Advancements in macromolecular complexity and their implications for drug delivery systems
Keywords:
nanomedicine, drug delivery systems, macromolecular complexity, polymeric nanocarriers, controlled radical polymerization, click chemistryAbstract
Background: Nanomaterials have revolutionized drug delivery systems, offering enhanced efficacy, reduced side effects, and improved patient compliance. Recent advancements in nanomedicine have focused on increasing macromolecular complexity to develop more sophisticated therapeutic options. Aim: This review explores the evolution of nanotherapeutics, from simple linear structures to complex branched and hyperbranched architectures and examines their implications for future drug delivery systems. Methods: The review discusses various nanocarriers, including liposomes, polymeric nanocarriers, and colloidal suspensions, emphasizing the role of macromolecular complexity in improving drug delivery efficacy. Key chemical techniques for synthesizing these macromolecules, such as controlled radical polymerization and click chemistry, are also analyzed. Results: Advances in synthetic polymer chemistry have enabled the development of diverse macromolecular structures that enhance drug loading, stability, and controlled release. Liposomal technology, although highly effective, faces challenges such as drug leakage and immune response, leading to the exploration of synthetic polymers like PLGA and polymeric micelles. These innovations have improved the pharmacokinetic properties of drug delivery systems. Conclusion: Increasing macromolecular complexity in drug delivery systems holds significant potential for overcoming physiological barriers, optimizing therapeutic outcomes, and fulfilling the demand for multifunctional nanomedicine.
Downloads
References
Hubbell, J. A. & Langer, R. Translating materials design to the clinic. Nat. Mater. 12, 963–966 (2013). DOI: https://doi.org/10.1038/nmat3788
Duncan, R. & Gaspar, R. Nanomedicines under the microscope. Mol. Pharm. 8, 2101–2141 (2011). DOI: https://doi.org/10.1021/mp200394t
Curry, F.-R. E. Drug delivery: redefining tumour vascular barriers. Nat. Nanotechnol. 11, 494–496 (2016). DOI: https://doi.org/10.1038/nnano.2016.21
Drug Delivery Technology Market by Route of Administration (Oral (Solid), Pulmonary (Nebulizer), Injectable (Device), Ocular (Liquid), Topical (Solid), Implantable (Active), Transmucosal (Oral)), Patient Care Setting (Hospital, ASC) - Global Forecast to 2021 Markets and Marketshttp://www.marketsandmarkets.com/Market-Reports/drug-delivery-technologies-market-1085.html (2015).
Pamies, P. & Stoddart, A. Materials for drug delivery. Nat. Mater. 12, 957 (2013). DOI: https://doi.org/10.1038/nmat3798
Kannan, R. M., Nancy, E., Kannan, S. & Tomalia, D. A. Emerging concepts in dendrimer based nanomedicine: from design principles to clinical applications. J. Intern. Med. 276, 579–617 (2014). DOI: https://doi.org/10.1111/joim.12280
Elsabahy, M., Heo, G. S., Lim, S.-M., Sun, G. & Wooley, K. L. Polymeric nanostructures for imaging and therapy. Chem. Rev. 115, 10967–11011 (2015). DOI: https://doi.org/10.1021/acs.chemrev.5b00135
Cheng, C. J., Tietjen, G. T., Saucier-Sawyer, J. K. & Saltzman, W. M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov. 14, 239–247 (2015). DOI: https://doi.org/10.1038/nrd4503
Zelikin, A. N., Ehrhadrt, C. & Healy, A. M. Materials and methods for delivery of biological drugs. Nat. Chem. 8, 997–1007 (2016). DOI: https://doi.org/10.1038/nchem.2629
Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014). DOI: https://doi.org/10.1038/nrd4363
Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016). DOI: https://doi.org/10.1021/acs.chemrev.5b00346
Tong, R. et al. Smart chemistry in polymeric nanomedicine. Chem. Soc. Rev. 43, 6982–7012 (2014). DOI: https://doi.org/10.1039/C4CS00133H
