Advancements in intelligent drug delivery systems and their clinical applications
Keywords:
Drug Delivery Systems, Nanotechnology, Smart Polymers, Stimuli-Responsive Materials, Clinical Applications, Targeted TherapyAbstract
Background: Intelligent Drug Delivery Systems (DDSs) have revolutionized the way medications are administered, aiming to enhance therapeutic efficacy while minimizing side effects. Conventional DDSs often lead to systemic drug distribution and uncontrolled release, causing undesirable side effects and suboptimal therapeutic outcomes. To address these limitations, advanced controlled DDSs, particularly those leveraging nanotechnology, have been developed to target specific sites with precise regulation. Aim: This review aims to explore the recent advancements in intelligent drug delivery systems, focusing on their design, mechanisms, and clinical applications. It highlights the role of nanotechnology in enhancing the specificity and efficacy of drug delivery through various stimuli-responsive mechanisms. Methods: The review synthesizes findings from recent studies on various smart drug delivery platforms, including nanoparticle-based systems, smart polymers, liposomes, and organic-inorganic hybrids. It evaluates these systems based on their responsiveness to internal stimuli (e.g., pH, redox reactions, enzymes) and external stimuli (e.g., temperature, light, magnetic fields), and their clinical applicability. Results: The review identifies several innovative DDSs that employ stimuli-responsive materials to control drug release. Notable advancements include pH-responsive nanoparticles targeting tumor cells, redox-responsive systems for cancer therapy, and temperature-sensitive liposomes used in hyperthermia.
Downloads
References
Hrubý M, Filippov SK, Štěpánek P. Smart polymers in drug delivery systems on crossroads: Which way deserves following? European Polymer Journal. 2015;65:82–97. [Google Scholar] DOI: https://doi.org/10.1016/j.eurpolymj.2015.01.016
Kopeček J, Yang J. Hydrogels as smart biomaterials. Polymer International. 2007;56:1078–98. [Google Scholar] DOI: https://doi.org/10.1002/pi.2253
Lee BK, Yun YH, Park K. Smart nanoparticles for drug delivery: Boundaries and opportunities. Chemical Engineering Science. 2015;125:158–64. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.ces.2014.06.042
Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T. et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine. 2012;7:1253–71. [PubMed] [Google Scholar] DOI: https://doi.org/10.2217/nnm.12.87
Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Advanced Drug Delivery Reviews. 2013;65:36–48. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.addr.2012.09.037
Couvreur P. Nanoparticles in drug delivery: past, present and future. Advanced Drug Delivery Reviews. 2013;65:21–3. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.addr.2012.04.010
Alvarez-Lorenzo C, Concheiro A. Smart drug delivery systems: from fundamentals to the clinic. Chemical Communications. 2014;50:7743–65. [PubMed] [Google Scholar] DOI: https://doi.org/10.1039/C4CC01429D
Crommelin DJ, Florence AT. Towards more effective advanced drug delivery systems. International Journal of Pharmaceutics. 2013;454:496–511. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.ijpharm.2013.02.020
Holzapfel BM, Reichert JC, Schantz J-T, Gbureck U, Rackwitz L, Nöth U. et al. How smart do biomaterials need to be? A translational science and clinical point of view. Advanced Drug Delivery Reviews. 2013;65:581–603. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.addr.2012.07.009
Grund S, Bauer M, Fischer D. Polymers in drug delivery—state of the art and future trends. Advanced Engineering Materials. 2011;13:B61–B87. [Google Scholar] DOI: https://doi.org/10.1002/adem.201080088
Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C. et al. 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Advanced Materials. 2014;26:85–124. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/adma.201303233
Chang H-I, Yeh M-K. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. International Journal of Nanomedicine. 2012;7:49–60. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.2147/IJN.S26766
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces. 2010;75:1–18. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.colsurfb.2009.09.001
Rossi F, Ferrari R, Castiglione F, Mele A, Perale G, Moscatelli D. Polymer hydrogel functionalized with biodegradable nanoparticles as composite system for controlled drug delivery. Nanotechnology. 2014;26:015602. [PubMed] [Google Scholar] DOI: https://doi.org/10.1088/0957-4484/26/1/015602
Shimoni O, Postma A, Yan Y, Scott AM, Heath JK, Nice EC. et al. Macromolecule functionalization of disulfide-bonded polymer hydrogel capsules and cancer cell targeting. ACS Nano. 2012;6:1463–72. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/nn204319b
Stumpel JE, Gil ER, Spoelstra AB, Bastiaansen CW, Broer DJ, Schenning AP. Stimuli-Responsive Materials Based on Interpenetrating Polymer Liquid Crystal Hydrogels. Advanced Functional Materials. 2015;25:3314–20. [Google Scholar] DOI: https://doi.org/10.1002/adfm.201500745
Tanaka T. Collapse of gels and the critical endpoint. Physical Review Letters. 1978;40:820. [Google Scholar] DOI: https://doi.org/10.1103/PhysRevLett.40.820
Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science. 1978;202:1290–3. [PubMed] [Google Scholar] DOI: https://doi.org/10.1126/science.364652
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature Materials. 2013;12:991–1003. [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/nmat3776
