The impact of biologics on the management of autoimmune diseases: A comprehensive review for pharmacists
Keywords:
Biologics, Rheumatoid Arthritis, Lupus Erythematosus, Asthma, Inflammatory Bowel Disease, Autoimmune DisordersAbstract
Background: Biologics have emerged as a transformative approach in the treatment of Rheumatoid Arthritis (RA), Inflammatory Bowel Disease (IBD), systemic lupus erythematosus (SLE), asthma, and multiple sclerosis (MS), addressing the underlying pathophysiological mechanisms of these complex diseases. Aim: the main aim of this review is to explore the main biologics used for the treatment of SLE, IBD, MS, RA, and Asthma. Methods: An updated data were collected and analyzed using research original articles, and reviewed articles. Results: Biologics like belimumab and rituximab target B cells, offering limited yet significant improvements in patient outcomes. Other promising agents such as epratuzumab and low-dose IL-2 are under investigation, aiming to enhance treatment efficacy with improved safety profiles. In asthma management, monoclonal antibodies such as omalizumab, mepolizumab, and dupilumab target key cytokines involved in the inflammatory response, significantly reducing exacerbations and improving patient quality of life. Similarly, natalizumab represents a crucial advancement in MS therapy by inhibiting T cell migration into the central nervous system, effectively reducing disease activity. Despite their efficacy, the use of biologics is accompanied by challenges, including potential adverse effects and the need for personalized treatment strategies.
Downloads
References
Korwek, E. L., & Druckman, M. N. (2015). Human biologics. In D. C. Adams, R. M. Coo per, M. J. Hahn, & J. S. Kahan (Eds.), Food and drug law and regulation, (3rd ed., pp. 513–551). Washington, DC: FDLI.
42 United States Code 262(i). (n.d.). Regulation of biological products.
International Council for Harmonization. (1997c). S6: Preclinical safety evaluation of biotech neology derived pharmaceuticals. International Council for Harmonization.
The European Parliament and The Council of the European Union. (2007). Eur-Lex. regula tion (EC) No 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004. Retrieved from http://eur-lex.europa.eu/legal-content/EN/ ALL/?uri=CELEX%3A32007R1394.
U.S. Food and Drug Administration. (2017a). Biosimilars. Retrieved from https://www.fda. gov/drugs/developmentapprovalprocess/howdrugsaredevelopedandapproved/approvalap plications/therapeuticbiologicapplications/biosimilars/default.htm
Perk J, De Backer G, Gohlke H, Graham I, Reiner Ž, Verschuren M, et al. European guidelines on cardiovascular disease prevention in clinical practice (version 2012). Eur Heart J. 2012;33:1635–701. DOI: https://doi.org/10.1016/j.atherosclerosis.2012.05.007
Solomon DH, Goodson NJ, Katz JN, Weinblatt ME, Avorn J, Setoguchi S, et al. Patterns of cardiovascular risk in rheumatoid arthritis. Ann Rheum Dis. 2006;65:1608–12. DOI: https://doi.org/10.1136/ard.2005.050377
Wolfe F, Mitchell DM, Sibley JT, Fries JF, Bloch DA, Williams CA, et al. The mortality of rheumatoid arthritis. Arthritis Rheum. 1994;37:481–94. DOI: https://doi.org/10.1002/art.1780370408
Han C, Robinson DW, Hackett MV, Paramore LC, Fraeman KH, Bala MV. Cardiovascular disease and risk factors in patients with rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. J Rheumatol. 2006;33:2167–72.