Maeda, H., Nakamura, H. & Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Delivery Rev. 65, 71–79 (2013). DOI: https://doi.org/10.1016/j.addr.2012.10.002
Zhang, S., Gao, H. & Bao, G. Physical principles of nanoparticle cellular endocytosis. ACS Nano 9, 8655–8671 (2015). DOI: https://doi.org/10.1021/acsnano.5b03184
Pridgen, E. M. et al. Transepithelial transport of Fc-targeted nanoparticles by the neonatal Fc receptor for oral delivery. Sci. Transl. Med. 5, 213ra167 (2013). DOI: https://doi.org/10.1126/scitranslmed.3007049
Wu, J. et al. Development of multinuclear polymeric nanoparticles as robust protein nanocarriers. Angew. Chem. Int. Ed. 53, 8975–8979 (2014). DOI: https://doi.org/10.1002/anie.201404766
Clark, A. J. & Davis, M. E. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc. Natl Acad. Sci. USA 112, 12486–12491 (2015). DOI: https://doi.org/10.1073/pnas.1517048112
Kabanov, A. V. & Batrakova, E. V. New technologies for drug delivery across the blood brain barrier. Curr. Pharm. Design 10, 1355–1363 (2004). DOI: https://doi.org/10.2174/1381612043384826
Peppas, N. Historical perspective on advanced drug delivery: how engineering design and mathematical modeling helped the field mature. Adv. Drug Deliv. Rev. 65, 5–9 (2013). DOI: https://doi.org/10.1016/j.addr.2012.09.040
Couvreur, P. Nanoparticles in drug delivery: past, present and future. Adv. Drug Deliv. Rev. 65, 21–23 (2013). DOI: https://doi.org/10.1016/j.addr.2012.04.010
Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F. & Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971–3010 (2012). DOI: https://doi.org/10.1039/c2cs15344k
Gregoriadis, G. The carrier potential of liposomes in biology and medicine. N. Engl. J. Med. 295, 765–770 (1976). DOI: https://doi.org/10.1056/NEJM197609302951406
Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005). DOI: https://doi.org/10.1038/nrd1632
Lasic, D. D. & Papahadjopoulos, D. Liposomes revisited. Science 267, 1275–1276 (1995). DOI: https://doi.org/10.1126/science.7871422
Çağdas¸, M., Sezer, A. D. & Bucak, S. in Applications of Nanotechnology in Drug Delivery Ch. 1 (INTECH, 2014).
Garay, R. P., El-Gewely, R., Armstrong, J. K., Garratty, G. & Richette, P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin. Drug Deliv. 9, 1319–1323 (2012). DOI: https://doi.org/10.1517/17425247.2012.720969
Tung, H. Y. et al. Selective delivery of PEGylated compounds to tumor cells by anti-PEG hybrid antibodies. Mol. Cancer Ther. 14, 1317–1326 (2015). DOI: https://doi.org/10.1158/1535-7163.MCT-15-0151
Knop, K., Hoogenboom, R., Fischer, D. & Schubert, U. S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49, 6288–6308 (2010). DOI: https://doi.org/10.1002/anie.200902672
Samad, A., Sultana, Y. & Aqil, M. Liposomal drug delivery systems: an update review. Curr. Drug Deliv. 4, 297–305 (2007). DOI: https://doi.org/10.2174/156720107782151269
Pattni, B. S., Chupin, V. V. & Torchilin, V. P. New developments in liposomal drug delivery. Chem. Rev. 115, 10938–10966 (2015). DOI: https://doi.org/10.1021/acs.chemrev.5b00046
Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013). DOI: https://doi.org/10.1016/j.addr.2012.09.037
Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6 286 (2015). DOI: https://doi.org/10.3389/fphar.2015.00286
Helm, F. & Fricker, G. Liposomal conjugates for drug delivery to the central nervous system. Pharmaceutics 7, 27–42 (2015). DOI: https://doi.org/10.3390/pharmaceutics7020027
Astruc, D. Introduction to nanomedicine. Molecules 21, 1–6 (2016). DOI: https://doi.org/10.3390/molecules21010004
Yang, S., Yuan, W. & Jin, T. Formulating protein therapeutics into particulate forms. Expert Opin. Drug Deliv. 6, 1123–1133 (2009). DOI: https://doi.org/10.1517/17425240903156374
Bogdansky, S. in Biodegradable Polymers as Drug Delivery Systems (eds Chasin, M. & Langer, R. ) 231–259 (Marcel Dekker, 1990).