Kelley EG, Albert JN, Sullivan MO, Epps III TH. Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chemical Society Reviews. 2013;42:7057–71. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1039/c3cs35512h
Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A. et al. pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnology Advances. 2014;32:693–710. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biotechadv.2013.11.009
Ganesh VA, Baji A, Ramakrishna S. Smart functional polymers-a new route towards creating a sustainable environment. RSC Advances. 2014;4:53352–64. [Google Scholar] DOI: https://doi.org/10.1039/C4RA10631H
Gao W, Chan JM, Farokhzad OC. pH-responsive nanoparticles for drug delivery. Molecular Pharmaceutics. 2010;7:1913–20. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/mp100253e
Yu P, Yu H, Guo C, Cui Z, Chen X, Yin Q. et al. Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomaterialia. 2015;14:115–24. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.actbio.2014.12.001
Subudhi MB, Jain A, Jain A, Hurkat P, Shilpi S, Gulbake A. et al. Eudragit S100 coated citrus pectin nanoparticles for colon targeting of 5-Fluorouracil. Materials. 2015;8:832–49. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.3390/ma8030832
Stubbs M, McSheehy PM, Griffiths JR, Bashford CL. Causes and consequences of tumour acidity and implications for treatment. Molecular Medicine Today. 2000;6:15–9. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/S1357-4310(99)01615-9
Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nature Reviews Drug Discovery. 2011;10:767–77. [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/nrd3554
Lee ES, Oh KT, Kim D, Youn YS, Bae YH. Tumor pH-responsive flower-like micelles of poly (L-lactic acid)-b-poly (ethylene glycol)-b-poly (L-histidine) Journal of Controlled Release. 2007;123:19–26. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2007.08.006
Cheng R, Meng F, Deng C, Klok H-A, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34:3647–57. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biomaterials.2013.01.084
Pan Y-J, Chen Y-Y, Wang D-R, Wei C, Guo J, Lu D-R. et al. Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials. 2012;33:6570–9. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biomaterials.2012.05.062
Chen W, Zhong P, Meng F, Cheng R, Deng C, Feijen J. et al. Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. Journal of Controlled Release. 2013;169:171–9. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2013.01.001
Huo M, Yuan J, Tao L, Wei Y. Redox-responsive polymers for drug delivery: from molecular design to applications. Polymer Chemistry. 2014;5:1519–28. [Google Scholar] DOI: https://doi.org/10.1039/C3PY01192E
Wang J, Sun X, Mao W, Sun W, Tang J, Sui M. et al. Tumor Redox Heterogeneity-Responsive Prodrug Nanocapsules for Cancer Chemotherapy. Advanced Materials. 2013;25:3670–6. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/adma.201300929
Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews Drug Discovery. 2014;13:813–27. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/nrd4333
Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N. Orally delivered thioketal nanoparticles loaded with TNF-α-siRNA target inflammation and inhibit gene expression in the intestines. Nature Materials. 2010;9:923–8. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/nmat2859
Nguyen MM, Carlini AS, Chien MP, Sonnenberg S, Luo C, Braden RL. et al. Enzyme-Responsive Nanoparticles for Targeted Accumulation and Prolonged Retention in Heart Tissue after Myocardial Infarction. Advanced Materials. 2015;27:5547–52. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/adma.201502003
Callmann CE, Barback CV, Thompson MP, Hall DJ, Mattrey RF, Gianneschi NC. Therapeutic Enzyme-Responsive Nanoparticles for Targeted Delivery and Accumulation in Tumors. Advanced Materials. 2015;27:4611–5. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/adma.201501803
De La Rica R, Aili D, Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics. Advanced Drug Delivery Reviews. 2012;64:967–78. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.addr.2012.01.002
[39] Lock LL, Tang Z, Keith D, Reyes C, Cui H. Enzyme-Specific Doxorubicin Drug Beacon as Drug-Resistant Theranostic Molecular Probes. ACS Macro Letters. 2015;4:552–5. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/acsmacrolett.5b00170
Shi Y, van den Dungen ET, Klumperman B, van Nostrum CF, Hennink WE. Reversible Addition-Fragmentation Chain Transfer Synthesis of a Micelle-Forming, Structure Reversible Thermosensitive Diblock Copolymer Based on the N-(2-Hydroxy propyl) Methacrylamide Backbone. ACS Macro Letters. 2013;2:403–8. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/mz300662b
Shi Y, van Steenbergen MJ, Teunissen EA, Novo Ls, Gradmann S, Baldus M. et al. Π-Π stacking increases the stability and loading capacity of thermosensitive polymeric micelles for chemotherapeutic drugs. Biomacromolecules. 2013;14:1826–37. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/bm400234c
Shi Y, Cardoso RM, Van Nostrum CF, Hennink WE. Anthracene functionalized thermosensitive and UV-crosslinkable polymeric micelles. Polymer Chemistry. 2015;6:2048–53. [Google Scholar] DOI: https://doi.org/10.1039/C4PY01759E
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release. 2010;148:135–46. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2010.08.027
Adelsberger J, Kulkarni A, Jain A, Wang W, Bivigou-Koumba AM, Busch P. et al. Thermoresponsive PS-b-PNIPAM-b-PS micelles: aggregation behavior, segmental dynamics, and thermal response. Macromolecules. 2010;43:2490–501. [Google Scholar] DOI: https://doi.org/10.1021/ma902714p
