Advancements in macromolecular complexity and their implications for drug delivery systems

https://doi.org/10.53730/ijhs.v2nS1.15093

Authors

  • Ibrahim Abdullah Hamzy KSA, National Guard Health Affairs
  • Abdulelah Ibrahim Alqhoson KSA, National Guard Health Affairs
  • Anas Mohammed Aljarbou KSA, National Guard Health Affairs
  • Mohammed Abdulrahman Alhajri KSA, National Guard Health Affairs

Keywords:

nanomedicine, drug delivery systems, macromolecular complexity, polymeric nanocarriers, controlled radical polymerization, click chemistry

Abstract

Background: Nanomaterials have revolutionized drug delivery systems, offering enhanced efficacy, reduced side effects, and improved patient compliance. Recent advancements in nanomedicine have focused on increasing macromolecular complexity to develop more sophisticated therapeutic options. Aim: This review explores the evolution of nanotherapeutics, from simple linear structures to complex branched and hyperbranched architectures and examines their implications for future drug delivery systems. Methods: The review discusses various nanocarriers, including liposomes, polymeric nanocarriers, and colloidal suspensions, emphasizing the role of macromolecular complexity in improving drug delivery efficacy. Key chemical techniques for synthesizing these macromolecules, such as controlled radical polymerization and click chemistry, are also analyzed. Results: Advances in synthetic polymer chemistry have enabled the development of diverse macromolecular structures that enhance drug loading, stability, and controlled release. Liposomal technology, although highly effective, faces challenges such as drug leakage and immune response, leading to the exploration of synthetic polymers like PLGA and polymeric micelles. These innovations have improved the pharmacokinetic properties of drug delivery systems. Conclusion: Increasing macromolecular complexity in drug delivery systems holds significant potential for overcoming physiological barriers, optimizing therapeutic outcomes, and fulfilling the demand for multifunctional nanomedicine. 

Downloads

Download data is not yet available.

References

Hubbell, J. A. & Langer, R. Translating materials design to the clinic. Nat. Mater. 12, 963–966 (2013). DOI: https://doi.org/10.1038/nmat3788

Duncan, R. & Gaspar, R. Nanomedicines under the microscope. Mol. Pharm. 8, 2101–2141 (2011). DOI: https://doi.org/10.1021/mp200394t

Curry, F.-R. E. Drug delivery: redefining tumour vascular barriers. Nat. Nanotechnol. 11, 494–496 (2016). DOI: https://doi.org/10.1038/nnano.2016.21

Drug Delivery Technology Market by Route of Administration (Oral (Solid), Pulmonary (Nebulizer), Injectable (Device), Ocular (Liquid), Topical (Solid), Implantable (Active), Transmucosal (Oral)), Patient Care Setting (Hospital, ASC) - Global Forecast to 2021 Markets and Marketshttp://www.marketsandmarkets.com/Market-Reports/drug-delivery-technologies-market-1085.html (2015).

Pamies, P. & Stoddart, A. Materials for drug delivery. Nat. Mater. 12, 957 (2013). DOI: https://doi.org/10.1038/nmat3798

Kannan, R. M., Nancy, E., Kannan, S. & Tomalia, D. A. Emerging concepts in dendrimer based nanomedicine: from design principles to clinical applications. J. Intern. Med. 276, 579–617 (2014). DOI: https://doi.org/10.1111/joim.12280

Elsabahy, M., Heo, G. S., Lim, S.-M., Sun, G. & Wooley, K. L. Polymeric nanostructures for imaging and therapy. Chem. Rev. 115, 10967–11011 (2015). DOI: https://doi.org/10.1021/acs.chemrev.5b00135

Cheng, C. J., Tietjen, G. T., Saucier-Sawyer, J. K. & Saltzman, W. M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov. 14, 239–247 (2015). DOI: https://doi.org/10.1038/nrd4503

