each other or with chemicals. Materials Today: Proceedings, 45, 4954-4959. https://doi.org/10.1016/j.matpr.2021.01.387 DOI: https://doi.org/10.1016/j.matpr.2021.01.387
Unterthiner, T., Mayr, A., Klambauer, G., et al. (2015). Toxicity prediction using deep learning. Retrieved from https://arxiv.org/abs/1503.01445v1
Avdagic, Z., Begic Fazlic, L., & Konjicija, S. (2009). Optimized detection of tar content in the manufacturing process using adaptive neuro-fuzzy inference systems. Studies in Health Technology and Informatics, 150, 615-619.
Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., et al. (2019). Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology, 37(9), 1038-1040. https://doi.org/10.1038/s41587-019-0224-x DOI: https://doi.org/10.1038/s41587-019-0224-x
Lee, H., & Kim, W. (2019). Comparison of target features for predicting drug-target interactions by deep neural network based on large-scale drug-induced transcriptome data. Pharmaceutics, 11(8), 377. https://doi.org/10.3390/pharmaceutics11080377 DOI: https://doi.org/10.3390/pharmaceutics11080377
Putin, E., Asadulaev, A., Ivanenkov, Y., et al. (2018). Reinforced adversarial neural computer for de novo molecular design. Journal of Chemical Information and Modeling, 58(6), 1194-1204. https://doi.org/10.1021/acs.jcim.7b00690 DOI: https://doi.org/10.1021/acs.jcim.7b00690
Sellwood, M. A., Ahmed, M., Segler, M. H., & Brown, N. (2018). Artificial intelligence in drug discovery. Future Medicinal Chemistry, 10(20), 2025-2028. https://doi.org/10.4155/fmc-2018-0168 DOI: https://doi.org/10.4155/fmc-2018-0212
Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., & Tekade, R. K. (2021). Artificial intelligence in drug discovery and development. Drug Discovery Today, 26(1), 80-93. https://doi.org/10.1016/j.drudis.2020.10.010 DOI: https://doi.org/10.1016/j.drudis.2020.10.010
Edfeldt, F. N., Folmer, R. H., & Breeze, A. L. (2011). Fragment screening to predict druggability (ligandability) and lead discovery success. Drug Discovery Today, 16(6), 284-287. https://doi.org/10.1016/j.drudis.2011.02.003 DOI: https://doi.org/10.1016/j.drudis.2011.02.002
Vukovic, S., & Huggins, D. J. (2018). Quantitative metrics for drug-target ligandability. Drug Discovery Today, 23(7), 1258-1266. https://doi.org/10.1016/j.drudis.2018.01.003 DOI: https://doi.org/10.1016/j.drudis.2018.02.015
UniProt. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480-D489. https://doi.org/10.1093/nar/gkaa1099 DOI: https://doi.org/10.1093/nar/gkaa1099
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., & others. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235-242. https://doi.org/10.1093/nar/28.1.235 DOI: https://doi.org/10.1093/nar/28.1.235
Hillisch, A., Pineda, L. F., & Hilgenfeld, R. (2004). Utility of homology models in the drug discovery process. Drug Discovery Today, 9(14), 659-669. https://doi.org/10.1016/j.drudis.2004.06.002 DOI: https://doi.org/10.1016/S1359-6446(04)03196-4
Kuhlman, B., & Bradley, P. (2019). Advances in protein structure prediction and design. Nature Reviews Molecular Cell Biology, 20(11), 681-697. https://doi.org/10.1038/s41580-019-0150-5 DOI: https://doi.org/10.1038/s41580-019-0163-x
Kinch, L. N., Kryshtafovych, A., Monastyrskyy, B., & Grishin, N. V. (2019). CASP 13 target classification into tertiary structure prediction categories. Proteins, 87(10), 1021-1036. https://doi.org/10.1002/prot.25725 DOI: https://doi.org/10.1002/prot.25775
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Tunyasuvunakool, K., & others. (2020). High accuracy protein structure prediction using deep learning. In Fourteenth Critical Assessment of Techniques for Protein Structure Prediction (pp. 22–24). Davis: Protein Structure Prediction Center.
