An in-depth overview of controlled drug delivery systems
Present developments and prospective advancements
Keywords:
Controlled drug delivery systems, pharmaceutical technology, drug release kinetics, biomaterials, nanocarriers, stimuli-responsive polymersAbstract
Background: Drug delivery systems (DDS) are crucial in modern medicine for optimizing the therapeutic efficacy and safety of pharmaceutical agents. Traditionally, direct use of active pharmaceutical ingredients (APIs) poses challenges such as dosing accuracy, stability, and patient compliance. Controlled drug delivery systems have emerged to address these issues by releasing drugs at a controlled rate, thereby enhancing therapeutic outcomes and minimizing side effects. Aim: This article aims to provide a comprehensive overview of current advancements and future prospects in controlled drug delivery systems. It explores various DDS technologies, their mechanisms, and their impact on drug efficacy and patient adherence. Methods: The review synthesizes data from recent research on drug delivery systems, focusing on their classification, design considerations, and performance. It discusses the pharmacokinetics of drug release, including absorption, distribution, metabolism, and excretion, and evaluates different controlled release mechanisms such as dissolution-controlled, diffusion-controlled, and osmotic pressure-controlled systems. Results: Controlled DDS have evolved significantly from the first-generation systems that relied on basic mechanisms like dissolution and diffusion to advanced technologies involving stimuli-responsive biomaterials. These systems now include innovations such as nanoparticle-based delivery, self-regulating devices, and long-term non-invasive methods for proteins and nucleic acids.
Downloads
References
Langer, R. Drug delivery and targeting. Nature 1998, 392, 5–10. DOI: https://doi.org/10.1038/32020
Benoit, D.S.; Overby, C.T.; Sims, K.R., Jr.; Ackun-Farmmer, M.A. Drug delivery systems. In Biomaterials Science; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1237–1266. DOI: https://doi.org/10.1016/B978-0-12-816137-1.00078-7
Langer, R. New methods of drug delivery. Science 1990, 249, 1527–1533. DOI: https://doi.org/10.1126/science.2218494
Chaudhari, S.P.; Patil, P.S. Pharmaceutical excipients: A review. IJAPBC 2012, 1, 21–34.
Jain, K.K. An overview of drug delivery systems. Drug Deliv. Syst. 2020, 2059, 1–54 DOI: https://doi.org/10.1007/978-1-4939-9798-5_1
Patel, H.; Shah, V.; Upadhyay, U. New pharmaceutical excipients in solid dosage forms-A review. Int. J. Pharm. Life Sci. 2011, 2, 1006–1019.
Kalasz, H.; Antal, I. Drug excipients. Curr. Med. Chem. 2006, 13, 2535–2563. DOI: https://doi.org/10.2174/092986706778201648
Ku, M.S. Use of the biopharmaceutical classification system in early drug development. AAPS J. 2008, 10, 208–212. DOI: https://doi.org/10.1208/s12248-008-9020-0
Verma, P.; Thakur, A.; Deshmukh, K.; Jha, A.; Verma, S. Research. Routes of drug administration. Int. J. Pharm. Stud. Res. 2010, 1, 54–59.
Augsburger, L.L.; Hoag, S.W. Pharmaceutical Dosage Forms-Tablets; CRC Press: Boca Raton, FL, USA, 2016. DOI: https://doi.org/10.1201/b15115
Qiu, Y.; Chen, Y.; Zhang, G.G.; Yu, L.; Mantri, R.V. Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice; Academic Press: Cambridge, MA, USA, 2016.
Mahato, R.I.; Narang, A.S. Pharmaceutical Dosage Forms and Drug Delivery: Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2017.
Bora, A.; Deshmukh, S.; Swain, K. Recent advances in semisolid dosage form. Int. J. Pharm. Sci. Res. 2014, 5, 3596.
Niazi, S.K. Handbook of Pharmaceutical Manufacturing Formulations: Volume Four, Semisolid Products; CRC Press: Boca Raton, FL, USA, 2019 DOI: https://doi.org/10.1201/9781315102856
Mahalingam, R.; Li, X.; Jasti, B.R. Semisolid dosages: Ointments, creams, and gels. Pharm. Manuf. Handb. 2008, 1, 267–312.
Allen, L.V., Jr. Basics of compounding: Tips and hints, Part 3: Compounding with ointments, creams, pastes, gels, and gel-creams. Int. J. Pharm. Compd. 2014, 18, 228–230.
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol. 2008, 26, 1261–1268. DOI: https://doi.org/10.1038/nbt.1504
Prausnitz, M.R.; Mitragotri, S.; Langer, R. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 2004, 3, 115–124. DOI: https://doi.org/10.1038/nrd1304
Al Hanbali, O.A.; Khan, H.M.S.; Sarfraz, M.; Arafat, M.; Ijaz, S.; Hameed, A. Transdermal patches: Design and current approaches to painless drug delivery. Acta Pharm. 2019, 69, 197–215. DOI: https://doi.org/10.2478/acph-2019-0016
Dhiman, S.; Singh, T.G.; Rehni, A.K. Transdermal patches: A recent approach to new drug delivery system. Int. J. Pharm. Pharm. Sci. 2011, 3, 26–34.