Zelikin, A. N., Ehrhadrt, C. & Healy, A. M. Materials and methods for delivery of biological drugs. Nat. Chem. 8, 997–1007 (2016). DOI: https://doi.org/10.1038/nchem.2629

Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014). DOI: https://doi.org/10.1038/nrd4363

Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016). DOI: https://doi.org/10.1021/acs.chemrev.5b00346

Tong, R. et al. Smart chemistry in polymeric nanomedicine. Chem. Soc. Rev. 43, 6982–7012 (2014). DOI: https://doi.org/10.1039/C4CS00133H

Maeda, H., Nakamura, H. & Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Delivery Rev. 65, 71–79 (2013). DOI: https://doi.org/10.1016/j.addr.2012.10.002

Zhang, S., Gao, H. & Bao, G. Physical principles of nanoparticle cellular endocytosis. ACS Nano 9, 8655–8671 (2015). DOI: https://doi.org/10.1021/acsnano.5b03184

Pridgen, E. M. et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal Fc receptor for oral delivery. Sci. Transl. Med. 5, 213ra167 (2013). DOI: https://doi.org/10.1126/scitranslmed.3007049

Wu, J. et al. Development of multinuclear polymeric nanoparticles as robust protein nanocarriers. Angew. Chem. Int. Ed. 53, 8975–8979 (2014). DOI: https://doi.org/10.1002/anie.201404766

Clark, A. J. & Davis, M. E. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc. Natl Acad. Sci. USA 112, 12486–12491 (2015). DOI: https://doi.org/10.1073/pnas.1517048112

Kabanov, A. V. & Batrakova, E. V. New technologies for drug delivery across the blood brain barrier. Curr. Pharm. Design 10, 1355–1363 (2004). DOI: https://doi.org/10.2174/1381612043384826

Peppas, N. Historical perspective on advanced drug delivery: how engineering design and mathematical modeling helped the field mature. Adv. Drug Deliv. Rev. 65, 5–9 (2013). DOI: https://doi.org/10.1016/j.addr.2012.09.040

Couvreur, P. Nanoparticles in drug delivery: past, present and future. Adv. Drug Deliv. Rev. 65, 21–23 (2013). DOI: https://doi.org/10.1016/j.addr.2012.04.010

Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F. & Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971–3010 (2012). DOI: https://doi.org/10.1039/c2cs15344k

Gregoriadis, G. The carrier potential of liposomes in biology and medicine. N. Engl. J. Med. 295, 765–770 (1976). DOI: https://doi.org/10.1056/NEJM197609302951406

Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005). DOI: https://doi.org/10.1038/nrd1632

Lasic, D. D. & Papahadjopoulos, D. Liposomes revisited. Science 267, 1275–1276 (1995). DOI: https://doi.org/10.1126/science.7871422

Çağdas¸, M., Sezer, A. D. & Bucak, S. in Applications of Nanotechnology in Drug Delivery Ch. 1 (INTECH, 2014).

Garay, R. P., El-Gewely, R., Armstrong, J. K., Garratty, G. & Richette, P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin. Drug Deliv. 9, 1319–1323 (2012). DOI: https://doi.org/10.1517/17425247.2012.720969

Tung, H. Y. et al. Selective delivery of PEGylated compounds to tumor cells by anti-PEG hybrid antibodies. Mol. Cancer Ther. 14, 1317–1326 (2015). DOI: https://doi.org/10.1158/1535-7163.MCT-15-0151

Knop, K., Hoogenboom, R., Fischer, D. & Schubert, U. S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49, 6288–6308 (2010). DOI: https://doi.org/10.1002/anie.200902672

Samad, A., Sultana, Y. & Aqil, M. Liposomal drug delivery systems: an update review. Curr. Drug Deliv. 4, 297–305 (2007). DOI: https://doi.org/10.2174/156720107782151269

Pattni, B. S., Chupin, V. V. & Torchilin, V. P. New developments in liposomal drug delivery. Chem. Rev. 115, 10938–10966 (2015). DOI: https://doi.org/10.1021/acs.chemrev.5b00046

Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013). DOI: https://doi.org/10.1016/j.addr.2012.09.037

Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6 286 (2015). DOI: https://doi.org/10.3389/fphar.2015.00286

Helm, F. & Fricker, G. Liposomal conjugates for drug delivery to the central nervous system. Pharmaceutics 7, 27–42 (2015). DOI: https://doi.org/10.3390/pharmaceutics7020027

Astruc, D. Introduction to nanomedicine. Molecules 21, 1–6 (2016). DOI: https://doi.org/10.3390/molecules21010004

Yang, S., Yuan, W. & Jin, T. Formulating protein therapeutics into particulate forms. Expert Opin. Drug Deliv. 6, 1123–1133 (2009). DOI: https://doi.org/10.1517/17425240903156374

Bogdansky, S. in Biodegradable Polymers as Drug Delivery Systems (eds Chasin, M. & Langer, R. ) 231–259 (Marcel Dekker, 1990).

Elzoghby, A. O., Samy, W. M. & Elgindy, N. A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release 157, 168–182 (2012). DOI: https://doi.org/10.1016/j.jconrel.2011.07.031

Gradishar, W. J. Albumin-bound paclitaxel: a next generation taxane. Expert Opin. Pharmacother. 7, 1041–1053 (2006). DOI: https://doi.org/10.1517/14656566.7.8.1041

Bader, R. A. & Putnam, D. A. Engineering Polymer Systems for Improved Drug Delivery (Wiley, 2014). DOI: https://doi.org/10.1002/9781118747896

Traverso, G. & Langer, R. Perspective: special delivery for the gut. Nature 519, S19 (2015). DOI: https://doi.org/10.1038/519S19a

Wong, P. T. & Choi, S. K. Mechanisms of drug release in nanotherapeutic delivery systems. Chem. Rev. 115, 3388–3432 (2015). DOI: https://doi.org/10.1021/cr5004634

Elsabahy, M. & Wooley, K. Data mining as a guide for the construction of cross-linked nanoparticles with low immunotoxicity via control of polymer chemistry and supramolecular assembly. Acc. Chem. Res. 48, 1620–1630 (2015). DOI: https://doi.org/10.1021/acs.accounts.5b00066

Delplace, V. & Nicolas, J. Degradable vinyl polymers for biomedical applications. Nat. Chem. 7, 771–784 (2015). DOI: https://doi.org/10.1038/nchem.2343

Salvador-Morales, C., Zhang, L., Langer, R. & Farokhzad, O. C. Immunocompatibility properties of lipid–polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 30, 2231–2240 (2009). DOI: https://doi.org/10.1016/j.biomaterials.2009.01.005

Langer, R. S. & Peppas, N. A. Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 2, 201–214 (1981). DOI: https://doi.org/10.1016/0142-9612(81)90059-4

Langer, R. Drug delivery and targeting. Nature 392, 5–10 (1998). DOI: https://doi.org/10.1038/32020

Sinha, V. R., Khosla, L. Bioadsorbable polymers for implantable therapeutic systems. Drug Dev. Ind. Pharm. 24, 1129–1138 (1998). DOI: https://doi.org/10.3109/03639049809108572

Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 6, 688–701 (2006). DOI: https://doi.org/10.1038/nrc1958

Peppas, N. A. in Smart Polymers: Applications in Biotechnology and Biomedicine 2nd edn (eds Galaev, I. M. & Mattiasson, B. ) (CRC, 2008).

