A comprehensive review of ophthalmic drug delivery systems for effective antibiotic therapy

https://doi.org/10.53730/ijhs.v3nS1.15094

Authors

  • Ibrahim Abdullah Hamzy KSA, National Guard Health Affairs
  • Abdulelah Ibrahim Alqhoson KSA, National Guard Health Affairs
  • Anas Mohammed Aljarbou KSA, National Guard Health Affairs
  • Mohammed Abdulrahman Alhajri KSA, National Guard Health Affairs

Keywords:

Ophthalmic drug delivery, antibiotic therapy, bioavailability, in situ gels, nanoparticles, eye drops, emulsions

Abstract

Background: Ophthalmic drug delivery presents a unique challenge due to the complexity of ocular anatomy and the barriers to drug absorption. Current ocular formulations struggle with issues such as low bioavailability and rapid drug elimination, necessitating advancements in drug delivery systems to enhance therapeutic efficacy. Aim: This review aims to evaluate various ophthalmic drug delivery systems specifically for antibiotic therapies, addressing their efficacy in overcoming ocular barriers and improving drug retention. Methods: A comprehensive literature review was conducted, focusing on different ophthalmic drug delivery systems including topical formulations (eye drops, ointments, hydrogels, and contact lenses), novel systems (in situ gels, nanoparticles, and emulsions), and advanced techniques like intraocular injections. Key developments and challenges associated with each method were analyzed to assess their impact on drug bioavailability and therapeutic outcomes. Results: Traditional ophthalmic delivery methods, such as eye drops and ointments, are limited by factors such as rapid drug clearance and poor bioavailability. Innovations such as in situ gelling systems, nanoparticles, and emulsions have shown promise in extending drug residence time and enhancing bioavailability. Specifically, nanoparticles offer targeted delivery and prolonged action, while hydrogels and emulsions improve drug solubility and stability. 

Downloads

Download data is not yet available.

References

Gan, L.; Wang, J.; Jiang, M.; Bartlett, H.; Ouyang, D.; Eperjesi, F.; Liu, J.; Gan, Y. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov. Today 2013, 18, 290–297. DOI: https://doi.org/10.1016/j.drudis.2012.10.005

Le Bourlais, C.; Acar, L.; Zia, H.; Sado, P.A.; Needham, T.; Leverge, R. Ophthalmic drug delivery systems—Recent advances. Prog. Retin. Eye Res. 1998, 17, 33–58. DOI: https://doi.org/10.1016/S1350-9462(97)00002-5

Achouri, D.; Alhanout, K.; Piccerelle, P.; Andrieu, V. Recent advances in ocular drug delivery. Drug Dev. Ind. Pharm. 2013, 39, 1599–1617 DOI: https://doi.org/10.3109/03639045.2012.736515

Yellepeddi, V.K.; Palakurthi, S. Recent advances in topical ocular drug delivery. J. Ocul. Pharmacol. Ther. Off. J. Assoc. Ocul. Pharmacol. Ther. 2016, 32, 67–82. DOI: https://doi.org/10.1089/jop.2015.0047

Kalhapure, R.S.; Suleman, N.; Mocktar, C.; Seedat, N.; Govender, T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J. Pharm. Sci. 2015, 104, 872–905. DOI: https://doi.org/10.1002/jps.24298

Sharma, S. Antibiotic resistance in ocular bacterial pathogens. Indian J. Med. Microbiol. 2011, 29, 218–222. DOI: https://doi.org/10.4103/0255-0857.83903

Remington, L.A. Clinical anatomy and physiology of the visual system, 3rd ed.; Elsevier/Butterworth Heinemann: St. Louis, MO, USA, 2012; ISBN 978-1-4377-1926-0.

Rathbone, M.J.; Hadgraft, J.; Roberts, M.S.; Lane, M.E. Modified-release drug delivery technology (Drugs and the pharmaceutical sciences), 2nd ed.; Informa Healthcare: New York, NY, USA, 2008; Volume 2, ISBN 978-1-4200-4435-5

Goel, M.; Picciani, R.G.; Lee, R.K.; Bhattacharya, S.K. Aqueous humor dynamics: A review. Open Ophthalmol. J. 2010, 4, 52–59. DOI: https://doi.org/10.2174/1874364101004010052

Cholkar, K.; Dasari, S.R.; Pal, D.; Mitra, A.K. Eye: anatomy, physiology and barriers to drug delivery. In Ocular Transporters and Receptors; Mitra, A.K., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 1–36. ISBN 978-1-907568-86-2. DOI: https://doi.org/10.1533/9781908818317.1

Occhiutto, M.L.; Freitas, F.R.; Maranhao, R.C.; Costa, V.P. Breakdown of the Blood-Ocular Barrier as a Strategy for the Systemic Use of Nanosystems. Pharmaceutics 2012, 4, 252–275. DOI: https://doi.org/10.3390/pharmaceutics4020252

Cunha-Vaz, J. The blood-ocular barriers. Surv. Ophthalmol. 1979, 23, 279–296. DOI: https://doi.org/10.1016/0039-6257(79)90158-9