Elzoghby, A. O., Samy, W. M. & Elgindy, N. A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release 157, 168–182 (2012). DOI: https://doi.org/10.1016/j.jconrel.2011.07.031
Gradishar, W. J. Albumin-bound paclitaxel: a next generation taxane. Expert Opin. Pharmacother. 7, 1041–1053 (2006). DOI: https://doi.org/10.1517/14656566.7.8.1041
Bader, R. A. & Putnam, D. A. Engineering Polymer Systems for Improved Drug Delivery (Wiley, 2014). DOI: https://doi.org/10.1002/9781118747896
Traverso, G. & Langer, R. Perspective: special delivery for the gut. Nature 519, S19 (2015). DOI: https://doi.org/10.1038/519S19a
Wong, P. T. & Choi, S. K. Mechanisms of drug release in nanotherapeutic delivery systems. Chem. Rev. 115, 3388–3432 (2015). DOI: https://doi.org/10.1021/cr5004634
Elsabahy, M. & Wooley, K. Data mining as a guide for the construction of cross-linked nanoparticles with low immunotoxicity via control of polymer chemistry and supramolecular assembly. Acc. Chem. Res. 48, 1620–1630 (2015). DOI: https://doi.org/10.1021/acs.accounts.5b00066
Delplace, V. & Nicolas, J. Degradable vinyl polymers for biomedical applications. Nat. Chem. 7, 771–784 (2015). DOI: https://doi.org/10.1038/nchem.2343
Salvador-Morales, C., Zhang, L., Langer, R. & Farokhzad, O. C. Immunocompatibility properties of lipid–polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 30, 2231–2240 (2009). DOI: https://doi.org/10.1016/j.biomaterials.2009.01.005
Langer, R. S. & Peppas, N. A. Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 2, 201–214 (1981). DOI: https://doi.org/10.1016/0142-9612(81)90059-4
Langer, R. Drug delivery and targeting. Nature 392, 5–10 (1998). DOI: https://doi.org/10.1038/32020
Sinha, V. R., Khosla, L. Bioadsorbable polymers for implantable therapeutic systems. Drug Dev. Ind. Pharm. 24, 1129–1138 (1998). DOI: https://doi.org/10.3109/03639049809108572
Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 6, 688–701 (2006). DOI: https://doi.org/10.1038/nrc1958
Peppas, N. A. in Smart Polymers: Applications in Biotechnology and Biomedicine 2nd edn (eds Galaev, I. M. & Mattiasson, B. ) (CRC, 2008).
Liechty, W. B., Kryscio, D. R., Slaughter, B. V. & Peppas, N. A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 1, 149–173 (2010). DOI: https://doi.org/10.1146/annurev-chembioeng-073009-100847
Duncan, R. & Vicent, M. J. Polymer therapeutics-prospects for 21st century: the end of the beginning. Adv. Drug Deliv. Rev. 65, 60–70 (2013). DOI: https://doi.org/10.1016/j.addr.2012.08.012
Kurniasih, I. N., Keilitz, J. & Haag, R. Dendritic nanocarriers based on hyperbranched polymers. Chem. Soc. Rev. 44, 4145–4164 (2015). DOI: https://doi.org/10.1039/C4CS00333K
Sharma, A. & Kakkar, A. Designing dendrimers and miktoarm polymer based multi-tasking nanocarriers for efficient medical therapy. Molecules 20, 16987–17015 (2015). DOI: https://doi.org/10.3390/molecules200916987
Tong, R. & Langer, R. Nanomedicines targeting the tumor environment. Cancer J. 21, 314–321 (2015). DOI: https://doi.org/10.1097/PPO.0000000000000123
Epps, T. H. III, O’Reilly, R. K. Block copolymers: controlling nanostructure to generate functional materials – synthesis, characterization, and engineering. Chem. Sci. 7, 1674–1689 (2016). DOI: https://doi.org/10.1039/C5SC03505H
Schluter, D. A., Hawker, C. & Sakamoto, J. (eds) Synthesis of Polymers: New Structures & Methods (Wiley, 2012).