Zhao Y, Fan X, Liu D, Wang Z. PEGylated thermo-sensitive poly (amidoamine) dendritic drug delivery systems. International Journal of Pharmaceutics. 2011;409:229–36. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.ijpharm.2011.02.005
Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Accounts of Chemical Research. 2008;41:1842–51. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/ar800150g
Sun J, Zhang Y, Chen Z, Zhou J, Gu N. Fibrous Aggregation of Magnetite Nanoparticles Induced by a Time-Varied Magnetic Field. Angewandte Chemie International Edition. 2007;46:4767–70. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/anie.200604474
Liu J, Zhang Y, Wang C, Xu R, Chen Z, Gu N. Magnetically sensitive alginate-templated polyelectrolyte multilayer microcapsules for controlled release of doxorubicin. The Journal of Physical Chemistry C. 2010;114:7673–9. [Google Scholar] DOI: https://doi.org/10.1021/jp911933b
Chen Z, Yin J-J, Zhou Y-T, Zhang Y, Song L, Song M. et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. Acs Nano. 2012;6:4001–12. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/nn300291r
Fang K, Song L, Gu Z, Yang F, Zhang Y, Gu N. Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. Colloids and Surfaces B: Biointerfaces. 2015;136:712–20. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.colsurfb.2015.10.014
Yang F, Zhang X, Song L, Cui H, Myers JN, Bai T. et al. Controlled Drug Release and Hydrolysis Mechanism of Polymer-Magnetic Nanoparticle Composite. ACS Applied Materials & Interfaces. 2015;7:9410–9. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/acsami.5b02210
Hu K, Sun J, Guo Z, Wang P, Chen Q, Ma M. et al. A novel magnetic hydrogel with aligned magnetic colloidal assemblies showing controllable enhancement of magnetothermal effect in the presence of alternating magnetic field. Advanced Materials. 2015;27:2507–14. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/adma.201405757
Wang F, Kim D-K, Yoshitake T, Johansson S, Bjelke B, Muhammed M. et al. Diffusion and clearance of superparamagnetic iron oxide nanoparticles infused into the rat striatum studied by MRI and histochemical techniques. Nanotechnology. 2010;22:015103. [PubMed] [Google Scholar] DOI: https://doi.org/10.1088/0957-4484/22/1/015103
Yue-Jian C, Juan T, Fei X, Jia-Bi Z, Ning G, Yi-Hua Z. et al. Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Development and Industrial Pharmacy. 2010;36:1235–44. [PubMed] [Google Scholar] DOI: https://doi.org/10.3109/03639041003710151
Xie J, Zhang Y, Yan C, Song L, Wen S, Zang F. et al. High-performance PEGylated Mn-Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Biomaterials. 2014;35:9126–36. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biomaterials.2014.07.019
Xiong F, Chen Y, Chen J, Yang B, Zhang Y, Gao H. et al. Rubik-like magnetic nanoassemblies as an efficient drug multifunctional carrier for cancer theranostics. Journal of Controlled Release. 2013;172:993–1001. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2013.09.023
Song L, Zang F, Song M, Chen G, Zhang Y. Effective PEGylation of Fe3O4 nanomicelles for in vivo MR imaging. Journal of Nanoscience and Nanotechnology. 2015;15:4111–8. [PubMed] [Google Scholar] DOI: https://doi.org/10.1166/jnn.2015.9803
Liu D, Wu W, Chen X, Wen S, Zhang X, Ding Q. et al. Conjugation of paclitaxel to iron oxide nanoparticles for tumor imaging and therapy. Nanoscale. 2012;4:2306–10. [PubMed] [Google Scholar] DOI: https://doi.org/10.1039/c2nr11918h
Yang H-W, Hua M-Y, Liu H-L, Huang C-Y, Tsai R-Y, Lu Y-J. et al. Self-protecting core-shell magnetic nanoparticles for targeted, traceable, long half-life delivery of BCNU to gliomas. Biomaterials. 2011;32:6523–32. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biomaterials.2011.05.047
Hayashi K, Nakamura M, Sakamoto W, Yogo T, Miki H, Ozaki S. et al. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics. 2013;3:366–76. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.7150/thno.5860
Paris JL, Cabañas MV, Manzano M, Vallet-Regí M. Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound-Responsive Drug Carriers. ACS Nano. 2015;9:11023–33. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/acsnano.5b04378
Guo Q, Zhang T, An J, Wu Z, Zhao Y, Dai X. et al. Block versus Random Amphiphilic Glycopolymer Nanopaticles as Glucose-Responsive Vehicles. Biomacromolecules. 2015;16:3345–56. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/acs.biomac.5b01020
Wu Q, Wang L, Yu H, Wang J, Chen Z. Organization of glucose-responsive systems and their properties. Chemical Reviews. 2011;111:7855–75. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/cr200027j
Gu Z, Aimetti AA, Wang Q, Dang TT, Zhang Y, Veiseh O. et al. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano. 2013;7:4194–201. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/nn400630x
Murdan S. Electro-responsive drug delivery from hydrogels. Journal of Controlled Release. 2003;92:1–17. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/S0168-3659(03)00303-1
Yun J, Im JS, Lee Y-S, Kim H-I. Electro-responsive transdermal drug delivery behavior of PVA/PAA/MWCNT nanofibers. European Polymer Journal. 2011;47:1893–902. [Google Scholar] DOI: https://doi.org/10.1016/j.eurpolymj.2011.07.024
Ying X, Wang Y, Liang J, Yue J, Xu C, Lu L. et al. Angiopep-Conjugated Electro-Responsive Hydrogel Nanoparticles: Therapeutic Potential for Epilepsy. Angewandte Chemie International Edition. 2014;53:12436–40. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/anie.201403846