Chen, M.-S.; Hou, P.-K.; Tai, T.-Y.; Lin, B.J. Blood-ocular barriers. Tzu Chi Med. J. 2008, 20, 25–34. DOI: https://doi.org/10.1016/S1016-3190(08)60004-X

Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular drug delivery. AAPS J. 2010, 12, 348–360. DOI: https://doi.org/10.1208/s12248-010-9183-3

Patel, A. Ocular drug delivery systems: An overview. World J. Pharmacol. 2013, 2, 47. DOI: https://doi.org/10.5497/wjp.v2.i2.47

Pisella, P.J.; Fillacier, K.; Elena, P.P.; Debbasch, C.; Baudouin, C. Comparison of the effects of preserved and unpreserved formulations of timolol on the ocular surface of albino rabbits. Ophthalmic Res. 2000, 32, 3–8. DOI: https://doi.org/10.1159/000055579

Van der Bijl, P.; van Eyk, A.D.; Meyer, D. Effects of three penetration enhancers on transcorneal permeation of cyclosporine. Cornea 2001, 20, 505–508. DOI: https://doi.org/10.1097/00003226-200107000-00013

Bartlett, J.D.; Jaanus, S.D. Clinical ocular pharmacology; Butterworth-Heinemann: Oxford, United Kingdom, 1989; ISBN 0-409-90058-3.

Bakkour, Y.; Vermeersch, G.; Morcellet, M.; Boschin, F.; Martel, B.; Azaroual, N. Formation of cyclodextrin inclusion complexes with doxycyclin-hyclate: NMR investigation of their characterisation and stability. J. Incl. Phenom. Macrocycl. Chem. 2006, 54, 109–114. DOI: https://doi.org/10.1007/s10847-005-5108-7

Sigurdsson, H.H.; Stefánsson, E.; Gudmundsdóttir, E.; Eysteinsson, T.; Thorsteinsdóttir, M.; Loftsson, T. Cyclodextrin formulation of dorzolamide and its distribution in the eye after topical administration. J. Controlled Release 2005, 102, 255–262. DOI: https://doi.org/10.1016/j.jconrel.2004.10.004

Loftsson, T.; Järvinen, T. Cyclodextrins in ophthalmic drug delivery. Adv. Drug Deliv. Rev. 1999, 36, 59–79. DOI: https://doi.org/10.1016/S0169-409X(98)00055-6

Al-Ghabeish, M.; Xu, X.; Krishnaiah, Y.S.R.; Rahman, Z.; Yang, Y.; Khan, M.A. Influence of drug loading and type of ointment base on the in vitro performance of acyclovir ophthalmic ointment. Int. J. Pharm. 2015, 495, 783–791. DOI: https://doi.org/10.1016/j.ijpharm.2015.08.096

Kirchhof, S.; Goepferich, A.M.; Brandl, F.P. Hydrogels in ophthalmic applications. Eur. J. Pharm. Biopharm. 2015, 95, 227–238. DOI: https://doi.org/10.1016/j.ejpb.2015.05.016

Khare, A.; Grover, K.; Pawar, P.; Singh, I. Mucoadhesive polymers for enhancing retention in ocular drug delivery: A critical review. Rev. Adhes. Adhes. 2014, 2, 467–502. DOI: https://doi.org/10.7569/RAA.2014.097310

Roy, S.; Pal, K.; Anis, A.; Pramanik, K.; Prabhakar, B. Polymers in mucoadhesive drug-delivery systems: A brief note. Des. Monomers Polym. 2009, 12, 483–495. DOI: https://doi.org/10.1163/138577209X12478283327236

Bora, M.; Mundargi, R.C.; Chee, Y.; Wong, T.T.L.; Venkatraman, S.S. 5-Flurouracil microencapsulation and impregnation in hyaluronic acid hydrogel as composite drug delivery system for ocular fibrosis. Cogent Med. 2016, 3. DOI: https://doi.org/10.1080/2331205X.2016.1182108

Lai, J.-Y.; Ma, D.H.-K.; Cheng, H.-Y.; Sun, C.-C.; Huang, S.-J.; Li, Y.-T.; Hsiue, G.-H. Ocular biocompatibility of Carbodiimide cross-linked hyaluronic acid hydrogels for cell sheet delivery carriers. J. Biomater. Sci. Polym. Ed. 2010, 21, 359–376 DOI: https://doi.org/10.1163/156856209X416980

Widjaja, L.K.; Bora, M.; Chan, P.N.P.H.; Lipik, V.; Wong, T.T.L.; Venkatraman, S.S. Hyaluronic acid-based nanocomposite hydrogels for ocular drug delivery applications: Ha-based nanocomposite hydrogels. J. Biomed. Mater. Res. A 2014, 102, 3056–3065. DOI: https://doi.org/10.1002/jbm.a.34976

Rajoria, G.; Gupta, A. In situ Gelling System: A novel approach for ocular drug delivery. Am. J. PharmTech Res. 2012, 2, 25–53