Liechty, W. B., Kryscio, D. R., Slaughter, B. V. & Peppas, N. A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 1, 149–173 (2010). DOI: https://doi.org/10.1146/annurev-chembioeng-073009-100847

Duncan, R. & Vicent, M. J. Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv. Drug Deliv. Rev. 65, 60–70 (2013). DOI: https://doi.org/10.1016/j.addr.2012.08.012

Kurniasih, I. N., Keilitz, J. & Haag, R. Dendritic nanocarriers based on hyperbranched polymers. Chem. Soc. Rev. 44, 4145–4164 (2015). DOI: https://doi.org/10.1039/C4CS00333K

Sharma, A. & Kakkar, A. Designing dendrimers and miktoarm polymer based multi-tasking nanocarriers for efficient medical therapy. Molecules 20, 16987–17015 (2015). DOI: https://doi.org/10.3390/molecules200916987

Tong, R. & Langer, R. Nanomedicines targeting the tumor environment. Cancer J. 21, 314–321 (2015). DOI: https://doi.org/10.1097/PPO.0000000000000123

Epps, T. H. III, O’Reilly, R. K. Block copolymers: controlling nanostructure to generate functional materials – synthesis, characterization, and engineering. Chem. Sci. 7, 1674–1689 (2016). DOI: https://doi.org/10.1039/C5SC03505H

Schluter, D. A., Hawker, C. & Sakamoto, J. (eds) Synthesis of Polymers: New Structures & Methods (Wiley, 2012).

Theato, P. & Klok, H.-A. (eds) Functional Polymers by Post-Polymerization Modification: Concepts, Guidelines and Applications (Wiley, 2012). DOI: https://doi.org/10.1002/9783527655427

Du, Y., Chen, W., Zheng, M., Meng, F. & Zhong, Z. pH-Sensitive degradable chimaeric polymersomes for the intracellular release of doxorubicin hydrochloride. Biomaterials 33, 7291–7299 (2012). DOI: https://doi.org/10.1016/j.biomaterials.2012.06.034

Nederberg, F. et al. Simple approach to stabilized micelles employing miktoarm terpolymers and stereocomplexes with application in paclitaxel delivery. Biomacromolecules 10, 1460–1468 (2009). DOI: https://doi.org/10.1021/bm900056g

Franc, G. & Kakkar, A. K. Click methodologies: efficient, simple and greener routes to design dendrimers. Chem. Soc. Rev. 39, 1536–1544 (2010). DOI: https://doi.org/10.1039/b913281n

Chang, W., Wu, D. & Liu, Y. Michael addition polymerization of trifunctional amine and acrylic monomer: a versatile platform for development of biomaterials. Biomacromolecules 17, 3115–3126 (2016). DOI: https://doi.org/10.1021/acs.biomac.6b01043

Arseneault, M., Wafer, C. & Morin, J.-F. Recent advances in click chemistry applied to dendrimer synthesis. Molecules 20, 9263–9294 (2015). DOI: https://doi.org/10.3390/molecules20059263

Brandl, F. P. & Gregoritza, M. The Diels–Alder reaction: a powerful tool for the design of drug delivery systems and biomaterials. Eur. J. Pharm. Biopharm. 97, 438–453 (2015). DOI: https://doi.org/10.1016/j.ejpb.2015.06.007

Devaraj, N. K. & Weissleder, R. Biomedical applications of tetrazine cycloadditions. Acc. Chem. Res. 44, 816–827 (2011). DOI: https://doi.org/10.1021/ar200037t

Yang, K. S., Budin, G., Reiner, T., Vinegoni, C. & Weissleder, R. Bioorthogonal imaging of aurora kinase A in live cells. Angew. Chem. Int. Ed. 27, 6598–6603 (2012). DOI: https://doi.org/10.1002/anie.201200994

Castonguay, A. et al. Thermosensitive dendrimer formulation for drug delivery at physiologically relevant temperatures. Chem. Commun. 47, 12146–12148 (2011). DOI: https://doi.org/10.1039/c1cc15354d

Killops, K. L., Campos, L. M. & Hawker, C. J. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene “click” chemistry. J. Am. Chem. Soc. 130, 5062–5064 (2008). DOI: https://doi.org/10.1021/ja8006325

Cai, L. et al. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: a synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials 37, 456–468 (2015). DOI: https://doi.org/10.1016/j.biomaterials.2014.10.044