Perrigo. Transderm-Scop, Scopalamine Transdermal Patch. Available online: https://investor.perrigo.com/2019-10-03-Perrigo-Announces-the-Relaunch-of-the-AB-Rated-Generic-Version-of-Transderm-Scop-R-1-5-MG (accessed on 2021).
Gad, S.C. Semisolid dosages: Ointments, creams and gels. In Pharmaceutical Manufacturing Handbook: Production and Processes; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 5, pp. 267–312. DOI: https://doi.org/10.1002/9780470259818.ch9
Rubio-Bonilla, M.V.; Londono, R.; Rubio, A. Liquid dosage forms. In Pharmaceutical Manufacturing Handbook: Production and Processes; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 5, pp. 313–344. DOI: https://doi.org/10.1002/9780470259818.ch10
Kumar, R.S.; Yagnesh, T.N.S. Pharmaceutical suspensions: Patient compliance oral dosage forms. World J. Pharm. Pharm. Sci. 2016, 5, 1471–1537.
Kalantzi, L.; Reppas, C.; Dressman, J.; Amidon, G.; Junginger, H.; Midha, K.; Shah, V.; Stavchansky, S.; Barends, D.M. Biowaiver monographs for immediate release solid oral dosage forms: Acetaminophen (paracetamol). J. Pharm. Sci. 2006, 95, 4–14. DOI: https://doi.org/10.1002/jps.20477
Sears, W. Linctuses. Practitioner 1951, 166, 91–92. DOI: https://doi.org/10.2307/935036
Payne, K.; Roelofse, J.; Shipton, E. Pharmacokinetics of oral tramadol drops for postoperative pain relief in children aged 4 to 7 years—A pilot study. Anesth. Prog. 2002, 49, 109.
Van Schoor, J. Using gargles and mouthwashes: Medicine cupboard. SA Pharm. Assist. 2011, 11, 26.
Shargel, L.; Andrew, B.; Wu-Pong, S. Applied Biopharmaceutics & Pharmacokinetics; Appleton & Lange Stamford: Stamford, UK, 1999; Volume 264.
Jambhekar, S.S.; Breen, P.J. Basic Pharmacokinetics; Pharmaceutical Press: London, UK, 2009; Volume 76.
Fleisher, D.; Li, C.; Zhou, Y.; Pao, L.-H.; Karim, A. Drug, meal and formulation interactions influencing drug absorption after oral administration. Clin. Pharmacokinet. 1999, 36, 233–254. DOI: https://doi.org/10.2165/00003088-199936030-00004
Obata, K.; Sugano, K.; Saitoh, R.; Higashida, A.; Nabuchi, Y.; Machida, M.; Aso, Y. Prediction of oral drug absorption in humans by theoretical passive absorption model. Int. J. Pharm. 2005, 293, 183–192. DOI: https://doi.org/10.1016/j.ijpharm.2005.01.005
Hubatsch, I.; Ragnarsson, E.G.; Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2007, 2, 2111–2119. DOI: https://doi.org/10.1038/nprot.2007.303
Openstax, R.U. 1.1 The Science of Biology. Available online: http://cnx.org/contents/GFy_h8cu@10.53:rZudN6XP@2/Introduction (accessed on 2021).
Quizlet. 2.1.5 Biological Membranes. Available online: https://quizlet.com/gb/377924943/215-biological-membranes-diagram/ (accessed on 2021).
Seydel, J.K.; Wiese, M. Drug-Membrane Interactions: Analysis, Drug Distribution, Modeling; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 15.
Gillette, J.R. Factors affecting drug metabolism. Ann. N. Y. Acad. Sci. 1971, 179, 43–66. DOI: https://doi.org/10.1111/j.1749-6632.1971.tb46890.x
Ekins, S.; Ring, B.J.; Grace, J.; McRobie-Belle, D.J.; Wrighton, S.A. Present and future in vitro approaches for drug metabolism. J. Pharmacol. Toxicol. Methods 2000, 44, 313–324. DOI: https://doi.org/10.1016/S1056-8719(00)00110-6
Taft, D.R. Drug excretion. In Pharmacology; Elsevier: Amsterdam, The Netherlands, 2009; pp. 175–199. DOI: https://doi.org/10.1016/B978-0-12-369521-5.00009-9
Reinberg, A.E. Concepts of circadian chronopharmacology. Ann. N. Y. Acad. Sci. 1991, 618, 102–115. DOI: https://doi.org/10.1111/j.1749-6632.1991.tb27239.x
Prabu, S.L.; Suriyaprakash, T.; Ruckmani, K.; Thirumurugan, R. Biopharmaceutics and Pharmacokinetics. In Basic Pharmacokinetic Concepts and Some Clinical Applications; IntechOpen: London, UK, 2015. DOI: https://doi.org/10.5772/61160
Hallare, J.; Gerriets, V. Half Life; StatPearls Publishing LLC: Treasure Island, FL, USA, 2020.