Cao, Y.; Zhang, C.; Shen, W.; Cheng, Z.; Yu, L.; Ping, Q. Poly(N-isopropylacrylamide)–chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J. Controlled Release 2007, 120, 186–194. DOI: https://doi.org/10.1016/j.jconrel.2007.05.009

Al Khateb, K.; Ozhmukhametova, E.K.; Mussin, M.N.; Seilkhanov, S.K.; Rakhypbekov, T.K.; Lau, W.M.; Khutoryanskiy, V.V. In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int. J. Pharm. 2016, 502, 70–79. DOI: https://doi.org/10.1016/j.ijpharm.2016.02.027

Almeida, H.; Amaral, M.H.; Lobão, P.; Lobo, J.M.S. In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discov. Today 2014, 19, 400–412. DOI: https://doi.org/10.1016/j.drudis.2013.10.001

Mane, K.; Dhole, S. In situ gelling system - A novel approach for ocular drug delivery. World J. Pharm. Pharm. Sci. 2014, 3, 317–333.

Gonjari, I.D.; Karmarkar, A.B.; Khade, T.S.; Hosmani, A.H.; Navale, R.B. Use of factorial design in formulation and evaluation of ophthalmic gels of gatifloxacin: Comparison of different mucoadhesive polymers. Drug Discov. Ther. 2010, 4, 423–434.

Buchan, B.; Kay, G.; Heneghan, A.; Matthews, K.H.; Cairns, D. Gel formulations for treatment of the ophthalmic complications in cystinosis. Int. J. Pharm. 2010, 392, 192–197. DOI: https://doi.org/10.1016/j.ijpharm.2010.03.065

Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik EV 2000, 50, 27–46. DOI: https://doi.org/10.1016/S0939-6411(00)00090-4

Jeong, B.; Kim, S.W.; Bae, Y.H. Thermosensitive sol–gel reversible hydrogels. Adv. Drug Deliv. Rev. 2002, 54, 37–51. DOI: https://doi.org/10.1016/S0169-409X(01)00242-3

Almeida, H.; Amaral, M.H.; Lobão, P.; Sousa Lobo, J.M. Applications of poloxamers in ophthalmic pharmaceutical formulations: An overview. Expert Opin. Drug Deliv. 2013, 10, 1223–1237. DOI: https://doi.org/10.1517/17425247.2013.796360

He, Z.; Wang, Z.; Zhang, H.; Pan, X.; Su, W.; Liang, D.; Wu, C. Doxycycline and hydroxypropyl-β-cyclodextrin complex in poloxamer thermal sensitive hydrogel for ophthalmic delivery. Acta Pharm. Sin. B 2011, 1, 254–260. DOI: https://doi.org/10.1016/j.apsb.2011.10.004

Cho, K. Release of ciprofloxacin from poloxamer-graft-hyaluronic acid hydrogels in vitro. Int. J. Pharm. 2003, 260, 83–91. DOI: https://doi.org/10.1016/S0378-5173(03)00259-X

Mayol, L.; Quaglia, F.; Borzacchiello, A.; Ambrosio, L.; Rotonda, M. A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: Rheological, mucoadhesive and in vitro release properties. Eur. J. Pharm. Biopharm. 2008, 70, 199–206. DOI: https://doi.org/10.1016/j.ejpb.2008.04.025

Shastri, D.H.; Prajapati, S.T.; Patel, L.D. Studies on poloxamer based mucoadhesive insitu ophthalmic hydrogel of moxifloxacin HCL. Curr. Drug Deliv. 2010, 3, 238–243 DOI: https://doi.org/10.2174/156720110791560928

Gratieri, T.; Gelfuso, G.M.; Rocha, E.M.; Sarmento, V.H.; de Freitas, O.; Lopez, R.F.V. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur. J. Pharm. Biopharm. 2010, 75, 186–193. DOI: https://doi.org/10.1016/j.ejpb.2010.02.011

Srividya, B.; Cardoza, R.M.; Amin, P. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J. Controlled Release 2001, 73, 205–211 DOI: https://doi.org/10.1016/S0168-3659(01)00279-6

Patil, S.; Kadam, A.; Bandgar, S.; Patil, S. Formulation and evaluation of an in situ gel for ocular drug delivery of anticonjunctival drug. Cellulose Chem. Technol. 2015, 49, 35–40.

Makwana, S.B.; Patel, V.A.; Parmar, S.J. Development and characterization of in situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma Sci. 2016, 6, 1–6 DOI: https://doi.org/10.1016/j.rinphs.2015.06.001

Mandal, S.; Prabhushankar, G.; Thimmasetty, M.; Geetha, M. Formulation and evaluation of an in situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride. Int. J. Pharm. Investig. 2012, 2, 78. DOI: https://doi.org/10.4103/2230-973X.100042

Carlfors, J.; Edsman, K.; Petersson, R.; Jörnving, K. Rheological evaluation of Gelrite® in situ gels for ophthalmic use. Eur. J. Pharm. Sci. 1998, 6, 113–119. DOI: https://doi.org/10.1016/S0928-0987(97)00074-2

Sultana, Y.; Aqil, M.; Ali, A. Ion-Activated, Gelrite®-Based in Situ Ophthalmic Gels of Pefloxacin Mesylate: Comparison with Conventional Eye Drops. Drug Deliv. 2006, 13, 215–219. DOI: https://doi.org/10.1080/10717540500309164

Joshi, A.; Ding, S.; Himmelstein, K.J. Reversible Gelation Compositions and Methods of Use. U.S. Patent 5252318 A, 15 June 1990.