Ferraccioli G, Gremese E. Thrombogenicity of TNF alpha in rheumatoid arthritis defined through biological probes: TNF alpha blockers. Autoimmun Rev. 2004;3:261–6. DOI: https://doi.org/10.1016/j.autrev.2003.09.004
Beinsberger J, Heemskerk JW, Cosemans JM. Chronic arthritis and cardiovascular disease: altered blood parameters give rise to a prothrombotic propensity. Semin Arthritis Rheum. 2014;44:345–52. DOI: https://doi.org/10.1016/j.semarthrit.2014.06.006
Lacaille D, Avina-Zubieta JA, Sayre EC, Abrahamowicz M. Improvement in 5-year mortality in incident rheumatoid arthritis compared with the general population—closing the mortality gap. Ann Rheum Dis. 2017;76:1057. DOI: https://doi.org/10.1136/annrheumdis-2016-209562
Shen J, Shang Q, Tam LS. Targeting inflammation in the prevention of cardiovascular disease in patients with inflammatory arthritis. Transl Res. 2016;167:138–51. DOI: https://doi.org/10.1016/j.trsl.2015.05.006
Di Minno MN, Iervolino S, Zincarelli C, Lupoli R, Ambrosino P, Pizzicato P, et al. Cardiovascular effects of Etanercept in patients with psoriatic arthritis: evidence from the cardiovascular risk in rheumatic diseases database. Expert Opin Drug Saf. 2015;14:1905–13. DOI: https://doi.org/10.1517/14740338.2015.1111870
Choy E, Ganeshalingam K, Semb AG, Szekanecz Z, Nurmohamed M. Cardiovascular risk in rheumatoid arthritis: recent advances in the understanding of the pivotal role of inflammation, risk predictors and the impact of treatment. Rheumatology (Oxford). 2014;53:2143–54. DOI: https://doi.org/10.1093/rheumatology/keu224
Peters MJ, van Sijl AM, Voskuyl AE, Sattar N, Smulders YM, Nurmohamed MT. The effects of tumor necrosis factor inhibitors on cardiovascular risk in rheumatoid arthritis. Curr Pharm Des. 2012;18:1502–11. DOI: https://doi.org/10.2174/138161212799504786
Brezinski EA, Follansbee MR, Armstrong EJ, Armstrong AW. Endothelial dysfunction and the effects of TNF inhibitors on the endothelium in psoriasis and psoriatic arthritis: a systematic review. Curr Pharm Des. 2014;20:513–28. DOI: https://doi.org/10.2174/138161282004140213123852
Daien CI, Duny Y, Barnetche T, Daures JP, Combe B, Morel J. Effect of TNF inhibitors on lipid profile in rheumatoid arthritis: a systematic review with meta-analysis. Ann Rheum Dis. 2012;71:862–8. DOI: https://doi.org/10.1136/annrheumdis-2011-201148
Greenberg JD, Kremer JM, Curtis JR, Hochberg MC, Reed G, Tsao P, et al. Tumour necrosis factor antagonist use and associated risk reduction of cardiovascular events among patients with rheumatoid arthritis. Ann Rheum Dis. 2011;70:576–82. DOI: https://doi.org/10.1136/ard.2010.129916
Bili A, Tang X, Pranesh S, Bozaite R, Morris SJ, Antohe JL, et al. Tumor necrosis factor alpha inhibitor use and decreased risk for incident coronary events in rheumatoid arthritis. Arthritis Care Res (Hoboken). 2014;66:355–63. DOI: https://doi.org/10.1002/acr.22166
Desai RJ, Rao JK, Hansen RA, Fang G, Maciejewski M, Farley J. Tumor necrosis factor-alpha inhibitor treatment and the risk of incident cardiovascular events in patients with early rheumatoid arthritis: a nested case-control study. J Rheumatol. 2014;41:2129–36. DOI: https://doi.org/10.3899/jrheum.131464
Solomon DH, Avorn J, Katz JN, Weinblatt ME, Setoguchi S, Levin R, et al. Immunosuppressive medications and hospitalization for cardiovascular events in patients with rheumatoid arthritis. Arthritis Rheum. 2006;54:3790–8. DOI: https://doi.org/10.1002/art.22255
Al-Aly Z, Pan H, Zeringue A, Xian H, McDonald JR, El-Achkar TM, et al. Tumor necrosis factor-alpha blockade, cardiovascular outcomes, and survival in rheumatoid arthritis. Transl Res. 2011;157:10–8. DOI: https://doi.org/10.1016/j.trsl.2010.09.005