Theato, P. & Klok, H.-A. (eds) Functional Polymers by Post-Polymerization Modification: Concepts, Guidelines and Applications (Wiley, 2012). DOI: https://doi.org/10.1002/9783527655427
Du, Y., Chen, W., Zheng, M., Meng, F. & Zhong, Z. pH-Sensitive degradable chimaeric polymersomes for the intracellular release of doxorubicin hydrochloride. Biomaterials 33, 7291–7299 (2012). DOI: https://doi.org/10.1016/j.biomaterials.2012.06.034
Nederberg, F. et al. Simple approach to stabilized micelles employing miktoarm terpolymers and stereocomplexes with application in paclitaxel delivery. Biomacromolecules 10, 1460–1468 (2009). DOI: https://doi.org/10.1021/bm900056g
Franc, G. & Kakkar, A. K. Click methodologies: efficient, simple and greener routes to design dendrimers. Chem. Soc. Rev. 39, 1536–1544 (2010). DOI: https://doi.org/10.1039/b913281n
Chang, W., Wu, D. & Liu, Y. Michael addition polymerization of trifunctional amine and acrylic monomer: a versatile platform for development of biomaterials. Biomacromolecules 17, 3115–3126 (2016). DOI: https://doi.org/10.1021/acs.biomac.6b01043
Arseneault, M., Wafer, C. & Morin, J.-F. Recent advances in click chemistry applied to dendrimer synthesis. Molecules 20, 9263–9294 (2015). DOI: https://doi.org/10.3390/molecules20059263
Brandl, F. P. & Gregoritza, M. The Diels–Alder reaction: a powerful tool for the design of drug delivery systems and biomaterials. Eur. J. Pharm. Biopharm. 97, 438–453 (2015). DOI: https://doi.org/10.1016/j.ejpb.2015.06.007
Devaraj, N. K. & Weissleder, R. Biomedical applications of tetrazine cycloadditions. Acc. Chem. Res. 44, 816–827 (2011). DOI: https://doi.org/10.1021/ar200037t
Yang, K. S., Budin, G., Reiner, T., Vinegoni, C. & Weissleder, R. Bioorthogonal imaging of aurora kinase A in live cells. Angew. Chem. Int. Ed. 27, 6598–6603 (2012). DOI: https://doi.org/10.1002/anie.201200994
Castonguay, A. et al. Thermosensitive dendrimer formulation for drug delivery at physiologically relevant temperatures. Chem. Commun. 47, 12146–12148 (2011). DOI: https://doi.org/10.1039/c1cc15354d
Killops, K. L., Campos, L. M. & Hawker, C. J. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene “click” chemistry. J. Am. Chem. Soc. 130, 5062–5064 (2008). DOI: https://doi.org/10.1021/ja8006325
Cai, L. et al. Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: a synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials 37, 456–468 (2015). DOI: https://doi.org/10.1016/j.biomaterials.2014.10.044
Hunter, A. C. & Moghimi, S. M. Smart polymers in drug delivery: a biological perspective, Polym. Chem.http://dx.doi.org/10.1039/C6PY00676K (2017). DOI: https://doi.org/10.1039/C6PY00676K
Batycky, R. P., Hanes, J., Langer, R. & Edwards, D. A. A theoretical model of erosion and macromolecular drug release from biodegrading microspheres. J. Pharm. Sci. 86, 1464–1477 (1997). DOI: https://doi.org/10.1021/js9604117
Brazel, C. S. & Peppas, N. A. Modeling of drug release from swellable polymers. Eur. J. Pharm. Biopharm. 49, 47–58 (2000). DOI: https://doi.org/10.1016/S0939-6411(99)00058-2
Xu, X. et al. Multifunctional envelope-type siRNA delivery nanoparticle platform for prostate cancer therapy. ACS Nano 11, 2618–2627 (2017). DOI: https://doi.org/10.1021/acsnano.6b07195
Xu, X. et al. Ultra-pH-responsive and tumor-penetrating nanoplatform for targeted siRNA delivery with robust anti-cancer efficacy. Angew. Chem. Int. Ed. 55, 7091–7094 (2016). DOI: https://doi.org/10.1002/anie.201601273
Moghimi, S. M., Hunter, A. C. & Murray, J. C. Long-circulating and target specific nanoparticles: theory to practice. Pharmacol. Rev. 53, 283–318 (2001).
Farokhzad, O. C. & Langer, R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev. 58, 1456–1459 (2006). DOI: https://doi.org/10.1016/j.addr.2006.09.011
Panyam, J. & Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55, 329–347 (2003). DOI: https://doi.org/10.1016/S0169-409X(02)00228-4
Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R. & Rudzinski, W. E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 70, 1–20 (2001). DOI: https://doi.org/10.1016/S0168-3659(00)00339-4
Nair, L. S. & Laurencin, C. T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762–798 (2007). DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.017
Jain, J. P., Chitkara, D. & Kumar, N. Polyanhydrides as localized drug delivery carrier: an update. Expert Opin. Drug Deliv. 5, 889–907 (2008). DOI: https://doi.org/10.1517/17425247.5.8.889