Liu, Y.; Liu, J.; Zhang, X.; Zhang, R.; Huang, Y.; Wu, C. In situ gelling gelrite/alginate formulations as vehicles for ophthalmic drug delivery. AAPS PharmSciTech 2010, 11, 610–620. DOI: https://doi.org/10.1208/s12249-010-9413-0

Fanun, M. Microemulsions as delivery systems. Curr. Opin. Colloid Interface Sci. 2012, 17, 306–313. DOI: https://doi.org/10.1016/j.cocis.2012.06.001

Ghosh, P.K.; Murthy, R.S.R. Microemulsions: A potential drug delivery system. Curr. Drug Deliv. 2006, 3, 167–180. DOI: https://doi.org/10.2174/156720106776359168

Vandamme, T.F. Microemulsions as ocular drug delivery systems: Recent developments and future challenges. Prog. Retin. Eye Res. 2002, 21, 15–34. DOI: https://doi.org/10.1016/S1350-9462(01)00017-9

Tamilvanan, S.; Benita, S. The potential of lipid emulsion for ocular delivery of lipophilic drugs. Eur. J. Pharm. Biopharm. 2004, 58, 357–368. DOI: https://doi.org/10.1016/j.ejpb.2004.03.033

Lallemand, F.; Daull, P.; Benita, S.; Buggage, R.; Garrigue, J.-S. Successfully improving ocular drug delivery using the cationic nanoemulsion, Novasorb. J. Drug Deliv. 2012, 2012, 604204. DOI: https://doi.org/10.1155/2012/604204

Van, A. Eye irritation: studies relating to responses in man and laboratory animals. J. Soc. Cosmet. Chem. Jpn. 1973, 24, 685–692.

Yin, J.; Xiang, C.; Lu, G. Cationic lipid emulsions as potential bioadhesive carriers for ophthalmic delivery of palmatine. J. Microencapsul. 2016, 33, 718–724. DOI: https://doi.org/10.1080/02652048.2016.1248512

Higuchi, T. Ocular Insert. U.S. Patent 3,630,200 A, 28 December 1971.

Kumari, A.; Sharma, P.; Garg, V.; Garg, G. Ocular inserts—Advancement in therapy of eye diseases. J. Adv. Pharm. Technol. Res. 2010, 1, 291. DOI: https://doi.org/10.4103/0110-5558.72419

Ara, T.; Sharma, S.; Bhat, S.A.; Bhandari, A.; Deva, A.S.; Rathore, M.S.; Khan, R.A.; Bhatia, N. Preparation and evaluation of ocular inserts of diclofenac sodium for controlled drug delivery. Int. J. Sci. Res. Publ. 2015, 5, 93–99

Shukr, M. Formulation, in vitro and in vivo evaluation of lidocaine HCl ocular inserts for topical ocular anesthesia. Arch. Pharm. Res. 2014, 37, 882–889. DOI: https://doi.org/10.1007/s12272-013-0317-x

Sampath Kumar, K.P.; Bhowmik, D.; Harish, G.; Duraivel, S.; Pragathi Kumar, B. Ocular inserts: A novel controlled drug delivery system. The Pharm. Innov. 2012, 1, 1–16.

Gurtler, F.; Gurny, R. Patent literature review of ophthalmic inserts. Drug Dev. Ind. Pharm. 1995, 21, 1–18. DOI: https://doi.org/10.3109/03639049509048094

Baranowski, P.; Karolewicz, B.; Gajda, M.; Pluta, J. Ophthalmic drug dosage forms: Characterisation and research methods. Sci. World J. 2014, 2014, 1–14. DOI: https://doi.org/10.1155/2014/861904

Guzman-Aranguez, A.; Colligris, B.; Pintor, J. Contact lenses: promising devices for ocular drug delivery. J. Ocul. Pharmacol. Ther. Off. J. Assoc. Ocul. Pharmacol. Ther. 2013, 29, 189–199. DOI: https://doi.org/10.1089/jop.2012.0212

Stapleton, F.; Stretton, S.; Papas, E.; Skotnitsky, C.; Sweeney, D.F. Silicone hydrogel contact lenses and the ocular surface. Ocul. Surf. 2006, 4, 24–43. DOI: https://doi.org/10.1016/S1542-0124(12)70262-8

