The role of pharmaceutical laboratories in drug development and quality control
Keywords:
Pharmacology, managed care, pharmaceuticals production and testing, analytical methodology, pharmaceuticals advancesAbstract
Background: Pharmaceutical laboratories have social significance and their duty involves essential involvement in drug development as well as compliance with quality parameters for the betterment of patient status. Aim: Analytical techniques and innovations, quality control in drug development and pharmaceutical laboratories are what this particular study seeks to bring to the forefront. Methods: There is a need to have some literature review and previous studies for determination of drug development stages, preclinical analysis and the control of quality. Results: Labs improve on the effectiveness of a drug through quality mechanisms, advancement in technology and other legal measures. Conclusion: Pharmaceutical laboratories play a central role to facilitate safe and effective drugs and other anticipations in the future developments of medicine.
Downloads
References
Amadi, C., & Tsui, E. K. (2019). How the quality of essential medicines is perceived and maintained through the pharmaceutical supply chain: A perspective from stakeholders in Nigeria. Research in Social and Administrative Pharmacy, 15(11), 1344-1357. DOI: https://doi.org/10.1016/j.sapharm.2018.11.011
Cyr, M. E., Etchin, A. G., Guthrie, B. J., & Benneyan, J. C. (2019). Access to specialty healthcare in urban versus rural US populations: A systematic literature review. BMC Health Services Research, 19(1), 1-17. DOI: https://doi.org/10.1186/s12913-019-4815-5
Ekeigwe, A. A. (2019). Drug manufacturing and access to medicines: The West African story. A literature review of challenges and proposed remediation. AAPS Open, 5(1), 3. DOI: https://doi.org/10.1186/s41120-019-0032-x
Awele, A. C. (2021). A comparative study of regulatory systems and quality management practices in the manufacturing process of different pharmaceutical companies in Nigeria.
Diaz, A., Baweja, R., Bonatakis, J. K., & Baweja, R. (2021). Global health disparities in vulnerable populations of psychiatric patients during the COVID-19 pandemic. World Journal of Psychiatry, 11(4), 94. DOI: https://doi.org/10.5498/wjp.v11.i4.94
Glover, B., Akinbo, O., Savadogo, M., Timpo, S., Lemgo, G., Sinebo, W., Akile, S., Obukosia, S., Ouedraogo, J., Ndomondo-Sigonda, M., & Koch, M. (2018, July). Strengthening regulatory capacity for gene drives in Africa: Leveraging NEPAD's experience in establishing regulatory systems for medicines and GM crops in Africa. In BMC Proceedings (Vol. 12, No. 8, 19-28). BioMed Central. DOI: https://doi.org/10.1186/s12919-018-0108-y
Haji, S. K. (2023). Poor accountability and corruption and its impact on quality of care in the public health sector within the Kurdistan Region of Iraq (Doctoral dissertation, University of Portsmouth).
Liu, X., Barenji, A. V., Li, Z., Montreuil, B., & Huang, G. Q. (2021). Blockchain-based smart tracking and tracing platform for drug supply chain. Computers & Industrial Engineering, 161, 107669. DOI: https://doi.org/10.1016/j.cie.2021.107669
Ncube, B. M., Dube, A., & Ward, K. (2021). Establishment of the African Medicines Agency: Progress, challenges and regulatory readiness. Journal of Pharmaceutical Policy and Practice, 14, 1-12. DOI: https://doi.org/10.1186/s40545-020-00281-9
Ndomondo-Sigonda, M., Miot, J., Naidoo, S., Dodoo, A., & Kaale, E. (2017). Medicines regulation in Africa: Current state and opportunities. Pharmaceutical Medicine, 31, 383-397. DOI: https://doi.org/10.1007/s40290-017-0210-x
Nigeria's, I. W. (2023). Chapter five interaction within Nigeria's pharmaceutical industry Adesina Ayobami Oyewale. Domestic Production and Procurement of Medicines in Nigeria: Capabilities, Challenges and Prospects, 47.
Roth, L., Bempong, D., Babigumira, J.B., Banoo, S., Cooke, E., Jeffreys, D., Kasonde, L., Leufkens, H.G., Lim, J.C., Lumpkin, M., & Mahlangu, G. (2018). Expanding global access to essential medicines: investment priorities for sustainably strengthening medical product regulatory systems. Globalization and Health, 14(1), 1-12. DOI: https://doi.org/10.1186/s12992-018-0421-2
Sunny, J., Undralla, N., & Pillai, V.M. (2020). Supply chain transparency through blockchain-based traceability: An overview with demonstration. Computers & Industrial Engineering, 150, 106895. DOI: https://doi.org/10.1016/j.cie.2020.106895
World Health Organization. (2017). WHO Global Surveillance and Monitoring System for substandard and falsified medical products.