The AlphaFold Team. (2021). AlphaFold: A solution to a 50-year-old grand challenge in biology. https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., & others. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-020-2649-2 DOI: https://doi.org/10.1038/s41586-021-03819-2
Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Zidek, A., & others. (2021). Highly accurate protein structure prediction for the human proteome. Nature, 596(7873), 590-596. https://doi.org/10.1038/s41586-020-2649-2 DOI: https://doi.org/10.1038/s41586-021-03828-1
Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., & others. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373(6559), 871-876. https://doi.org/10.1126/science.abj8754 DOI: https://doi.org/10.1126/science.abj8754
Andreeva, A., Kulesha, E., Gough, J., & Murzin, A. G. (2020). The SCOP database in 2020: Expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Research, 48(D1), D376-D382. https://doi.org/10.1093/nar/gkz900 DOI: https://doi.org/10.1093/nar/gkz1064
Grant, A., Lee, D., & Orengo, C. (2004). Progress towards mapping the universe of protein folds. Genome Biology, 5(9), 107. https://doi.org/10.1186/gb-2004-5-9-107 DOI: https://doi.org/10.1186/gb-2004-5-5-107
Ehrt, C., Brinkjost, T., & Koch, O. (2016). Impact of binding site comparisons on medicinal chemistry and rational molecular design. Journal of Medicinal Chemistry, 59(9), 4121-4151. https://doi.org/10.1021/acs.jmedchem.5b01283 DOI: https://doi.org/10.1021/acs.jmedchem.6b00078
Simonovsky, M., & Meyers, J. (2020). DeeplyTough: Learning structural comparison of protein binding sites. Journal of Chemical Information and Modeling, 60(5), 2356-2366. https://doi.org/10.1021/acs.jcim.0c00111 DOI: https://doi.org/10.1021/acs.jcim.9b00554
Zhu, T., Cao, S., Su, P. C., Patel, R., Shah, D., Chokshi, H. B., & others. (2013). Hit identification and optimization in virtual screening: Practical recommendations based on a critical literature analysis. Journal of Medicinal Chemistry, 56(16), 6560-6572. https://doi.org/10.1021/jm401358t DOI: https://doi.org/10.1021/jm301916b
Ripphausen, P., Nisius, B., Peltason, L., & Bajorath, J. (2010). Quo vadis, virtual screening? A comprehensive survey of prospective applications. Journal of Medicinal Chemistry, 53(23), 8461-8467. https://doi.org/10.1021/jm100646j DOI: https://doi.org/10.1021/jm101020z
Damm-Ganamet, K. L., Arora, N., Becart, S., Edwards, J. P., Lebsack, A. D., McAllister, H. M., et al. (2019). Accelerating lead identification by high throughput virtual screening: Prospective case studies from the pharmaceutical industry. Journal of Chemical Information and Modeling, 59(5), 2046-2062. https://doi.org/10.1021/acs.jcim.9b00051 DOI: https://doi.org/10.1021/acs.jcim.8b00941
Gorgulla, C., Boeszoermenyi, A., Wang, Z. F., Fischer, P. D., Coote, P. W., Padmanabha Das, K. M., et al. (2020). An open-source drug discovery platform enables ultra-large virtual screens. Nature, 580(7805), 663-668. https://doi.org/10.1038/s41586-020-2155-5 DOI: https://doi.org/10.1038/s41586-020-2117-z
Wang, Y., Bryant, S. H., Cheng, T., Wang, J., Gindulyte, A., Shoemaker, B. A., et al. (2017). PubChem bioassay: 2017 update. Nucleic Acids Research, 45(D1), D955-D963. https://doi.org/10.1093/nar/gkw1019 DOI: https://doi.org/10.1093/nar/gkw1118
Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., De Veij, M., Felix, E., et al. (2019). ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Research, 47(D1), D930-D940. https://doi.org/10.1093/nar/gky1078 DOI: https://doi.org/10.1093/nar/gky1075
Zhang, L., Fourches, D., Sedykh, A., Zhu, H., Golbraikh, A., Ekins, S., et al. (2013). Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. Journal of Chemical Information and Modeling, 53(3), 475-492. https://doi.org/10.1021/ci300677s DOI: https://doi.org/10.1021/ci300421n
Anantpadma, M., Lane, T., Zorn, K. M., Lingerfelt, M. A., Clark, A. M., Freundlich, J. S., et al. (2019). Ebola virus Bayesian machine learning models enable new in vitro leads. ACS Omega, 4(4), 2353-2361. https://doi.org/10.1021/acsomega.8b03395 DOI: https://doi.org/10.1021/acsomega.8b02948