Van der Worp, E.; Bornman, D.; Ferreira, D.L.; Faria-Ribeiro, M.; Garcia-Porta, N.; González-Meijome, J.M. Modern scleral contact lenses: A review. Contact Lens Anterior Eye J. Br. Contact Lens Assoc. 2014, 37, 240–250. DOI: https://doi.org/10.1016/j.clae.2014.02.002

Harthan, J.S. Therapeutic use of mini-scleral lenses in a patient with Graves’ ophthalmopathy. J. Optom. 2014, 7, 62–66. DOI: https://doi.org/10.1016/j.optom.2012.11.002

Rathi, V.M.; Dumpati, S.; Mandathara, P.S.; Taneja, M.M.; Sangwan, V.S. Scleral contact lenses in the management of pellucid marginal degeneration. Contact Lens Anterior Eye 2016, 39, 217–220. DOI: https://doi.org/10.1016/j.clae.2015.11.005

Severinsky, B.; Behrman, S.; Frucht-Pery, J.; Solomon, A. Scleral contact lenses for visual rehabilitation after penetrating keratoplasty: Long term outcomes. Contact Lens Anterior Eye 2014, 37, 196–202. DOI: https://doi.org/10.1016/j.clae.2013.11.001

Romero-Rangel, T.; Stavrou, P.; Cotter, J.; Rosenthal, P.; Baltatzis, S.; Foster, C.S. Gas-permeable scleral contact lens therapy in ocular surface disease. Am. J. Ophthalmol. 2000, 130, 25–32. DOI: https://doi.org/10.1016/S0002-9394(00)00378-0

Kramer, E.G.; Boshnick, E.L. Scleral lenses in the treatment of post-LASIK ectasia and superficial neovascularization of intrastromal corneal ring segments. Contact Lens Anterior Eye 2015, 38, 298–303. DOI: https://doi.org/10.1016/j.clae.2015.02.003

Inamoto, Y.; Sun, Y.-C.; Flowers, M.E.D.; Carpenter, P.A.; Martin, P.J.; Li, P.; Wang, R.; Chai, X.; Storer, B.E.; Shen, T.T.; et al. Bandage soft contact lenses for ocular graft-versus-host disease. Biol. Blood Marrow Transplant. 2015, 21, 2002–2007. DOI: https://doi.org/10.1016/j.bbmt.2015.07.013

Glisoni, R.J.; García-Fernández, M.J.; Pino, M.; Gutkind, G.; Moglioni, A.G.; Alvarez-Lorenzo, C.; Concheiro, A.; Sosnik, A. β-Cyclodextrin hydrogels for the ocular release of antibacterial thiosemicarbazones. Carbohydr. Polym. 2013, 93, 449–457. DOI: https://doi.org/10.1016/j.carbpol.2012.12.033

Teixeira, M.; Alonso, M.J.; Pinto, M.M.M.; Barbosa, C.M. Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. Eur. J. Pharm. Biopharm. 2005, 59, 491–500. DOI: https://doi.org/10.1016/j.ejpb.2004.09.002

Diebold, Y.; Calonge, M. Applications of nanoparticles in ophthalmology. Prog. Retin. Eye Res. 2010, 29, 596–609. DOI: https://doi.org/10.1016/j.preteyeres.2010.08.002

Xu, Q.; Kambhampati, S.P.; Kannan, R.M. Nanotechnology approaches for ocular drug delivery. Middle East Afr. J. Ophthalmol. 2013, 20, 26–37. DOI: https://doi.org/10.4103/0974-9233.106384

Mohanraj, V.J.; Chen, Y. Nanoparticles—A review. Trop. J. Pharm. Res. 2006, 5, 561–573. DOI: https://doi.org/10.4314/tjpr.v5i1.14634

Yildirimer, L.; Thanh, N.T.K.; Loizidou, M.; Seifalian, A.M. Toxicology and clinical potential of nanoparticles. Nano Today 2011, 6, 585–607. DOI: https://doi.org/10.1016/j.nantod.2011.10.001

Duxfield, L.; Sultana, R.; Wang, R.; Englebretsen, V.; Deo, S.; Swift, S.; Rupenthal, I.; Al-Kassas, R. Development of gatifloxacin-loaded cationic polymeric nanoparticles for ocular drug delivery. Pharm. Dev. Technol. 2016, 21, 172–179. DOI: https://doi.org/10.3109/10837450.2015.1091839

Mun, E.A.; Morrison, P.W.J.; Williams, A.C.; Khutoryanskiy, V.V. On the barrier properties of the cornea: A microscopy study of the penetration of fluorescently labeled nanoparticles, polymers, and sodium fluorescein. Mol. Pharm. 2014, 11, 3556–3564 DOI: https://doi.org/10.1021/mp500332m

Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965, 13, 238–252 DOI: https://doi.org/10.1016/S0022-2836(65)80093-6

Meisner, D.; Mezei, M. Liposome ocular delivery systems. Adv. Drug Deliv. Rev. 1995, 16, 75–93 DOI: https://doi.org/10.1016/0169-409X(95)00016-Z