Solomon DH, Curtis JR, Saag KG, Lii J, Chen L, Harrold LR, et al. Cardiovascular risk in rheumatoid arthritis: comparing TNF-alpha blockade with nonbiologic DMARDs. Am J Med. 2013;126:730. e9–730.e17 DOI: https://doi.org/10.1016/j.amjmed.2013.02.016
Dixon WG, Watson KD, Lunt M, Hyrich KL, British Society for Rheumatology Biologics Register Control Centre Consortium, Silman AJ, et al. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor alpha therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 2007;56:2905–12. DOI: https://doi.org/10.1002/art.22809
AbbVie. (n.d.). Pharmaceutical products. Retrieved from https://www.abbvie.com/our-science.html
Burmester, G. R., Panaccione, R., Gordon, K. B., McIlraith, M. J., & Lacerda, A. P. (2013). Adalimumab: Long-term safety in 23,458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis, and Crohn’s disease. Annals of the Rheumatic Diseases, 72(4), 515-522. https://doi.org/10.1136/annrheumdis-2012-201558 DOI: https://doi.org/10.1136/annrheumdis-2011-201244
Côté-Daigneault, J., Bouin, M., Lahaie, R., Colombel, J. F., & Poitras, P. (2015). Biologics in inflammatory bowel disease: What are the data? United European Gastroenterology Journal, 3(4), 419-428. https://doi.org/10.1177/2050640615581415 DOI: https://doi.org/10.1177/2050640615590302
Faubion, W. A., Dubinsky, M., & Ruemmele, F. M. (2017). Long-term efficacy and safety of adalimumab in pediatric patients with Crohn’s disease. Inflammatory Bowel Diseases, 23(4), 453-460. https://doi.org/10.1097/MIB.0000000000001080 DOI: https://doi.org/10.1097/MIB.0000000000001021
FDA. (2012). Humira (adalimumab): Prescribing information. Retrieved from http://www.rxabbvie.com/pdf/humira.pdf
FDA. (2017). Cimzia (certolizumab pegol) – Prescribing information. Retrieved from https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125160s270lbl.pdf
FDA. Center for Drug Evaluation and Research. (2008). Application number: BLA 125160/0. Pharmacology review(s). Retrieved from http://www.accessdata.fda.gov/drugsatfda_docs/nda/2008/125160s000_PharmR_P1.pdf
Hanauer, S. B., Sandborn, W. J., & Rutgeerts, P. (2006). Human anti-tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: The CLASSIC-I trial. Gastroenterology, 130(2), 232-233. https://doi.org/10.1056/NEJMoa061369 DOI: https://doi.org/10.1053/j.gastro.2005.11.030
Hyams, J. S., Griffiths, A. M., & Markowitz, J. (2012). Safety and efficacy of adalimumab for moderate to severe Crohn’s disease in children. Gastroenterology, 142(3), 653-659.e2. https://doi.org/10.1056/NEJMoa061369
Kempeni, J. (1999). Preliminary results of early clinical trials with the fully human anti-TNFα monoclonal antibody D2E7. Annals of the Rheumatic Diseases, 59(I70), I72. https://doi.org/10.1136/ard.59.1.I70 DOI: https://doi.org/10.1136/ard.58.2008.i70
Lapadula, G., Marchesoni, A., & Armuzzi, A. (2014). Adalimumab in the treatment of immune-mediated diseases. International Journal of Immunopathology and Pharmacology, 27(1 Suppl), 33-34. https://doi.org/10.1177/0394632014550501 DOI: https://doi.org/10.1177/03946320140270S103
Lichtenstein, G. R., Panaccione, R., & Mallarkey, G. (2008). Efficacy and safety of Adalimumab in Crohn’s disease. Therapeutic Advances in Gastroenterology, 1(4), 350-357. https://doi.org/10.1177/1756284808093813 DOI: https://doi.org/10.1177/1756283X08092548
Rutgeerts, P., Sandborn, W. J., & Enns, R. (2006). Adalimumab rapidly induces clinical response and remission in patients with moderate to severe Crohn’s disease who had secondary failure to infliximab therapy: Results of the GAIN study. Gut, 55(suppl A), A20. https://doi.org/10.1136/gut.2005.092030 DOI: https://doi.org/10.14309/00000434-200609001-01147