Curcio M, Spizzirri UG, Cirillo G, Vittorio O, Picci N, Nicoletta FP. et al. On demand delivery of ionic drugs from electro-responsive CNT hybrid films. RSC Advances. 2015;5:44902–11. [Google Scholar] DOI: https://doi.org/10.1039/C5RA05484B
Schmaljohann D. Thermo-and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews. 2006;58:1655–70. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.addr.2006.09.020
Zhang L, Guo R, Yang M, Jiang X, Liu B. Thermo and pH Dual-Responsive Nanoparticles for Anti-Cancer Drug Delivery. Advanced Materials. 2007;19:2988–92. [Google Scholar] DOI: https://doi.org/10.1002/adma.200601817
Zhang Z, Wang J, Chen C. Near-Infrared Light-Mediated Nanoplatforms for Cancer Thermo-Chemotherapy and Optical Imaging. Advanced Materials. 2013;25:3869–80. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/adma.201301890
Jochum FD, Theato P. Thermo-and light responsive micellation of azobenzene containing block copolymers. Chemical Communications. 2010;46:6717–9. [PubMed] [Google Scholar] DOI: https://doi.org/10.1039/c0cc01288b
Yang F, Chen P, He W, Gu N, Zhang X, Fang K. et al. Bubble microreactors triggered by an alternating magnetic field as diagnostic and therapeutic delivery devices. Small. 2010;6:1300–5. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/smll.201000173
Yang F, Hu S, Zhang Y, Cai X, Huang Y, Wang F. et al. A Hydrogen Peroxide-Responsive O2 Nanogenerator for Ultrasound and Magnetic-Resonance Dual Modality Imaging. Advanced Materials. 2012;24:5205–11. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/adma.201202367
Yang F, Zhang M, He W, Chen P, Cai X, Yang L. et al. Controlled release of Fe3O4 nanoparticles in encapsulated microbubbles to tumor cells via sonoporation and associated cellular bioeffects. Small. 2011;7:902–10. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/smll.201002185
Yang F, Li M, Cui H, Wang T, Chen Z, Song L. et al. Altering the response of intracellular reactive oxygen to magnetic nanoparticles using ultrasound and microbubbles. Science China Materials. 2015;58:467–80. [Google Scholar] DOI: https://doi.org/10.1007/s40843-015-0059-9
Cai X, Yang F, Gu N. Applications of magnetic microbubbles for theranostics. Theranostics. 2012;2:103–12. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.7150/thno.3464
Delcea M, Möhwald H, Skirtach AG. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Advanced Drug Delivery Reviews. 2011;63:730–47. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.addr.2011.03.010
Stuart MAC, Huck WT, Genzer J, Müller M, Ober C, Stamm M. et al. Emerging applications of stimuli-responsive polymer materials. Nature Materials. 2010;9:101–13. [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/nmat2614
Gao GH, Li Y, Lee DS. Environmental pH-sensitive polymeric micelles for cancer diagnosis and targeted therapy. Journal of Controlled Release. 2013;169:180–4. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2012.11.012
Du J-Z, Mao C-Q, Yuan Y-Y, Yang X-Z, Wang J. Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy. Biotechnology Advances. 2014;32:789–803. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biotechadv.2013.08.002
Meng F, Zhong Y, Cheng R, Deng C, Zhong Z. pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: concept and recent advances. Nanomedicine. 2014;9:487–99. [PubMed] [Google Scholar] DOI: https://doi.org/10.2217/nnm.13.212
Liu R, Li D, He B, Xu X, Sheng M, Lai Y. et al. Anti-tumor drug delivery of pH-sensitive poly (ethylene glycol)-poly (L-histidine-)-poly (L-lactide) nanoparticles. Journal of Controlled Release. 2011;152:49–56. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2011.02.031
Li H, Li M, Chen C, Fan A, Kong D, Wang Z. et al. On-demand combinational delivery of curcumin and doxorubicin via a pH-labile micellar nanocarrier. International Journal of Pharmaceutics. 2015;495:572–8. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.ijpharm.2015.09.022
Duan X, Xiao J, Yin Q, Zhang Z, Yu H, Mao S. et al. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano. 2013;7:5858–69. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/nn4010796
Shi Y, van Nostrum CF, Hennink WE. Interfacially Hydrazone Cross-linked Thermosensitive Polymeric Micelles for Acid-Triggered Release of Paclitaxel. ACS Biomaterials Science & Engineering. 2015;1:393–404. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/acsbiomaterials.5b00006
Du JZ, Sun TM, Song WJ, Wu J, Wang J. A Tumor-Acidity-Activated Charge-Conversional Nanogel as an Intelligent Vehicle for Promoted Tumoral-Cell Uptake and Drug Delivery. Angewandte Chemie International Edition. 2010;122:3703–8. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/ange.200907210
Du J-Z, Du X-J, Mao C-Q, Wang J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. Journal of the American Chemical Society. 2011;133:17560–3. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/ja207150n
Yuan YY, Mao CQ, Du XJ, Du JZ, Wang F, Wang J. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Advanced Materials. 2012;24:5476–80. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/adma.201202296
Yang X-Z, Du J-Z, Dou S, Mao C-Q, Long H-Y, Wang J. Sheddable ternary nanoparticles for tumor acidity-targeted siRNA delivery. ACS Nano. 2011;6:771–81. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/nn204240b
Yang XZ, Du XJ, Liu Y, Zhu YH, Liu YZ, Li YP. et al. Rational design of polyion complex nanoparticles to overcome cisplatin resistance in cancer therapy. Advanced Materials. 2014;26:931–6. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/adma.201303360
Mo R, Sun Q, Xue J, Li N, Li W, Zhang C. et al. Multistage pH-Responsive Liposomes for Mitochondrial-Targeted Anticancer Drug Delivery. Advanced Materials. 2012;24:3659–65. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/adma.201201498