Hardenia, A.; Maheshwari, N.; Hardenia, S.S.; Dwivedi, S.K.; Maheshwari, R.; Tekade, R.K. Scientific rationale for designing controlled drug delivery systems. In Basic Fundamentals of Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–28 DOI: https://doi.org/10.1016/B978-0-12-817909-3.00001-7
Paarakh, M.P.; Jose, P.A.; Setty, C.; Christoper, G.P. Release kinetics–concepts and applications. Int. J. Pharm. Res. Technol. 2018, 8, 12–20.
Habet, S. Narrow Therapeutic Index drugs: Clinical pharmacology perspective. J. Pharm. Pharmacol. 2021, 73, 1285–1291. DOI: https://doi.org/10.1093/jpp/rgab102
Lowe, E.S.; BALIS, F.M. Dose-effect and concentration-effect analysis. In Principles of Clinical Pharmacology; Elsevier: Amsterdam, The Netherlands, 2007; pp. 289–300. [ DOI: https://doi.org/10.1016/B978-012369417-1/50058-4
Park, K. Controlled drug delivery systems: Past forward and future back. J. Control. Release 2014, 190, 3–8. DOI: https://doi.org/10.1016/j.jconrel.2014.03.054
Fenton, O.S.; Olafson, K.N.; Pillai, P.S.; Mitchell, M.J.; Langer, R. Advances in biomaterials for drug delivery. Adv. Mater. 2018, 30, 1705328. DOI: https://doi.org/10.1002/adma.201705328
Singh, A.P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther. 2019, 4, 1–21. DOI: https://doi.org/10.1038/s41392-019-0068-3
Mitragotri, S.; Burke, P.A.; Langer, R. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nat. Rev. Drug Discov. 2014, 13, 655–672. DOI: https://doi.org/10.1038/nrd4363
Gupta, B.P.; Thakur, N.; Jain, N.P.; Banweer, J.; Jain, S. Osmotically controlled drug delivery system with associated drugs. J. Pharm. Pharm. Sci. 2010, 13, 571–588. DOI: https://doi.org/10.18433/J38W25
Wang, Z.; Shmeis, R.A. Dissolution controlled drug delivery systems. Des. Control. Release Drug Deliv. Systems. 2006, 139–172.
Siepmann, J.; Siegel, R.A.; Siepmann, F. Diffusion controlled drug delivery systems. In Fundamentals and Applications of Controlled Release Drug Delivery; Springer: Berlin/Heidelberg, Germany, 2012; pp. 127–152. DOI: https://doi.org/10.1007/978-1-4614-0881-9_6
Siepmann, J.; Siepmann, F. Modeling of diffusion controlled drug delivery. J. Control. Release 2012, 161, 351–362. DOI: https://doi.org/10.1016/j.jconrel.2011.10.006
Srikonda, S.; Kotamraj, P.; Barclay, B. Osmotic controlled drug delivery systems. Des. Control. Release Drug Deliv. Syst. 2006, 1, 203.
Patil, P.B.; Uphade, K.B.; Saudagar, R.B. A review: Osmotic drug delivery system. Pharma Sci. Monit. 2018, 9, 2.
Kumar, P.; Mishra, B. An overview of recent patents on oral osmotic drug delivery systems. Recent Pat. Drug Deliv. Formul. 2007, 1, 236–255. DOI: https://doi.org/10.2174/187221107782331638
Pfizer Laboratories Div Pfizer Inc. Procardia XL. Osmotic Pump. Available online: https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=8ebcb33c-f43b-4b36-9f94-9774b2a59e06
Sudafed Osmotic Pump. Available online: https://www.sudafed.com/products/sudafed-sinus-congestion
Inc., B. Viadur (Leuprolide Acetate Implantable Osmotic Pump). Available online: http://usrf.org/breakingnews/viadur_implant.html
Siepmann, J.; Siepmann, F. Swelling controlled drug delivery systems. In Fundamentals and Applications of Controlled Release Drug Delivery; Springer: Berlin/Heidelberg, Germany, 2012; pp. 153–170. DOI: https://doi.org/10.1007/978-1-4614-0881-9_7
Kopeček, J. Polymer–drug conjugates: Origins, progress to date and future directions. Adv. Drug Deliv. Rev. 2013, 65, 49–59. DOI: https://doi.org/10.1016/j.addr.2012.10.014
Yun, Y.H.; Lee, B.K.; Park, K. Controlled drug delivery: Historical perspective for the next generation. J. Control. Release 2015, 219, 2–7. DOI: https://doi.org/10.1016/j.jconrel.2015.10.005
Guo, M.X. Dissolution Testing: In Vitro Characterization of Oral Controlled Release Dosage Forms; Wiley: Hoboken, NJ, USA, 2010. DOI: https://doi.org/10.1002/9780470640487.ch15
Adeosun, S.O.; Ilomuanya, M.O.; Gbenebor, O.P.; Dada, M.O.; Odili, C.C. Biomaterials for Drug Delivery: Sources, Classification, Synthesis, Processing, and Applications. In Advanced Functional Materials; IntechOpen: London, UK, 2020.
Published
How to Cite
Issue
Section
Copyright (c) 2023 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.