Heller, J. & Barr, J. Poly(ortho esters) — from concept to reality. Biomacromolecules 5, 1625–1632 (2004). DOI: https://doi.org/10.1021/bm040049n
Teasdale, I. & Bruddemann, O. Polyphosphazenes: multifunctional, biodegradable vehicles for drug and gene delivery. Polymers 5, 161–187 (2013). DOI: https://doi.org/10.3390/polym5010161
Zhao, Z., Wang, J., Mao, H. Q. & Leong, K. W. Polyphosphoesters in drug and gene delivery. Adv. Drug Deliv. Rev. 55, 483–499 (2003). DOI: https://doi.org/10.1016/S0169-409X(03)00040-1
Vauthier, C., Dubernet, C., Chauvierre, C., Brigger, I. & Couvreur, P. Drug delivery to resistant tumors: the potential of poly(alkylcyanoacrylate) nanoparticles. J. Control. Release 93, 151–160 (2003). DOI: https://doi.org/10.1016/j.jconrel.2003.08.005
Nicolas, J. & Couvreur, P. Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicine. WIREs Nanomed. Nanobiotechnol. 1, 111–127 (2009). DOI: https://doi.org/10.1002/wnan.15
Siegel, S. J. et al. Effect of drug type on the degradation rate of PLGA matrices. Eur. J. Pharm. Biopharm. 64, 287–293 (2006). DOI: https://doi.org/10.1016/j.ejpb.2006.06.009
Bader, H., Ringsdorf, H. & Schmidt, B. Watersoluble polymers in medicine. Angew. Makromol. Chem. 123, 457–485 (1984). DOI: https://doi.org/10.1002/apmc.1984.051230121
Kataoka, K., Harada, A. & Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47, 113–131 (2001). DOI: https://doi.org/10.1016/S0169-409X(00)00124-1
Nishiyama, N. & Kataoka, K. Current state achievements and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 112, 630–648 (2006). DOI: https://doi.org/10.1016/j.pharmthera.2006.05.006
Kwon, G. S. Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Ther. Drug Carrier Systems 20, 357–403 (2003). DOI: https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v20.i5.20
Riess, G. Micellization of block-copolymers. Prog. Polym. Sci. 28, 1107–1170 (2003). DOI: https://doi.org/10.1016/S0079-6700(03)00015-7
Matyjaszewski, K. & Müller A. H. E. (eds) Controlled and Living Polymerizations: From Mechanisms to Applications (Wiley, 2009). DOI: https://doi.org/10.1002/9783527629091.ch3
Venkataraman, S. et al. The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev. 63, 1228–1246 (2011). DOI: https://doi.org/10.1016/j.addr.2011.06.016
Zhang, N., Guo, S. R., Li, H. Q., Li, Z. H. & Gu, J. R. Synthesis of three types of amphiphilic poly(ethyleneglycol)-block-poly(sebacic anhydride) copolymers and studies of their micellar solutions. Macromol. Chem. Phys. 207, 1359–1367 (2006). DOI: https://doi.org/10.1002/macp.200600100
Chang, Y. C. & Chu, I. M. Methoxy poly(ethylene glycol)-b-poly(valerolactone) diblock polymeric micelles for enhanced encapsulation and protection of camptothecin. Eur. Pol. J. 44, 3922–3930 (2008). DOI: https://doi.org/10.1016/j.eurpolymj.2008.09.021
Trivedi, R. & Kompella, U. B. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine 5, 484–505 (2010). DOI: https://doi.org/10.2217/nnm.10.10
Yang, X. et al. Interactions between an anticancer drug and polymeric micelles based on biodegradable polyesters. Macromol. Biosci. 8, 1116–1125 (2008). DOI: https://doi.org/10.1002/mabi.200800085
Hoffman, A. S. Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev. 65, 10–16 (2013). DOI: https://doi.org/10.1016/j.addr.2012.11.004
Schattling, P., Jochum, F. D. & Theato, P. Multi-stimuli responsive polymers — the all-in-one talents. Polym. Chem. 5, 25–36 (2014). DOI: https://doi.org/10.1039/C3PY00880K
Jochum, F. D. & Theato, P. Temperature and light-responsive smart polymer materials. Chem. Soc. Rev. 42, 7468–7483 (2013). DOI: https://doi.org/10.1039/C2CS35191A
Sant, V. P., Smith, D. & Leroux, J.-C. Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization. J. Control. Release 97, 310–312 (2004). DOI: https://doi.org/10.1016/j.jconrel.2004.03.026
Kim, S., Kim, Y., Huh, K. M., Acharya, G. & Park, K. Hydrotropic polymer micelles containing acrylic acid moieties for oral delivery of paclitaxel. J. Control. Release 132, 222–229 (2008). DOI: https://doi.org/10.1016/j.jconrel.2008.07.004
Lee, E. S., Na, K. & Bae, Y. H. Super pH sensitive multifunctional polymeric micelle. Nano Lett. 5, 325–329 (2005). DOI: https://doi.org/10.1021/nl0479987
Alexandridis, P., Holzwarth, J. F. & Hatton, T. A. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27, 2414–2425 (1994). DOI: https://doi.org/10.1021/ma00087a009
Published
How to Cite
Issue
Section
Copyright (c) 2018 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.