Mishra, G.P.; Bagui, M.; Tamboli, V.; Mitra, A.K. Recent applications of liposomes in ophthalmic drug delivery. J. Drug Deliv. 2011, 2011, e863734. DOI: https://doi.org/10.1155/2011/863734

Hathout, R.M.; Mansour, S.; Mortada, N.D.; Guinedi, A.S. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS PharmSciTech 2007, 8, 1. DOI: https://doi.org/10.1208/pt0801001

Khanam, N.; Alam, M.I.; Sachan, A.K.; Sharma, R. Recent trends in drug delivery by niosomes: A review. Research Gate 2013, 1, 115–122

Pham, T.T.; Jaafar-Maalej, C.; Charcosset, C.; Fessi, H. Liposome and niosome preparation using a membrane contactor for scale-up. Colloids Surf. B 2012, 94, 15–21. DOI: https://doi.org/10.1016/j.colsurfb.2011.12.036

Kalomiraki, M.; Thermos, K.; Chaniotakis, N.A. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int. J. Nanomedicine 2015, 11, 1–12. DOI: https://doi.org/10.2147/IJN.S93069

Burçin, Y.; Bozdag Pehlivan, S.; Ünlü, S. Dendrimeric systems and their applications in ocular drug delivery. Sci. World J. 2013, 2013. DOI: https://doi.org/10.1155/2013/732340

Vandamme, T.F.; Brobeck, L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J. Controlled Release 2005, 102, 23–38. DOI: https://doi.org/10.1016/j.jconrel.2004.09.015

Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ. Br. J. Exp. Pathol. 1929, 10, 226–236.

Gualerzi, C.O.; Brandi, L.; Fabbretti, A.; Pon, C.L. (Eds.) Antibiotics: Targets, Mechanisms and Resistance; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; ISBN 978-3-527-65968-5. DOI: https://doi.org/10.1002/9783527659685

Kapoor, A.; Malhotra, R.; Grover, V.; Grover, D. Systemic antibiotic therapy in periodontics. Dent. Res. J. 2012, 9, 505–515. DOI: https://doi.org/10.4103/1735-3327.104866

Cornut, P.-L.; Chiquet, C. Intravitreal injection of antibiotics in endophthalmitis. J. Fr. Ophtalmol. 2008, 31, 815–823. DOI: https://doi.org/10.1016/S0181-5512(08)74405-X

Barza, M. Factors affecting the intraocular penetration of antibiotics. The influence of route, inflammation, animal species and tissue pigmentation. Scand. J. Infect. Dis. Suppl. 1978, 151–159.

Snyder, R.W.; Glasser, D.B. Antibiotic therapy for ocular infection. West. J. Med. 1994, 161, 579–584.

Shimpi, S.; Chauhan, B.; Shimpi, P. Cyclodextrins: application in different routes of drug administration. Acta Pharm. Zagreb Croat. 2005, 55, 139–156.

Tiwari, G.; Tiwari, R.; Rai, A.K. Cyclodextrins in delivery systems: Applications. J. Pharm. Bioallied Sci. 2010, 2, 72. DOI: https://doi.org/10.4103/0975-7406.67003

Nijhawan, R.; Agarwal, S.P. Development of an ophthalmic formulation containing ciprofloxacin-hydroxypropyl-b-cyclodextrin complex. Boll. Chim. Farm. 2003, 142, 214–219.

Bozkir, A.; Denli, Z.F.; Basaran, B. Effect of hydroxypropyl-beta-cyclodextrin on the solubility, stability and in-vitro release of ciprofloxacin for ocular drug delivery. Acta Pol. Pharm. 2012, 69, 719–724.

Thatiparti, T.R.; von Recum, H.A. Cyclodextrin complexation for affinity-based antibiotic delivery. Macromol. Biosci. 2010, 10, 82–90. DOI: https://doi.org/10.1002/mabi.200900204

Pullum, K.W. The unique role of scleral lenses in contact lens practice. Contact Lens Anterior Eye 1999, 22, S26–S34. DOI: https://doi.org/10.1016/S1367-0484(99)80040-X

Tougeron-Brousseau, B.; Delcampe, A.; Gueudry, J.; Vera, L.; Doan, S.; Hoang-Xuan, T.; Muraine, M. Vision-related function after scleral lens fitting in ocular complications of stevens-johnson syndrome and toxic epidermal necrolysis. Am. J. Ophthalmol. 2009, 148, 852–859.e2. DOI: https://doi.org/10.1016/j.ajo.2009.07.006

Laballe, R.; Vigne, J.; Denion, E.; Lemaitre, F.; Goux, D.; Pisella, P.-J. Preclinical assessment of scleral lens as a reservoir-based ocular therapeutic system. Contact Lens Anterior Eye J. Br. Contact Lens Assoc. 2016, 39, 394–396. DOI: https://doi.org/10.1016/j.clae.2016.04.008

Hu, X.; Tan, H.; Hao, L. Functional hydrogel contact lens for drug delivery in the application of oculopathy therapy. J. Mech. Behav. Biomed. Mater. 2016, 64, 43–52. DOI: https://doi.org/10.1016/j.jmbbm.2016.07.005

Tian, X.; Iwatsu, M.; Sado, K.; Kanai, A. Studies on the uptake and release of fluoroquinolones by disposable contact lenses. CLAO J. Off. Publ. Contact Lens Assoc. Ophthalmol. Inc. 2001, 27, 216–220.