Sandborn, W. J., Feagan, B. G., & Sloinov, S. (2007). Certolizumab pegol for the treatment of Crohn’s disease. New England Journal of Medicine, 357(22), 2283-2288. https://doi.org/10.1056/NEJMoa0707518 DOI: https://doi.org/10.1056/NEJMoa067594
Sandborn, W. J., Hanauer, S. B., & Rutgeerts, P. (2007). Adalimumab for maintenance treatment of Crohn’s disease: Results of the CLASSIC II trial. Gut, 56(9), 1232-1239. https://doi.org/10.1136/gut.2006.090270 DOI: https://doi.org/10.1136/gut.2006.106781
Schreiber, S., Khaliq-Kareemi, M., & Lawrance, I. C. (2007). Maintenance therapy with certolizumab pegol for Crohn’s disease. New England Journal of Medicine, 357(23), 2392-2500. https://doi.org/10.1056/NEJMoa0703937
Schiff, M. H., Burmester, G. R., & Kent, J. D. (2006). Safety analyses of adalimumab (HUMIRA) in global clinical trials and US post-marketing surveillance of patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 65(7), 889-896. https://doi.org/10.1136/ard.2005.044193 DOI: https://doi.org/10.1136/ard.2005.043166
Schreiber, S., Khaliq-Kareemi, M., & Lawrance, I. C. (2007). Maintenance therapy with certolizumab pegol for Crohn’s disease. New England Journal of Medicine, 357(23), 2392-2500. https://doi.org/10.1056/NEJMoa0703937 DOI: https://doi.org/10.1056/NEJMoa062897
Sandborn, W. J., Lee, S. D., & Randall, C. (2014). Long-term safety and efficacy of certolizumab pegol in the treatment of Crohn’s disease: 7-year results from the PRECiSE 3 study. Alimentary Pharmacology & Therapeutics, 40(8), 903-916. https://doi.org/10.1111/apt.12812 DOI: https://doi.org/10.1111/apt.12930
Hesterberg, P. E., Winsor-Hines, D. B., & Riskin, M. J. (1996). Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a gut-homing integrin alpha 4 beta 7. Gastroenterology, 111(5), 1373-1380. https://doi.org/10.1016/S0016-5085(96)70089-6 DOI: https://doi.org/10.1053/gast.1996.v111.pm8898653
Lau, M. S., & Tsai, H. H. (2016). Review of vedolizumab for the treatment of ulcerative colitis. World Journal of Gastrointestinal Pharmacology and Therapeutics, 7(1), 107-111. https://doi.org/10.4292/wjgpt.v7.i1.107 DOI: https://doi.org/10.4292/wjgpt.v7.i1.107
Loftus Jr, E. V., Colombel, J. F., Feagan, B. G., Vermeire, S., Sandborn, W. J., Sands, B. E., ... & Smyth, M. (2017). Long-term efficacy of vedolizumab for ulcerative colitis. Journal of Crohn's and Colitis, 11(4), 400-411.
Noman, M., Ferrante, M., Bisschops, R., De Hertogh, G., Van den Broeck, K., Rans, K., ... & Van Assche, G. (2017). Vedolizumab induces long-term mucosal healing in patients with Crohn’s disease and ulcerative colitis. Journal of Crohn's and Colitis, 11(9), 1085-1089. DOI: https://doi.org/10.1093/ecco-jcc/jjx048
U.S. Food and Drug Administration. (2017). Entyvio (vedolizumab) – Prescribing information, from https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125476s000lbl.pdf
Feagan, B. G., Rutgeerts, P. J., & Sands, B. E. (2012). Induction therapy for ulcerative colitis: Results of GEMINI I, a randomized placebo-controlled, double-blind, multicentre phase 3 trial. Gastroenterology, 142(S160-S161). https://doi.org/10.1016/S0016-5085(12)00235-0 DOI: https://doi.org/10.1016/S0016-5085(12)60607-6
Garnock-Jones, K. P. (2015). Vedolizumab: A review of its use in adult patients with moderately to severely active ulcerative colitis or Crohn’s disease. BioDrugs, 29(1), 57-67. https://doi.org/10.1007/s40259-015-0126-1 DOI: https://doi.org/10.1007/s40259-014-0113-2
Sandborn, W. J., Feagan, B. G., & Rutgeerts, P. (2013). Vedolizumab as induction and maintenance therapy for Crohn’s disease. New England Journal of Medicine, 369(7), 711-721. https://doi.org/10.1056/NEJMoa1210817 DOI: https://doi.org/10.1056/NEJMoa1215739