Beccaria, M., & Cabooter, D. (2020). Current developments in LC-MS for pharmaceutical analysis. Analyst, 145(4), 1129-1157. https://doi.org/10.1039/C9AN02294E DOI: https://doi.org/10.1039/C9AN02145K
Beng, H., Hu, J., Zhang, R., Huang, Y., Chen, X., & Tan, W. (2021). Quantitative DESI mass spectrometry imaging of lung distribution of inhaled drug. Journal of Drug Delivery Science and Technology, 66, 102794. https://doi.org/10.1016/j.jddst.2021.102794 DOI: https://doi.org/10.1016/j.jddst.2021.102794
Bobaly, B., Lauber, M., Beck, A., Guillarme, D., & Fekete, S. (2018). Utility of a high coverage phenyl-bonding and wide-pore superficially porous particle for the analysis of monoclonal antibodies and related products. Journal of Chromatography A, 1540, 63-76. https://doi.org/10.1016/j.chroma.2018.01.044 DOI: https://doi.org/10.1016/j.chroma.2018.03.043
Bobaly, R., D'Atri, V., Lauber, M., Beck, A., Guillarme, D., & Fekete, S. (2018). Characterizing various monoclonal antibodies with milder reversed phase chromatography conditions. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 1000, 1-10. https://doi.org/10.1016/j.jchromb.2017.11.020 DOI: https://doi.org/10.1016/j.jchromb.2018.07.039
Camperi, J., Dai, L., Guillarme, D., & Stella, C. (2020). Fast and automated characterization of monoclonal antibody minor variants from cell cultures by combined protein-A and multidimensional LC/MS methodologies. Analytical Chemistry, 92(12), 8506-8513. https://doi.org/10.1021/acs.analchem.0c01359 DOI: https://doi.org/10.1021/acs.analchem.0c01250
Camperi, J., Guillarme, D., Lei, M., & Stella, C. (2020). Automated middle-up approach for the characterization of biotherapeutic products by combining on-line hinge-specific digestion with RPLC-HRMS analysis. Journal of Pharmaceutical and Biomedical Analysis, 182, 113130. https://doi.org/10.1016/j.jpba.2020.113130 DOI: https://doi.org/10.1016/j.jpba.2020.113130
Camperi, J., Guillarme, D., & Stella, C. (2021). Multi-dimensional LC-MS: The next generation characterization of antibody-based therapeutics by unified online bottom-up, middle-up, and intact approaches. Analyst, 146(3), 747-769. https://doi.org/10.1039/D0AN02182G DOI: https://doi.org/10.1039/D0AN01963A
Carrara, S. C., Ulitzka, M., Grzeschik, I., Kornmann, H., Hock, H., & Kolmar, H. (2021). From cell line development to the formulated drug product: The art of manufacturing therapeutic monoclonal antibodies. International Journal of Pharmaceutics, 594, 120164. DOI: https://doi.org/10.1016/j.ijpharm.2020.120164
Chen, B., Lin, Z., Alpert, A. J., Fu, C., Zhan, Q., Pritts, W. A., & Ge, Y. (2018). Online hydrophobic interaction chromatography-mass spectrometry for the analysis of intact monoclonal antibodies. Analytical Chemistry, 90(12), 7135–7138. DOI: https://doi.org/10.1021/acs.analchem.8b01865
Chen, Y., Li, J., & Schmitz, O. J. (2019). Development of an at-column dilution modulator for flexible and precise control of dilution factors to overcome mobile phase incompatibility in comprehensive two-dimensional liquid chromatography. Analytical Chemistry, 92(15), 10251–10257. DOI: https://doi.org/10.1021/acs.analchem.9b02391
Comamala, G., Wagner, C., de la Torre, P. S., Jakobsen, R. U., Hilger, M., Brouwer, H.-J., & Rand, K. D. (2020). Hydrogen/deuterium exchange mass spectrometry with improved electrochemical reduction enables comprehensive epitope mapping of a therapeutic antibody to the cysteine-knot containing vascular endothelial growth factor. Analytica Chimica Acta, 1115, 41–51. DOI: https://doi.org/10.1016/j.aca.2020.04.014
Cortese, M., Gigliobianco, M. R., Magnoni, F., Censi, R., & Di Martino, P. (2020). Compensate for or minimize matrix effects? Strategies for overcoming matrix effects in liquid chromatography-mass spectrometry technique: A tutorial review. Molecules, 25(13), 3047. DOI: https://doi.org/10.3390/molecules25133047
D'Atri, V., Causon, T., Hernandez-Alba, O., Mutabazi, A., Veuthey, J.-L., Cianferani, S., & Guillarme, D. (2018). Adding a new separation dimension to M5 and LC-MS: What is the utility of ion mobility spectrometry? Journal of Separation Science, 47(1), 20–67. DOI: https://doi.org/10.1002/jssc.201700919