Hehl, E.M.; Beck, R.; Luthard, K.; Guthoff, R.; Drewelow, B. Improved penetration of aminoglycosides and fluorozuinolones into the aqueous humour of patients by means of Acuvue contact lenses. Eur. J. Clin. Pharmacol. 1999, 55, 317–323 DOI: https://doi.org/10.1007/s002280050635

Yokozaki, Y.; Sakabe, J.; Shimoyama, Y. Enhanced impregnation of hydrogel contact lenses with salicylic acid by addition of water in supercritical carbon dioxide. Chem. Eng. Res. Des. 2015, 104, 203–207. DOI: https://doi.org/10.1016/j.cherd.2015.08.007

Costa, V.P.; Braga, M.E.M.; Guerra, J.P.; Duarte, A.R.C.; Duarte, C.M.M.; Leite, E.O.B.; Gil, M.H.; de Sousa, H.C. Development of therapeutic contact lenses using a supercritical solvent impregnation method. J. Supercrit. Fluids 2010, 52, 306–316. DOI: https://doi.org/10.1016/j.supflu.2010.02.001

Alvarez-Lorenzo, C.; Yañez, F.; Concheiro, A. Ocular drug delivery from molecularly-imprinted contact lenses. J. Drug Deliv. Sci. Technol. 2010, 20, 237–248. DOI: https://doi.org/10.1016/S1773-2247(10)50041-8

Alvarez-Lorenzo, C.; Yañez, F.; Barreiro-Iglesias, R.; Concheiro, A. Imprinted soft contact lenses as norfloxacin delivery systems. J. Controlled Release 2006, 113, 236–244. DOI: https://doi.org/10.1016/j.jconrel.2006.05.003

Malakooti, N.; Alexander, C.; Alvarez-Lorenzo, C. Imprinted contact lenses for sustained release of polymyxin B and related antimicrobial peptides. J. Pharm. Sci. 2015, 104, 3386–3394. DOI: https://doi.org/10.1002/jps.24537

Ozawa, H.; Hosaka, S.; Kunitomo, T.; Tanzawa, H. Ocular inserts for controlled release of antibiotics. Biomaterials 1983, 4, 170–174 DOI: https://doi.org/10.1016/0142-9612(83)90005-4

Hosaka, S.; Ozawa, H.; Tanzawa, H.; Kinitomo, T.; Nichols, R.L. In vivo evaluation of ocular inserts of hydrogel impregnated with antibiotics for trachoma therapy. Biomaterials 1983, 4, 243–248. DOI: https://doi.org/10.1016/0142-9612(83)90022-4

Punch, P.I.; Costa, N.D.; Edwards, M.E.; Wilcox, G.E. The release of insoluble antibiotics from collagen ocular inserts in vitro and their insertion into the conjunctival sac of cattle. J. Vet. Pharmacol. Ther. 1987, 10, 37–42. DOI: https://doi.org/10.1111/j.1365-2885.1987.tb00074.x

Baeyens, V.; Kaltsatos, V.; Boisramé, B.; Varesio, E.; Veuthey, J.-L.; Fathi, M.; Balant, L.P.; Gex-Fabry, M.; Gurny, R. Optimized release of dexamethasone and gentamicin from a soluble ocular insert for the treatment of external ophthalmic infections. J. Controlled Release 1998, 52, 215–220. DOI: https://doi.org/10.1016/S0168-3659(97)00212-5

Di Colo, G.; Burgalassi, S.; Chetoni, P.; Fiaschi, M.P.; Zambito, Y.; Saettone, M.F. Gel-forming erodible inserts for ocular controlled delivery of ofloxacin. Int. J. Pharm. 2001, 215, 101–111. DOI: https://doi.org/10.1016/S0378-5173(00)00671-2

Di Colo, G.; Burgalassi, S.; Chetoni, P.; Fiaschi, M.P.; Zambito, Y.; Saettone, M.F. Relevance of polymer molecular weight to the in vitro/in vivo performances of ocular inserts based on poly(ethylene oxide). Int. J. Pharm. 2001, 220, 169–177. DOI: https://doi.org/10.1016/S0378-5173(01)00668-8

Di Colo, G.; Zambito, Y.; Burgalassi, S.; Serafini, A.; Saettone, M.F. Effect of chitosan on in vitro release and ocular delivery of ofloxacin from erodible inserts based on poly(ethylene oxide). Int. J. Pharm. 2002, 248, 115–122. DOI: https://doi.org/10.1016/S0378-5173(02)00421-0

Üstündağ-Okur, N.; Gökçe, E.H.; Bozbıyık, D.İ.; Eğrilmez, S.; Ertan, G.; Özer, Ö. Novel nanostructured lipid carrier-based inserts for controlled ocular drug delivery: Evaluation of corneal bioavailability and treatment efficacy in bacterial keratitis. Expert Opin. Drug Deliv. 2015, 12, 1791–1807. DOI: https://doi.org/10.1517/17425247.2015.1059419

Sultana, Y.; Aqil, M.; Ali, A. Ocular inserts for controlled delivery of pefloxacin mesylate: Preparation and evaluation. Acta Pharm. Zagreb Croat. 2005, 55, 305–314.