Sands, B. E., Feagan, B. G., & Rutgeerts, P. (2014). Effects of vedolizumab induction therapy for patients with Crohn’s disease in whom tumor necrosis factor antagonist treatment failed. Gastroenterology, 147(4), 618-627.e2. https://doi.org/10.1056/NEJMoa1210534 DOI: https://doi.org/10.1053/j.gastro.2014.05.008
Gensicke, H., Leppert, D., & Yaldizli, O. (2012). Monoclonal antibodies and recombinant immunoglobulins for the treatment of multiple sclerosis. CNS Drugs, 26(11), 1372-1379. https://doi.org/10.2165/11605430-000000000-00000 DOI: https://doi.org/10.2165/11596920-000000000-00000
Zhang, Y., & Wang, H. (2012). Integrin signalling and function in immune cells. Immunology, 123(4), 542-568. https://doi.org/10.1111/j.1365-2567.2011.03504.x DOI: https://doi.org/10.1111/j.1365-2567.2011.03549.x
U.S. Food and Drug Administration. (2017). Tysabri (natalizumab) – Prescribing information, from https://www.tysabri.com/content/dam/commercial/multiple-sclerosis/tysabri/pat/en_us/pdfs/tysabri_prescribing_information.pdf
Sandborn, W. J., Colombel, J. F., & Enns, R. (2005). Natalizumab induction and maintenance therapy for Crohn’s disease. New England Journal of Medicine, 353(18), 1912-1921. https://doi.org/10.1056/NEJMoa050104 DOI: https://doi.org/10.1056/NEJMoa043335
Targan, S. R., Feagan, B. G., & Fedorak, R. N. (2007). Natalizumab for the treatment of active Crohn’s disease: Results of the ENCORE trial. Gastroenterology, 133(5), 1672-1683. https://doi.org/10.1056/NEJMoa061173 DOI: https://doi.org/10.1053/j.gastro.2007.03.024
Guagnozzi, D., & Caprilli, R. (2008). Natalizumab in the treatment of Crohn’s disease. Biologics, 2(2), 275-284. https://doi.org/10.2147/BTT.S2970 DOI: https://doi.org/10.2147/BTT.S2935
Lamb, Y. N., & Duggan, S. T. (2017). Ustekinumab: A review in moderate to severe Crohn’s disease. Drugs, 77(1), 105-111. https://doi.org/10.1007/s40265-017-0722-2 DOI: https://doi.org/10.1007/s40265-017-0765-6
European Medicines Agency. (2017). Stelara 130 mg for solution for infusion: EU summary of product characteristics, from http://www.ema.europa.eu/
U.S. Food and Drug Administration. (2016). Stelara (ustekinumab) – Prescribing information., from https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/761044lbl.pdf
Feagan, B. G., Sandborn, W. J., & Gasink, C. (2016). Ustekinumab as induction and maintenance therapy for Crohn’s disease. New England Journal of Medicine, 375(20), 1946-1960. https://doi.org/10.1056/NEJMoa1602008 DOI: https://doi.org/10.1056/NEJMoa1602773
Sandborn, W. J., Gasink, C., Gao, L. L., & Ustekinumab. (2012). Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. New England Journal of Medicine, 367(16), 1519-1528. https://doi.org/10.1056/NEJMoa1202786 DOI: https://doi.org/10.1056/NEJMoa1203572
Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, Ruiz-Irastorza G, Hughes G (2016) Systemic lupus erythematosus. Nat Rev Dis Primers 16:216039 DOI: https://doi.org/10.1038/nrdp.2016.39
Wilhelm TR, Magder LS, Petri M (2017) Remission in systemic lupus erythematosus: durable remission is rare. Ann Rheum Dis 76(3):547–553. https://doi.org/10.1136/annrheumdis-2016-209489 DOI: https://doi.org/10.1136/annrheumdis-2016-209489
Kang I, Park SH (2003) Infectious complications in SLE after immunosuppressive therapies. Curr Opin Rheumatol 15(5):528–534. https://doi.org/10.1097/00002281-200309000-00002 DOI: https://doi.org/10.1097/00002281-200309000-00002
Doria A, Iaccarino L, Ghirardello A, Zampieri S, Arienti S, Sarzi-Puttini P, Atzeni F, Piccoli A, Todesco S (2006) Long-term prognosis and causes of death in systemic lupus erythematosus. Am J Med 119(8):700–706. https://doi.org/10.1016/j.amjmed.2005.11.034 DOI: https://doi.org/10.1016/j.amjmed.2005.11.034