Devine, P. W. A., Fisher, H. C., Calabrese, A. N., Whelan, F., Higazi, D. R., Potts, J. R., Lowe, D. C., Radford, S. E., & Ashcroft, A. E. (2017). Investigating the structural compaction of biomolecules upon transition to the gas-phase using ESI-TWIMS MS. Journal of The American Society for Mass Spectrometry, 28(9), 1855-1862. https://doi.org/10.1007/s13361-017-1642-3 DOI: https://doi.org/10.1007/s13361-017-1689-9
Dubbelman, A.-C., Cuyckens, F., Dillen, L., Gross, G., Vrecken, R., Hankemeier, T. (2018). Mass spectrometric recommendations for Quan/Qual analysis using liquid-chromatography coupled to quadrupole time-of-flight mass spectrometry. Analytica Chimica Acta, 102062, 1-75. https://doi.org/10.1016/j.aca.2018.10.019 DOI: https://doi.org/10.1016/j.aca.2018.02.055
Duerr, C., & Fries, W. (2019). Antibody-drug conjugates stability and formulation. European Journal of Pharmaceutics and Biopharmaceutics, 130, 168-176. https://doi.org/10.1016/j.ejpb.2018.11.016 DOI: https://doi.org/10.1016/j.ejpb.2019.03.021
Dunn, Z. D., Desai, J., Leme, G. M., Stoll, D. R., & Richardson, D. D. (2020). Rapid two-dimensional protein A size exclusion chromatography of monoclonal antibodies for titer and aggregation measurements from harvested cell culture fluid samples. mALn, 12(1), 1702263. https://doi.org/10.1021/acsm.9b02455 DOI: https://doi.org/10.1080/19420862.2019.1702263
Eckard, A. D., Dupont, R. D., & Young, J. K. (2018). Development of two analytical methods based on reverse phase chromatographic and SDS-PAGE gel for assessment of deglycosylation yield in N-glycan mapping. BioMed Research International, 3909674. https://doi.org/10.1155/2018/3909674 DOI: https://doi.org/10.1155/2018/3909674
Ehkirch, A., D'Atri, V., Rouviere, F., Hernandez-Alba, O., Goyun, A., Sarrut, M., Beck, A., Guillarme, D., Heinisch, S., & Cianferani, S. (2018). An online four-dimensional HIC SEC IMXMS methodology for proof-of-concept characterization of antibody-drug conjugates. Analytical Chemistry, 90(3), 1578-1586. https://doi.org/10.1021/acs.analchem.7b04287 DOI: https://doi.org/10.1021/acs.analchem.7b02110
Ehkirch, A., Goyon, A., Hernandez Alba, O., Rouviere, F., D'Atri, V., Dreyfus, C., Haeuw, J.-F., Diemer, H., Beck, A., Heinisch, S., Guillarme, D., & Cianferani, S. (2018). A novel online four-dimensional SECXSEC-IMAMS methodology for characterization of monoclonal antibody size variants. Analytical Chemistry, 90(23), 13929-13937. https://doi.org/10.1021/acs.analchem.8b02701 DOI: https://doi.org/10.1021/acs.analchem.8b03333
Ehkirch, A., Hernandez Alba, O., Colas, O., Beck, A., Guillarme, D., & Cianferani, S. (2018). Hyphenation of size exclusion chromatography to native ion mobility mass spectrometry for the analytical characterization of therapeutic antibodies and related products. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 1086, 176-183. https://doi.org/10.1016/j.jchromb.2018.06.003 DOI: https://doi.org/10.1016/j.jchromb.2018.04.010
European Medicines Agency. (2017). Guideline on clinical development of fixed combination medicinal products, EMA/CHMP/158268/2017. Retrieved from http://www.ema.europa.eu/ema/
Fasert, K., Sarg, B., Maurer, V., & Lindner, H. H. (2017). Exploiting charge differences for the analysis of challenging post-translational modifications by capillary electrophoresis-mass spectrometry. Journal of Chromatography A, 2498, 215-223. https://doi.org/10.1016/j.chroma.2017.09.061 DOI: https://doi.org/10.1016/j.chroma.2017.01.086
Focosi, D., McConnell, S., Casadevall, A., Cappello, E., Valdiserra, G., & Tuccori, M. (2022). Monoclonal antibody therapies against SARS-CoV-2. The Lancet Infectious Diseases, 22(11), 311-326. https://doi.org/10.1016/S1473-3099(22)00276-2 DOI: https://doi.org/10.1016/S1473-3099(22)00311-5
Fussl, F., Strasser, L., Carillo, S., & Bones, J. (2021). Native LC-MS for capturing quality attributes of biopharmaceuticals on the intact protein level. Current Opinion in Biotechnology, 71, 32-40. https://doi.org/10.1016/j.copbio.2021.06.001 DOI: https://doi.org/10.1016/j.copbio.2021.05.008