Chen, X., Xie, W., Yang, Y., Hua, Y., Xing, G., Liang, L., et al. (2020). Discovery of dual FGFR4 and EGFR inhibitors by machine learning and biological evaluation. Journal of Chemical Information and Modeling, 60(10), 4640-4652. https://doi.org/10.1021/acs.jcim.0c00749 DOI: https://doi.org/10.1021/acs.jcim.0c00652
Donlin, M. J., Lane, T. R., Riabova, O., Lepioshkin, A., Xu, E., Lin, J., et al. (2021). Discovery of 5-nitro-6-thiocyanatopyrimidines as inhibitors of Cryptococcus neoformans and Cryptococcus gattii. ACS Medicinal Chemistry Letters, 12(7), 774-781. https://doi.org/10.1021/acsmedchemlett.0c00609 DOI: https://doi.org/10.1021/acsmedchemlett.1c00038
Liu, Z., Huang, D., Zheng, S., Song, Y., Liu, B., Sun, J., et al. (2021). Deep learning enables discovery of highly potent anti-osteoporosis natural products. European Journal of Medicinal Chemistry, 210, Article 112982. https://doi.org/10.1016/j.ejmech.2020.112982 DOI: https://doi.org/10.1016/j.ejmech.2020.112982
Verkhivker, G. M., Bouzida, D., Gehlhaar, D. K., Rejto, P. A., Arthurs, S., Colson, A. B., et al. (2000). Deciphering common failures in molecular docking of ligand-protein complexes. Journal of Computer-Aided Molecular Design, 14(8), 731-751. https://doi.org/10.1023/A:1008995515685 DOI: https://doi.org/10.1023/A:1008158231558
Wicht, K. J., Combrinck, J. M., Smith, P. J., & Egan, T. J. (2015). Bayesian models trained with HTS data for predicting beta-haematin inhibition and in vitro antimalarial activity. Bioorganic & Medicinal Chemistry, 23(18), 5210-5217. https://doi.org/10.1016/j.bmc.2015.07.017 DOI: https://doi.org/10.1016/j.bmc.2014.12.020
Yang, M., Tao, B., Chen, C., Jia, W., Sun, S., Zhang, T., et al. (2019). Machine learning models based on molecular fingerprints and an extreme gradient boosting method lead to the discovery of JAK2 inhibitors. Journal of Chemical Information and Modeling, 59(10), 5002-5012. https://doi.org/10.1021/acs.jcim.9b00408 DOI: https://doi.org/10.1021/acs.jcim.9b00798
Liu, Z., Du, J., Fang, J., Yin, Y., Xu, G., & Xie, L. (2019). Deepscreening: A deep learning-based screening web server for accelerating drug discovery. Database (Oxford), 2019, baz104. https://doi.org/10.1093/database/baz104 DOI: https://doi.org/10.1093/database/baz104
Soufan, O., Ba-Alawi, W., Magana-Mora, A., Essack, M., & Bajic, V. B. (2018). DPubChem: A web tool for QSAR modeling and high-throughput virtual screening. Scientific Reports, 8, 9110. https://doi.org/10.1038/s41598-018-27480-3 DOI: https://doi.org/10.1038/s41598-018-27495-x
Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews Drug Discovery, 3(11), 935-949. https://doi.org/10.1038/nrd1540 DOI: https://doi.org/10.1038/nrd1549
Halperin, I., Ma, B., Wolfson, H., & Nussinov, R. (2002). Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins, 47(4), 409-443. https://doi.org/10.1002/prot.10154 DOI: https://doi.org/10.1002/prot.10115.abs
Pereira, J. C., Caffarena, E. R., & Dos Santos, C. N. (2016). Boosting docking-based virtual screening with deep learning. Journal of Chemical Information and Modeling, 56(12), 2495-2506. https://doi.org/10.1021/acs.jcim.6b00455 DOI: https://doi.org/10.1021/acs.jcim.6b00355
Wang, Z., Sun, H., Yao, X., Li, D., Xu, L., Li, Y., et al. (2016). Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power. Physical Chemistry Chemical Physics, 18(18), 12964-12975. https://doi.org/10.1039/C6CP01312A DOI: https://doi.org/10.1039/C6CP01555G
Wallach, I., Dzamba, M., & Heifets, A. (2015). AtomNet: A deep, convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv, arXiv:1510.02855v1. https://arxiv.org/abs/1510.02855
Gilson, M. K., Given, J. A., Bush, B. L., & McCammon, J. A. (1997). The statistical-thermodynamic basis for computation of binding affinities: A critical review. Biophysical Journal, 72(3), 1047–1069. DOI: https://doi.org/10.1016/S0006-3495(97)78756-3
Ashtawy, H. M., & Mahapatra, N. R. (2015). Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins. BMC Bioinformatics, 16(Suppl. 6), S3. DOI: https://doi.org/10.1186/1471-2105-16-S6-S3
Bao, J., He, X., & Zhang, J. Z. H. (2021). DeepBSP—a machine learning method for accurate prediction of protein-ligand docking structures. Journal of Chemical Information and Modeling, 61(5), 2231–2240. DOI: https://doi.org/10.1021/acs.jcim.1c00334
Trott, O., & Olson, A. J. (2010). Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. DOI: https://doi.org/10.1002/jcc.21334