van Vollenhoven RF, Mosca M, Bertsias G, Isenberg D, Kuhn A, Lerstrøm K, Aringer M, Bootsma H, Boumpas D, Bruce IN, Cervera R, Clarke A, Costedoat-Chalumeau N, Czirják L, Derksen R, Dörner T, Gordon C, Graninger W, Houssiau F, Inanc M, Jacobsen S, Jayne D, Jedryka-Goral A, Levitsky A, Levy R, Mariette X, Morand E, Navarra S, Neumann I, Rahman A, Rovenský J, Smolen J, Vasconcelos C, Voskuyl A, Voss A, Zakharova H, Zoma A, Schneider M (2014) Treat-to-target in systemic lupus erythematosus: recommendations from an international task force. Ann Rheum Dis 73(6):958–967. https://doi.org/10.1136/annrheumdis-2013-205139 DOI: https://doi.org/10.1136/annrheumdis-2013-205139
Navarra SV, Guzman RM, Gallacher AE et al (2011) Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377(9767):721–731. https://doi.org/10.1016/S0140-6736(10)61354-2 DOI: https://doi.org/10.1016/S0140-6736(10)61354-2
TY L, Ng KP, Cambridge G et al (2009) A retrospective seven-year analysis of the use of B cell depletion therapy in systemic lupus erythematosus at University College London Hospital: the first fifty patients. Arthritis Rheum 61(4):482–487 DOI: https://doi.org/10.1002/art.24341
Terrier B, Amoura Z, Ravaud P, Hachulla E, Jouenne R, Combe B, Bonnet C, Cacoub P, Cantagrel A, de Bandt M, Fain O, Fautrel B, Gaudin P, Godeau B, Harlé JR, Hot A, Kahn JE, Lambotte O, Larroche C, Léone J, Meyer O, Pallot-Prades B, Pertuiset E, Quartier P, Schaerverbeke T, Sibilia J, Somogyi A, Soubrier M, Vignon E, Bader-Meunier B, Mariette X, Gottenberg JE, Club Rhumatismes et Inflammation (2010) Safety and efficacy of rituximab in systemic lupus erythematosus: results from 136 patients from the French AutoImmunity and Rituximab registry. Arthritis Rheum 62(8):2458–2466. https://doi.org/10.1002/art.27541 DOI: https://doi.org/10.1002/art.27541
Diaz-Lagares C, Croca S, Sangle S et al (2012) Efficacy of rituximab in 164 patients with biopsy-proven lupus nephritis: pooled data from European cohorts. Autoimmun Rev 11(5):357–364. https://doi.org/10.1016/j.autrev.2011.10.009 DOI: https://doi.org/10.1016/j.autrev.2011.10.009
Condon MB, Ashby D, Pepper RJ, Cook HT, Levy JB, Griffith M, Cairns TD, Lightstone L (2013) Prospective observational single-centre cohort study to evaluate the effectiveness of treating lupus nephritis with rituximab and mycophenolate mofetil but no oral steroids. Ann Rheum Dis 72(8):1280–1286. https://doi.org/10.1136/annrheumdis-2012-202844 DOI: https://doi.org/10.1136/annrheumdis-2012-202844
Merrill JT, Neuwelt CM, Wallace DJ, Shanahan JC, Latinis KM, Oates JC, Utset TO, Gordon C, Isenberg DA, Hsieh HJ, Zhang D, Brunetta PG (2010) Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum 62(1):222–233. https://doi.org/10.1002/art.27233 DOI: https://doi.org/10.1002/art.27233
Rovin BH, Furie R, Latinis K, Looney RJ, Fervenza FC, Sanchez-Guerrero J, Maciuca R, Zhang D, Garg JP, Brunetta P, Appel G, LUNAR Investigator Group (2012) Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the lupus nephritis assessment with rituximab study. Arthritis Rheum 64(4):1215–1226. https://doi.org/10.1002/art.34359 DOI: https://doi.org/10.1002/art.34359
Wallace DJ, Gordon C, Strand V, Hobbs K, Petri M, Kalunian K, Houssiau F, Tak PP, Isenberg DA, Kelley L, Kilgallen B, Barry AN, Wegener WA, Goldenberg DM (2013) Efficacy and safety of epratuzumab in patients with moderate/severe flaring systemic lupus erythematosus: results from two randomized, double-blind, placebo-controlled, multicentre studies (ALLEVIATE) and follow-up. Rheumatology (Oxford) 52(7):1313–1322. https://doi.org/10.1093/rheumatology/ket129 DOI: https://doi.org/10.1093/rheumatology/ket129