Ju C, Mo R, Xue J, Zhang L, Zhao Z, Xue L. et al. Sequential intra-intercellular nanoparticle delivery system for deep tumor penetration. Angewandte Chemie International Edition. 2014;53:6253–8. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/anie.201311227
Zhou K, Wang Y, Huang X, Luby-Phelps K, Sumer BD, Gao J. Tunable, Ultrasensitive pH-Responsive Nanoparticles Targeting Specific Endocytic Organelles in Living Cells. Angewandte Chemie International Edition. 2011;50:6109–14. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/anie.201100884
Wang Y, Zhou K, Huang G, Hensley C, Huang X, Ma X. et al. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nature Materials. 2014;13:204–12. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/nmat3819
Sun H, Guo B, Cheng R, Meng F, Liu H, Zhong Z. Biodegradable micelles with sheddable poly (ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials. 2009;30:6358–66. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biomaterials.2009.07.051
Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. Journal of Controlled Release. 2008;126:187–204. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2007.12.017
Son S, Shin E, Kim B-S. Redox-Degradable Biocompatible Hyperbranched Polyglycerols: Synthesis, Copolymerization Kinetics, Degradation, and Biocompatibility. Macromolecules. 2015;48:600–9. [Google Scholar] DOI: https://doi.org/10.1021/ma502242v
Kountouras J, Chatzopoulos D, Zavos C. Reactive oxygen metabolites and upper gastrointestinal diseases. Hepato-gastroenterology. 2000;48:743–51. [PubMed] [Google Scholar]
Wang W, Lin J, Cai C, Lin S. Optical properties of amphiphilic copolymer-based self-assemblies. European Polymer Journal. 2015;65:112–31. [Google Scholar] DOI: https://doi.org/10.1016/j.eurpolymj.2015.01.023
Lovell JF, Liu TW, Chen J, Zheng G. Activatable photosensitizers for imaging and therapy. Chemical Reviews. 2010;110:2839–57. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/cr900236h
Farhadi A, Roxin Á, Wilson BC, Zheng G. Nano-enabled SERS reporting photosensitizers. Theranostics. 2015;5:469. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.7150/thno.10694
Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nature Materials. 2011;10:324–32. [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/nmat2986
Wang F, Banerjee D, Liu Y, Chen X, Liu X. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst. 2010;135:1839–54. [PubMed] [Google Scholar] DOI: https://doi.org/10.1039/c0an00144a
Liu Q, Yin B, Yang T, Yang Y, Shen Z, Yao P. et al. A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet-triplet annihilation. Journal of the American Chemical Society. 2013;135:5029–37. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/ja3104268
Liu T-Y, Hu S-H, Liu D-M, Chen S-Y, Chen I-W. Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today. 2009;4:52–65. [Google Scholar] DOI: https://doi.org/10.1016/j.nantod.2008.10.011
Kim H, Kang YJ, Kang S, Kim KT. Monosaccharide-responsive release of insulin from polymersomes of polyboroxole block copolymers at neutral pH. Journal of the American Chemical Society. 2012;134:4030–3. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/ja211728x
Bonnet V, Gervaise C, Djedaïni-Pilard F, Furlan A, Sarazin C. Cyclodextrin nanoassemblies: a promising tool for drug delivery. Drug Discovery Today. 2015;20:1120–6. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.drudis.2015.05.008
Ryu JH, Hong S, Lee H. Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications: A mini review. Acta Biomaterialia. 2015;27:101–15. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.actbio.2015.08.043
Bangham A, Standish MM, Watkins J. Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology. 1965;13:238–IN27. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/S0022-2836(65)80093-6
Deamer DW. From “Banghasomes” to liposomes: A memoir of Alec Bangham, 1921-2010. The FASEB Journal. 2010;24:1308–10. [PubMed] [Google Scholar] DOI: https://doi.org/10.1096/fj.10-0503
Gregoriadis G, Ryman B. Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochemical Journal. 1971;124:58P. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1042/bj1240058P
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y. et al. Liposome: classification, preparation, and applications. Nanoscale Research Letters. 2013;8:102. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1186/1556-276X-8-102
Torchilin V. Liposomes in drug delivery. Fundamentals and Applications of Controlled Release Drug Delivery: Springer; 2012. p289-328. [Google Scholar] DOI: https://doi.org/10.1007/978-1-4614-0881-9_11
Barenholz YC. Doxil®—the first FDA-approved nano-drug: lessons learned. Journal of Controlled Release. 2012;160:117–34. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2012.03.020
Bibi S, Lattmann E, Mohammed AR, Perrie Y. Trigger release liposome systems: local and remote controlled delivery? Journal of Microencapsulation. 2012;29:262–76. [PubMed] [Google Scholar] DOI: https://doi.org/10.3109/02652048.2011.646330
Sawant RR, Torchilin VP. Liposomes as 'smart'pharmaceutical nanocarriers. Soft Matter. 2010;6:4026–44. [Google Scholar] DOI: https://doi.org/10.1039/b923535n
Park JW. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Research. 2002;4:95. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1186/bcr432
Clemons KV, Stevens DA. Comparative efficacies of four amphotericin B formulations—Fungizone, Amphotec (Amphocil), AmBisome, and Abelcet against systemic murine aspergillosis. Antimicrobial Agents and Chemotherapy. 2004;48:1047–50. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1128/AAC.48.3.1047-1050.2004