Adeshina, Y. O., Deeds, E. J., & Karanicolas, J. (2020). Machine learning classification can reduce false positives in structure-based virtual screening. Proceedings of the National Academy of Sciences of the United States of America, 117(36), 18477–18488. DOI: https://doi.org/10.1073/pnas.2000585117
Ballester, P. J., & Mitchell, J. B. (2010). A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics, 26(10), 1169–1175. DOI: https://doi.org/10.1093/bioinformatics/btq112
Stepniewska-Dziubinska, M. M., Zielenkiewicz, P., & Siedlecki, P. (2018). Development and evaluation of a deep learning model for protein-ligand binding affinity prediction. Bioinformatics, 34(20), 3666–3674. DOI: https://doi.org/10.1093/bioinformatics/bty374
Zheng, L., Fan, J., & Mu, Y. (2019). Onionnet: A multiple-layer intermolecular-contact-based convolutional neural network for protein-ligand binding affinity prediction. ACS Omega, 4(27), 15956–15965. DOI: https://doi.org/10.1021/acsomega.9b01997
Durrant, J. D., & McCammon, J. A. (2011). NNScore 2.0: A neural-network receptor-ligand scoring function. Journal of Chemical Information and Modeling, 51(12), 2897–2903. DOI: https://doi.org/10.1021/ci2003889
Wang, C., & Zhang, Y. (2017). Improving scoring-docking-screening powers of protein–ligand scoring functions using random forest. Journal of Computational Chemistry, 38(3), 169–177. DOI: https://doi.org/10.1002/jcc.24667
Shen, C., Hu, Y., Wang, Z., Zhang, X. J., Zhong, H. Y., Wang, G. A., et al. (2021). Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions. Briefings in Bioinformatics, 22(2), 497–514. DOI: https://doi.org/10.1093/bib/bbz173
Wang, R., Fang, X., Lu, Y., Yang, C. Y., & Wang, S. (2005). The PDBbind database: Methodologies and updates. Journal of Medicinal Chemistry, 48(12), 4111–4119. DOI: https://doi.org/10.1021/jm048957q
Benson, M. L., Smith, R. D., Khazanov, N. A., Dimcheff, B., Beaver, J., Dresslar, P., et al. (2008). Binding MOAD, a high-quality protein-ligand database. Nucleic Acids Research, 36(Database issue), D674–D678. DOI: https://doi.org/10.1093/nar/gkm911
Li, H. J., Sze, K. H., Lu, G., & Ballester, P. J. (2021). Machine-learning scoring functions for structure-based virtual screening. Wiley Interdisciplinary Reviews: Computational Molecular Science, 11(3), Article e1478. DOI: https://doi.org/10.1002/wcms.1478
Lyu, J., Wang, S., Balius, T. E., Singh, I., Levit, A., Moroz, Y. S., et al. (2019). Ultra-large library docking for discovering new chemotypes. Nature, 566(7745), 224–229. DOI: https://doi.org/10.1038/s41586-019-0917-9
Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., et al. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. DOI: https://doi.org/10.1021/jm0306430
Ramsundar, B., Eastman, P., Walters, P., Pande, V., Leswing, K., & Wu, Z. (2019). Deep learning for the life sciences. O'Reilly Media.
Darvas, F. (1974). Application of the sequential simplex method in designing drug analogs. Journal of Medicinal Chemistry, 17(8), 799–804. DOI: https://doi.org/10.1021/jm00254a004
Böhm, H. J. (1992). Ludi: Rule-based automatic design of new substituents for enzyme inhibitor leads. Journal of Computer-Aided Molecular Design, 6(6), 593–606. DOI: https://doi.org/10.1007/BF00126217
Elbadawi, M., Gaisford, S., & Basit, A. W. (2021). Advanced machine-learning techniques in drug discovery. Drug Discovery Today, 26(4), 769–777. DOI: https://doi.org/10.1016/j.drudis.2020.12.003
Meyers, J., Fabian, B., & Brown, N. (2021). De novo molecular design and generative models. Drug Discovery Today, 26(11), 2707–2715. DOI: https://doi.org/10.1016/j.drudis.2021.05.019
Young, R. J., Green, D. V. S., Luscombe, C. N., & Hill, A. P. (2011). Getting physical in drug discovery II: The impact of chromatographic hydrophobicity measurements and aromaticity. Drug Discovery Today, 16(18), 822–830. DOI: https://doi.org/10.1016/j.drudis.2011.06.001
Henstock, P. V. (2019). Artificial intelligence for pharma: Time for internal investment. Trends in Pharmacological Sciences, 40(8), 543–546. https://doi.org/10.1016/j.tips.2019.05.003 DOI: https://doi.org/10.1016/j.tips.2019.05.003
Published
How to Cite
Issue
Section
Copyright (c) 2022 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.