Hunter, A. C. & Moghimi, S. M. Smart polymers in drug delivery: a biological perspective, Polym. Chem.http://dx.doi.org/10.1039/C6PY00676K (2017). DOI: https://doi.org/10.1039/C6PY00676K

Batycky, R. P., Hanes, J., Langer, R. & Edwards, D. A. A theoretical model of erosion and macromolecular drug release from biodegrading microspheres. J. Pharm. Sci. 86, 1464–1477 (1997). DOI: https://doi.org/10.1021/js9604117

Brazel, C. S. & Peppas, N. A. Modeling of drug release from swellable polymers. Eur. J. Pharm. Biopharm. 49, 47–58 (2000). DOI: https://doi.org/10.1016/S0939-6411(99)00058-2

Xu, X. et al. Multifunctional envelope-type siRNA delivery nanoparticle platform for prostate cancer therapy. ACS Nano 11, 2618–2627 (2017). DOI: https://doi.org/10.1021/acsnano.6b07195

Xu, X. et al. Ultra-pH-responsive and tumor-penetrating nanoplatform for targeted siRNA delivery with robust anti-cancer efficacy. Angew. Chem. Int. Ed. 55, 7091–7094 (2016). DOI: https://doi.org/10.1002/anie.201601273

Moghimi, S. M., Hunter, A. C. & Murray, J. C. Long-circulating and target specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 283–318 (2001).

Farokhzad, O. C. & Langer, R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev. 58, 1456–1459 (2006). DOI: https://doi.org/10.1016/j.addr.2006.09.011

Panyam, J. & Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55, 329–347 (2003). DOI: https://doi.org/10.1016/S0169-409X(02)00228-4

Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R. & Rudzinski, W. E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 70, 1–20 (2001). DOI: https://doi.org/10.1016/S0168-3659(00)00339-4

Nair, L. S. & Laurencin, C. T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762–798 (2007). DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.017

Jain, J. P., Chitkara, D. & Kumar, N. Polyanhydrides as localized drug delivery carrier: an update. Expert Opin. Drug Deliv. 5, 889–907 (2008). DOI: https://doi.org/10.1517/17425247.5.8.889

Heller, J. & Barr, J. Poly(ortho esters) — from concept to reality. Biomacromolecules 5, 1625–1632 (2004). DOI: https://doi.org/10.1021/bm040049n

Teasdale, I. & Bruddemann, O. Polyphosphazenes: multifunctional, biodegradable vehicles for drug and gene delivery. Polymers 5, 161–187 (2013). DOI: https://doi.org/10.3390/polym5010161

Zhao, Z., Wang, J., Mao, H. Q. & Leong, K. W. Polyphosphoesters in drug and gene delivery. Adv. Drug Deliv. Rev. 55, 483–499 (2003). DOI: https://doi.org/10.1016/S0169-409X(03)00040-1

Vauthier, C., Dubernet, C., Chauvierre, C., Brigger, I. & Couvreur, P. Drug delivery to resistant tumors: the potential of poly(alkylcyanoacrylate) nanoparticles. J. Control. Release 93, 151–160 (2003). DOI: https://doi.org/10.1016/j.jconrel.2003.08.005

Nicolas, J. & Couvreur, P. Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicine. WIREs Nanomed. Nanobiotechnol. 1, 111–127 (2009). DOI: https://doi.org/10.1002/wnan.15

Siegel, S. J. et al. Effect of drug type on the degradation rate of PLGA matrices. Eur. J. Pharm. Biopharm. 64, 287–293 (2006). DOI: https://doi.org/10.1016/j.ejpb.2006.06.009

Bader, H., Ringsdorf, H. & Schmidt, B. Watersoluble polymers in medicine. Angew. Makromol. Chem. 123, 457–485 (1984). DOI: https://doi.org/10.1002/apmc.1984.051230121