Petre CE, Dittmer DP. Liposomal daunorubicin as treatment for Kaposi's sarcoma. International Journal of Nanomedicine. 2007;2:277. [PMC free article] [PubMed] [Google Scholar]
Chamberlain MC. Neurotoxicity of intra-CSF liposomal cytarabine (DepoCyt) administered for the treatment of leptomeningeal metastases: a retrospective case series. Journal of Neuro-oncology. 2012;109:143–8. [PubMed] [Google Scholar] DOI: https://doi.org/10.1007/s11060-012-0880-x
Nicolini A, Giardino R, Carpi A, Ferrari P, Anselmi L, Colosimo S. et al. Metastatic breast cancer: an updating. Biomedicine & Pharmacotherapy. 2006;60:548–56. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biopha.2006.07.086
Barnes LD, Giuliano EA, Ota J. Cellular localization of Visudyne® as a function of time after local injection in an in vivo model of squamous cell carcinoma: an investigation into tumor cell death. Veterinary Ophthalmology. 2010;13:158–65. [PubMed] [Google Scholar] DOI: https://doi.org/10.1111/j.1463-5224.2010.00775.x
Zhang Q, Huang X-E, Gao L-L. A clinical study on the premedication of paclitaxel liposome in the treatment of solid tumors. Biomedicine & Pharmacotherapy. 2009;63:603–7. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biopha.2008.10.001
Silverman JA, Deitcher SR. Marqibo®(vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemotherapy and Pharmacology. 2013;71:555–64. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1007/s00280-012-2042-4
Chen K-J, Chaung E-Y, Wey S-P, Lin K-J, Cheng F, Lin C-C. et al. Hyperthermia-mediated local drug delivery by a bubble-generating liposomal system for tumor-specific chemotherapy. ACS Nano. 2014;8:5105–15. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/nn501162x
Kono K, Ozawa T, Yoshida T, Ozaki F, Ishizaka Y, Maruyama K. et al. Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy. Biomaterials. 2010;31:7096–105. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biomaterials.2010.05.045
Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Döblinger M. et al. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. Journal of Controlled Release. 2010;142:108–21. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2009.10.002
Simões S, Moreira JN, Fonseca C, Düzgüneş N, Pedroso de Lima MC. On the formulation of pH-sensitive liposomes with long circulation times. Advanced Drug Delivery Reviews. 2004;56:947–65. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.addr.2003.10.038
Obata Y, Tajima S, Takeoka S. Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo. Journal of Controlled Release. 2010;142:267–76. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2009.10.023
Chiang Y-T, Lo C-L. pH-responsive polymer-liposomes for intracellular drug delivery and tumor extracellular matrix switched-on targeted cancer therapy. Biomaterials. 2014;35:5414–24. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biomaterials.2014.03.046
Cuomo F, Lopez F, Ceglie A, Maiuro L, Miguel MG, Lindman B. pH-responsive liposome-templated polyelectrolyte nanocapsules. Soft Matter. 2012;8:4415–20. [Google Scholar] DOI: https://doi.org/10.1039/c2sm07388a
[133] Wan Y, Han J, Fan G, Zhang Z, Gong T, Sun X. Enzyme-responsive liposomes modified adenoviral vectors for enhanced tumor cell transduction and reduced immunogenicity. Biomaterials. 2013;34:3020–30. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biomaterials.2012.12.051
Zhu G, Mock JN, Aljuffali I, Cummings BS, Arnold RD. Secretory phospholipase A2 responsive liposomes. Journal of Pharmaceutical Sciences. 2011;100:3146–59. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/jps.22530
Huang S-L. Ultrasound-responsive liposomes. Liposomes: Methods and Protocols, Volume 1: Pharmaceutical Nanocarriers; 2010. pp. 113–28. [PubMed] [Google Scholar] DOI: https://doi.org/10.1007/978-1-60327-360-2_7
Yudina A, De Smet M, Lepetit-Coiffe M, Langereis S, Van Ruijssevelt L, Smirnov P. et al. Ultrasound-mediated intracellular drug delivery using microbubbles and temperature-sensitive liposomes. Journal of Controlled Release. 2011;155:442–8. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2011.06.006
Klibanov AL, Shevchenko TI, Raju BI, Seip R, Chin CT. Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery. Journal of Controlled Release. 2010;148:13–7. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2010.07.115
Paasonen L, Sipilä T, Subrizi A, Laurinmäki P, Butcher SJ, Rappolt M. et al. Gold-embedded photosensitive liposomes for drug delivery: triggering mechanism and intracellular release. Journal of Controlled Release. 2010;147:136–43. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2010.07.095
Leung SJ, Romanowski M. Light-activated content release from liposomes. Theranostics. 2012;2:1020–36. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.7150/thno.4847
Skupin-Mrugalska P, Piskorz J, Goslinski T, Mielcarek J, Konopka K, Düzgüneş N. Current status of liposomal porphyrinoid photosensitizers. Drug Discovery Today. 2013;18:776–84. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.drudis.2013.04.003
Mikhaylov G, Mikac U, Magaeva AA, Itin VI, Naiden EP, Psakhye I. et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nature Nanotechnology. 2011;6:594–602. [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/nnano.2011.112
de Smet M, Heijman E, Langereis S, Hijnen NM, Grüll H. Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. Journal of Controlled Release. 2011;150:102–10. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2010.10.036
de Smet M, Langereis S, van den Bosch S, Grüll H. Temperature-sensitive liposomes for doxorubicin delivery under MRI guidance. Journal of Controlled Release. 2010;143:120–7. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2009.12.002