Gandhi, A. V., Pothecary, M. R., Bain, D. L., & Carpenter, J. F. (2017). Some lessons learned from a comparison between sedimentation velocity analytical ultracentrifugation and size exclusion chromatography to characterize and quantify protein aggregates. Journal of Pharmaceutical Sciences, 106(8), 2178-2181. https://doi.org/10.1016/j.xphs.2017.04.004 DOI: https://doi.org/10.1016/j.xphs.2017.04.048
Goyon, A., Beck, A., Colas, O., Sandra, K., & Guillarme, D. (2017). Evaluation of size exclusion chromatography columns packed with sub-3 μm particles for the analysis of biopharmaceutical proteins. Journal of Chromatography A, 1498, 80-89. https://doi.org/10.1016/j.chroma.2017.03.050 DOI: https://doi.org/10.1016/j.chroma.2016.11.056
Goyon, A., D'Atri, V., Colas, O., Fekete, S., Beck, A., & Guillarme, D. (2017). Characterization of 30 therapeutic antibodies and related products by size exclusion chromatography: Feasibility assessment for future mass spectrometry hyphenation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1065, 35-43. https://doi.org/10.1016/j.jchromb.2017.08.013 DOI: https://doi.org/10.1016/j.jchromb.2017.09.027
Gstuttner, C., Vergoossen, D. L. E., Wuhrer, M., Huijbers, M. G. M., Dominguez-Vega, E. (2021). Sheathless CE-MS as a tool for monitoring exchange efficiency and stability of bispecific antibodies. Electrophoresis, 42(1-2), 171-176. https://doi.org/10.1002/elps.202100110 DOI: https://doi.org/10.1002/elps.202000166
Hong, A., Lee, H. H., Heo, C. E., Cho, Y., Kim, S., Kung, D., Kim, H. I. (2017). Distinct fragmentation pathways of anticancer drugs induced by charge-carrying cations in the gas phase. Journal of the American Society for Mass Spectrometry, 28(4), 628-637. https://doi.org/10.1007/s13361-017-1617-z DOI: https://doi.org/10.1007/s13361-016-1559-x
Khalikova, M. (2019). N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. European Journal of Pharmaceutics and Biopharmaceutics, 139, 123-131. https://doi.org/10.1016/j.ejpb.2019.04.010 DOI: https://doi.org/10.1016/j.ejpb.2019.04.010
Hanko, V. P., Rohrer, S. (2020). Determination of amino acids in cell culture and fermentation broth media using anion-exchange chromatography with integrated pulsed amperometric detection. Analytical Biochemistry, 324(1), 29-38. https://doi.org/10.1016/j.ab.2003.12.001 DOI: https://doi.org/10.1016/j.ab.2003.09.028
International Conference on Harmonization. (2019). ICH guideline M10 on bioanalytical method validation and study sample analysis. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. Retrieved from https://www.ich.org/page/m10-bioanalytical-method-validation
International Council for Harmonization (ICH) Guideline: M7 (R1) Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. (2018b).
Jukes, C., Fusal, F., Zaborowska, I., & Bones, J. (2021). Rapid analysis of biotherapeutics using protein A chromatography coupled to orbitrap mass spectrometry. Analytical Chemistry, 93(40), 13505-13512. DOI: https://doi.org/10.1021/acs.analchem.1c02365
Kaltashov, L. A., Bobst, C. E., Pawłowski, I., & Wang, G. (2020). Mass spectrometry-based methods in characterization of the higher order structure of protein therapeutics. Journal of Pharmaceutical and Biomedical Analysis, 184, 113169. DOI: https://doi.org/10.1016/j.jpba.2020.113169
Kashimura, A., Tanaka, K., Sato, H., Kaji, H., & Tanaka, M. (2018). Imaging mass spectrometry for toxicity assessment: A useful technique to confirm drug distribution in histologically confirmed lesions. Journal of Toxicologic Pathology, 31(3), 221-227. DOI: https://doi.org/10.1293/tox.2018-0006
Kaur, H. (2021a). Characterization of glycosylation in monoclonal antibodies and its importance in therapeutic antibody development. Critical Reviews in Biotechnology, 41(2), 300-315. DOI: https://doi.org/10.1080/07388551.2020.1869684
Kaur, H. (2021b). Capillary electrophoresis and the biopharmaceutical industry: Therapeutic protein analysis and characterization. Trends in Analytical Chemistry, 144, 116407. DOI: https://doi.org/10.1016/j.trac.2021.116407
Published
How to Cite
Issue
Section
Copyright (c) 2024 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.