Kataoka, K., Harada, A. & Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47, 113–131 (2001). DOI: https://doi.org/10.1016/S0169-409X(00)00124-1

Nishiyama, N. & Kataoka, K. Current state achievements and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 112, 630–648 (2006). DOI: https://doi.org/10.1016/j.pharmthera.2006.05.006

Kwon, G. S. Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carrier Systems 20, 357–403 (2003). DOI: https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v20.i5.20

Riess, G. Micellization of block-copolymers. Prog. Polym. Sci. 28, 1107–1170 (2003). DOI: https://doi.org/10.1016/S0079-6700(03)00015-7

Matyjaszewski, K. & Müller A. H. E. (eds) Controlled and Living Polymerizations: From Mechanisms to Applications (Wiley, 2009). DOI: https://doi.org/10.1002/9783527629091.ch3

Venkataraman, S. et al. The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev. 63, 1228–1246 (2011). DOI: https://doi.org/10.1016/j.addr.2011.06.016

Zhang, N., Guo, S. R., Li, H. Q., Li, Z. H. & Gu, J. R. Synthesis of three types of amphiphilic poly(ethyleneglycol)-block-poly(sebacic anhydride) copolymers and studies of their micellar solutions. Macromol. Chem. Phys. 207, 1359–1367 (2006). DOI: https://doi.org/10.1002/macp.200600100

Chang, Y. C. & Chu, I. M. Methoxy poly(ethylene glycol)-b-poly(valerolactone) diblock polymeric micelles for enhanced encapsulation and protection of camptothecin. Eur. Pol. J. 44, 3922–3930 (2008). DOI: https://doi.org/10.1016/j.eurpolymj.2008.09.021

Trivedi, R. & Kompella, U. B. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine 5, 484–505 (2010). DOI: https://doi.org/10.2217/nnm.10.10

Yang, X. et al. Interactions between an anticancer drug and polymeric micelles based on biodegradable polyesters. Macromol. Biosci. 8, 1116–1125 (2008). DOI: https://doi.org/10.1002/mabi.200800085

Hoffman, A. S. Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev. 65, 10–16 (2013). DOI: https://doi.org/10.1016/j.addr.2012.11.004

Schattling, P., Jochum, F. D. & Theato, P. Multi-stimuli responsive polymers — the all-in-one talents. Polym. Chem. 5, 25–36 (2014). DOI: https://doi.org/10.1039/C3PY00880K

Jochum, F. D. & Theato, P. Temperature and light-responsive smart polymer materials. Chem. Soc. Rev. 42, 7468–7483 (2013). DOI: https://doi.org/10.1039/C2CS35191A

Sant, V. P., Smith, D. & Leroux, J.-C. Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization. J. Control. Release 97, 310–312 (2004). DOI: https://doi.org/10.1016/j.jconrel.2004.03.026

Kim, S., Kim, Y., Huh, K. M., Acharya, G. & Park, K. Hydrotropic polymer micelles containing acrylic acid moieties for oral delivery of paclitaxel. J. Control. Release 132, 222–229 (2008). DOI: https://doi.org/10.1016/j.jconrel.2008.07.004

Lee, E. S., Na, K. & Bae, Y. H. Super pH sensitive multifunctional polymeric micelle. Nano Lett. 5, 325–329 (2005). DOI: https://doi.org/10.1021/nl0479987

Alexandridis, P., Holzwarth, J. F. & Hatton, T. A. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27, 2414–2425 (1994). DOI: https://doi.org/10.1021/ma00087a009

Published

15-01-2018

How to Cite

Hamzy, I. A., Alqhoson, A. I., Aljarbou, A. M., & Alhajri, M. A. (2018). Advancements in macromolecular complexity and their implications for drug delivery systems. International Journal of Health Sciences, 2(S1), 154–169. https://doi.org/10.53730/ijhs.v2nS1.15093

Issue

Section

Peer Review Articles

Most read articles by the same author(s)