Sanchez C, Julián B, Belleville P, Popall M. Applications of hybrid organic-inorganic nanocomposites. Journal of Materials Chemistry. 2005;15:3559–92. [Google Scholar] DOI: https://doi.org/10.1039/b509097k
Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews. 2012;41:3679–98. [PubMed] [Google Scholar] DOI: https://doi.org/10.1039/c2cs15308d
Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI. Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews. 2012;41:2590–605. [PubMed] [Google Scholar] DOI: https://doi.org/10.1039/c1cs15246g
Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Advanced Materials. 2012;24:1504–34. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/adma.201104763
Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VSY. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small. 2010;6:1952–67. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/smll.200901789
Kim D, Park S, Lee JH, Jeong YY, Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. Journal of the American Chemical Society. 2007;129:7661–5. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/ja071471p
Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews. 2012;41:2740–79. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1039/C1CS15237H
Mieszawska AJ, Mulder WJ, Fayad ZA, Cormode DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Molecular Pharmaceutics. 2013;10:831–47. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/mp3005885
Sun T-M, Wang Y-C, Wang F, Du J-Z, Mao C-Q, Sun C-Y. et al. Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds. Biomaterials. 2014;35:836–45. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biomaterials.2013.10.011
Wang F, Wang Y-C, Dou S, Xiong M-H, Sun T-M, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. Acs Nano. 2011;5:3679–92. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/nn200007z
Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews. 2012;41:2256–82. [PubMed] [Google Scholar] DOI: https://doi.org/10.1039/C1CS15166E
Wang C, Cheng L, Liu Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials. 2011;32:1110–20. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biomaterials.2010.09.069
Tsang M-K, Bai G, Hao J. Stimuli responsive upconversion luminescence nanomaterials and films for various applications. Chemical Society Reviews. 2015;44:1585–607. [PubMed] [Google Scholar] DOI: https://doi.org/10.1039/C4CS00171K
Amstad E, Kohlbrecher J, Müller E, Schweizer T, Textor M, Reimhult E. Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Letters. 2011;11:1664–70. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/nl2001499
Sailor MJ, Park JH. Hybrid nanoparticles for detection and treatment of cancer. Advanced Materials. 2012;24:3779–802. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/adma.201200653
Hagisawa K, Nishioka T, Suzuki R, Maruyama K, Takase B, Ishihara M. et al. Thrombus-targeted perfluorocarbon-containing liposomal bubbles for enhancement of ultrasonic thrombolysis: in vitro and in vivo study. Journal of Thrombosis and Haemostasis. 2013;11:1565–73. [PubMed] [Google Scholar] DOI: https://doi.org/10.1111/jth.12321
Lu W, Huang Q, Ku G, Wen X, Zhou M, Guzatov D. et al. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials. 2010;31:2617–26. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biomaterials.2009.12.007
Giret S, Wong Chi Man M, Carcel C. Mesoporous-Silica-Functionalized Nanoparticles for Drug Delivery. Chemistry-A European Journal. 2015;21:13850–65. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/chem.201500578
Baek S, Singh RK, Khanal D, Patel KD, Lee E-J, Leong KW. et al. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. Nanoscale. 2015;7:14191–216. [PubMed] [Google Scholar] DOI: https://doi.org/10.1039/C5NR02730F
Patel K, Angelos S, Dichtel WR, Coskun A, Yang Y-W, Zink JI. et al. Enzyme-responsive snap-top covered silica nanocontainers. Journal of the American Chemical Society. 2008;130:2382–3. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/ja0772086
Mondragón L, Mas N, Ferragud V, de la Torre C, Agostini A, Martínez-Máñez R. et al. Enzyme-responsive intracellular-controlled release using silica mesoporous nanoparticles capped with ε-Poly-L-lysine. Chemistry-A European Journal. 2014;20:5271–81. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/chem.201400148
Coll C, Mondragón L, Martínez-Máñez R, Sancenón F, Marcos MD, Soto J. et al. Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie International Edition. 2011;50:2138–40. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/anie.201004133
Bernardos A, Mondragón L, Javakhishvili I, Mas N, de la Torre C, Martínez-Máñez R. et al. Azobenzene Polyesters Used as Gate-Like Scaffolds in Nanoscopic Hybrid Systems. Chemistry-A European Journal. 2012;18:13068–78. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/chem.201200787
Liu H, Liu T, Wu X, Li L, Tan L, Chen D. et al. Targeting gold nanoshells on silica nanorattles: a drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light. Advanced Materials. 2012;24:755–61. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/adma.201103343
Dong W, Li Y, Niu D, Ma Z, Gu J, Chen Y. et al. Facile synthesis of monodisperse superparamagnetic Fe3O4 core@ hybrid@ Au shell nanocomposite for bimodal imaging and photothermal therapy. Advanced Materials. 2011;23:5392–7. [PubMed] [Google Scholar] DOI: https://doi.org/10.1002/adma.201103521
Yeh Y-C, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. 2012;4:1871–80. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1039/C1NR11188D