Mundada, A.S.; Shrikhande, B.K. Design and evaluation of soluble ocular drug insert for controlled release of ciprofloxacin hydrochloride. Drug Dev. Ind. Pharm. 2006, 32, 443– DOI: https://doi.org/10.1080/03639040500534101

Mundada, A.S.; Shrikhande, B.K. Formulation and evaluation of ciprofloxacin hydrochloride soluble ocular drug insert. Curr. Eye Res. 2008, 33, 469–475 DOI: https://doi.org/10.1080/02713680802023104

Pawar, P.K.; Katara, R.; Majumdar, D.K. Design and evaluation of moxifloxacin hydrochloride ocular inserts. Acta Pharm. Zagreb Croat. 2012, 62, 93–104 DOI: https://doi.org/10.2478/v10007-012-0002-5

Thakur, R.; Swami, G.; Rahman, M. Development and optimization of controlled release bioerodable anti infective ophthalmic insert. Curr. Drug Deliv. 2014, 11, 2–10. DOI: https://doi.org/10.2174/15672018113106660060

Wang, J.; Li, X.; Xiong, L.; Sun, N. Different concentrations of clarithromycin ophthalmic gel for rabbits corneal ulcers induced by Staphylococcus aureus. Yan Ke Xue Bao 2008, 24, 18–22.

Liu, Z.; Li, J.; Nie, S.; Liu, H.; Ding, P.; Pan, W. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int. J. Pharm. 2006, 315, 12–17. DOI: https://doi.org/10.1016/j.ijpharm.2006.01.029

Al-Kassas, R.S.; El-Khatib, M.M. Ophthalmic controlled release in situ gelling systems for ciprofloxacin based on polymeric carriers. Drug Deliv. 2009, 16, 145–152. DOI: https://doi.org/10.1080/10717540802689008

Mansour, M.; Mansour, S.; Mortada, N.D.; Abd Elhady, S.S. Ocular poloxamer-based ciprofloxacin hydrochloride in situ forming gels. Drug Dev. Ind. Pharm. 2008, 34, 744–752. DOI: https://doi.org/10.1080/03639040801926030

Nanjwade, B.K.; Deshmukh, R.V.; Gaikwad, K.R.; Parikh, K.A.; Manvi, F.V. Formulation and evaluation of micro hydrogel of Moxifloxacin hydrochloride. Eur. J. Drug Metab. Pharmacokinet. 2012, 37, 117–123. DOI: https://doi.org/10.1007/s13318-011-0070-9

Khan, N.; Aqil, M.; Imam, S.S.; Ali, A. Development and evaluation of a novel in situ gel of sparfloxacin for sustained ocular drug delivery: In vitro and ex vivo characterization. Pharm. Dev. Technol. 2015, 20, 662–669. DOI: https://doi.org/10.3109/10837450.2014.910807

Sultana, Y.; Aqil, M.; Ali, A.; Zafar, S. Evaluation of carbopol-methyl cellulose-based sustained-release ocular delivery system for pefloxacin mesylate using rabbit eye model. Pharm. Dev. Technol. 2006, 11, 313–319. DOI: https://doi.org/10.1080/10837450600767698

Liu, Z.; Yang, X.-G.; Li, X.; Pan, W.; Li, J. Study on the ocular pharmacokinetics of ion-activated in situ gelling ophthalmic delivery system for gatifloxacin by microdialysis. Drug Dev. Ind. Pharm. 2007, 33, 1327–1331. DOI: https://doi.org/10.1080/03639040701397241

El-Laithy, H.M.; Nesseem, D.I.; El-Adly, A.A.; Shoukry, M. Moxifloxacin-Gelrite in situ ophthalmic gelling system against photodynamic therapy for treatment of bacterial corneal inflammation. Arch. Pharm. Res. 2011, 34, 1663–1678. DOI: https://doi.org/10.1007/s12272-011-1011-5

Dubald, M., Bourgeois, S., Andrieu, V., & Fessi, H. (2018). Ophthalmic drug delivery systems for antibiotherapy—A review. Pharmaceutics, 10(1), 10. DOI: https://doi.org/10.3390/pharmaceutics10010010

Published

15-01-2019

How to Cite

Hamzy, I. A., Alqhoson, A. I., Aljarbou, A. M., & Alhajri, M. A. (2019). A comprehensive review of ophthalmic drug delivery systems for effective antibiotic therapy. International Journal of Health Sciences, 3(S1), 169–190. https://doi.org/10.53730/ijhs.v3nS1.15094

Issue

Section

Peer Review Articles

Most read articles by the same author(s)