Kojima C, Hirano Y, Yuba E, Harada A, Kono K. Preparation and characterization of complexes of liposomes with gold nanoparticles. Colloids and Surfaces B: Biointerfaces. 2008;66:246–52. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.colsurfb.2008.06.022
Umeda Y, Kojima C, Harada A, Horinaka H, Kono K. PEG-attached PAMAM dendrimers encapsulating gold nanoparticles: growing gold nanoparticles in the dendrimers for improvement of their photothermal properties. Bioconjugate Chemistry. 2010;21:1559–64. [PubMed] [Google Scholar] DOI: https://doi.org/10.1021/bc1001399
Yang F, Li Y, Chen Z, Zhang Y, Wu J, Gu N. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials. 2009;30:3882–90. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biomaterials.2009.03.051
Yang F, Li M, Liu Y, Wang T, Feng Z, Cui H. et al. Glucose and magnetic-responsive approach toward in situ nitric oxide bubbles controlled generation for hyperglycemia theranostics. Journal of Controlled Release. 2016;228:87–95. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2016.03.002
Sun D, Zhuang X, Zhang S, Deng Z-B, Grizzle W, Miller D. et al. Exosomes are endogenous nanoparticles that can deliver biological information between cells. Advanced Drug Delivery Reviews. 2013;65:342–7. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.addr.2012.07.002
Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. Journal of Controlled Release. 2015;219:396–405. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2015.07.030
van Dommelen SM, Vader P, Lakhal S, Kooijmans S, van Solinge WW, Wood MJ. et al. Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. Journal of Controlled Release. 2012;161:635–44. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2011.11.021
Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2014;1846:75–87. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.bbcan.2014.04.005
Tan A, Rajadas J, Seifalian AM. Exosomes as nano-theranostic delivery platforms for gene therapy. Advanced Drug Delivery Reviews. 2013;65:357–67. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.addr.2012.06.014
Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z. et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy. Journal of Controlled Release. 2015;207:18–30. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2015.03.033
Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ. et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35:2383–90. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.biomaterials.2013.11.083
Chen TS, Arslan F, Yin Y, Tan SS, Lai RC, Choo A. et al. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. Journal of Translational Medicine. 2011;9:1471–82. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1186/1479-5876-9-47
Kopeček J. Smart and genetically engineered biomaterials and drug delivery systems. European Journal of Pharmaceutical Sciences. 2003;20:1–16. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/S0928-0987(03)00164-7
Lavan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nature Biotechnology. 2003;21:1184–91. [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/nbt876
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology. 2015;33:941–51. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/nbt.3330
Lindner LH, Hossann M, Vogeser M, Teichert N, Wachholz K, Eibl H. et al. Dual role of hexadecylphosphocholine (miltefosine) in thermosensitive liposomes: active ingredient and mediator of drug release. Journal of Controlled Release. 2008;125:112–20. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2007.10.009
Shaffer SA, Baker-Lee C, Kennedy J, Lai MS, de Vries P, Buhler K. et al. In vitro and in vivo metabolism of paclitaxel poliglumex: identification of metabolites and active proteases. Cancer Chemotherapy and Pharmacology. 2007;59:537–48. [PubMed] [Google Scholar] DOI: https://doi.org/10.1007/s00280-006-0296-4
Gil PR, Hühn D, Loretta L, Sasse D, Parak WJ. Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharmacological Research. 2010;62:115–25. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.phrs.2010.01.009
Schwartz JA, Shetty AM, Price RE, Stafford RJ, Wang JC, Uthamanthil RK. et al. Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Research. 2009;69:1659–67. [PubMed] [Google Scholar] DOI: https://doi.org/10.1158/0008-5472.CAN-08-2535
[189] Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine: Nanotechnology, Biology and Medicine. 2013;9:1–14. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.nano.2012.05.013
Ferrari M. Frontiers in cancer nanomedicine: directing mass transport through biological barriers. Trends in Biotechnology. 2010;28:181–8. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.tibtech.2009.12.007
Helmus MN. The need for rules and regulations. Nature Nanotechnology. 2007;2:333–4. [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/nnano.2007.165
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. Journal of Controlled Release. 2015;200:138–57. [PubMed] [Google Scholar] DOI: https://doi.org/10.1016/j.jconrel.2014.12.030
Begley CG, Ellis LM. Drug development: Raise standards for preclinical cancer research. Nature. 2012;483:531–3. [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/483531a
Hunter KW. Mouse models of cancer: does the strain matter? Nature Reviews Cancer. 2012;12:144–9. [PMC free article] [PubMed] [Google Scholar] DOI: https://doi.org/10.1038/nrc3206
Teicher BA. Tumor models for efficacy determination. Molecular Cancer Therapeutics. 2006;5:2435–43. [PubMed] [Google Scholar] DOI: https://doi.org/10.1158/1535-7163.MCT-06-0391
Published
How to Cite
Issue
Section
Copyright (c) 2017 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.