Clowse ME, Wallace DJ, Furie RA et al (2017) Efficacy and safety of epratuzumab in moderately to severely active systemic lupus erythematosus: results from two phase III randomized, double-blind, placebo-controlled trials. Arthritis Rheumatol. 69(2):362–375. https://doi.org/10.1002/art.39856 DOI: https://doi.org/10.1002/art.39856
Chamberlain C, Colman PJ, Ranger AM, Burkly LC, Johnston GI, Otoul C, Stach C, Zamacona M, Dörner T, Urowitz M, Hiepe F (2017) Repeated administration of dapirolizumab pegol in a randomized phase I study is well tolerated and accompanied by improvements in several composite measures of systemic lupus erythematosus disease activity and changes in whole blood transcriptomic profiles. Ann Rheum Dis 76(11):1837–1844. https://doi.org/10.1136/annrheumdis-2017-211388 DOI: https://doi.org/10.1136/annrheumdis-2017-211388
He J, Zhang X, Wei Y, Sun X, Chen Y, Deng J, Jin Y, Gan Y, Hu X, Jia R, Xu C, Hou Z, Leong YA, Zhu L, Feng J, An Y, Jia Y, Li C, Liu X, Ye H, Ren L, Li R, Yao H, Li Y, Chen S, Zhang X, Su Y, Guo J, Shen N, Morand EF, Yu DI, Li Z (2016) Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat Med 22(9):991–993. https://doi.org/10.1038/nm.4148 DOI: https://doi.org/10.1038/nm.4148
Yang J, Chu Y, Yang X, Gao D, Zhu L, Yang X, Wan L, Li M (2009) Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum 60(5):1472–1483. https://doi.org/10.1002/art.24499 DOI: https://doi.org/10.1002/art.24499
He J, Tsai LM, Leong YA, Hu X, Ma CS, Chevalier N, Sun X, Vandenberg K, Rockman S, Ding Y, Zhu L, Wei W, Wang C, Karnowski A, Belz GT, Ghali JR, Cook MC, Riminton DS, Veillette A, Schwartzberg PL, Mackay F, Brink R, Tangye SG, Vinuesa CG, Mackay CR, Li Z, Yu D (2013) Circulating precursor CCR7(lo)PD-1(hi) CXCR5(+) CD4(+) T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity 39(4):770–781. https://doi.org/10.1016/j.immuni.2013.09.007 DOI: https://doi.org/10.1016/j.immuni.2013.09.007
Liao W, Lin JX, Leonard WJ (2013) Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38(1):13–25. https://doi.org/10.1016/j.immuni.2013.01.004 DOI: https://doi.org/10.1016/j.immuni.2013.01.004
Lieberman LA, Tsokos GC (2010) The IL-2 defect in systemic lupus erythematosus disease has an expansive effect on host immunity. J Biomed Biotechnol 2010:740619 DOI: https://doi.org/10.1155/2010/740619
Hooks JJ, Moutsopoulos HM, Geis SA, Stahl NI, Decker JL, Notkins AL (1979) Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 301(1):5–8. https://doi.org/10.1056/NEJM197907053010102 DOI: https://doi.org/10.1056/NEJM197907053010102
Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, Pascual V (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197(6):711–723. https://doi.org/10.1084/jem.20021553 DOI: https://doi.org/10.1084/jem.20021553
Petri M, Wallace DJ, Spindler A, Chindalore V, Kalunian K, Mysler E, Neuwelt CM, Robbie G, White WI, Higgs BW, Yao Y, Wang L, Ethgen D, Greth W (2013) Sifalimumab, a human anti-interferon-alpha monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheum 65(4):1011–1021. https://doi.org/10.1002/art.37824 DOI: https://doi.org/10.1002/art.37824
Khamashta M, Merrill JT, Werth VP, Furie R, Kalunian K, Illei GG, Drappa J, Wang L, Greth W, CD1067 study investigators (2016) Sifalimumab, an anti-interferon-alpha monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis 75(11):1909–1916. https://doi.org/10.1136/annrheumdis-2015-208562 DOI: https://doi.org/10.1136/annrheumdis-2015-208562
McBride JM, Jiang J, Abbas AR, Morimoto A, Li J, Maciuca R, Townsend M, Wallace DJ, Kennedy WP, Drappa J (2012) Safety and pharmacodynamics of rontalizumab in patients with systemic lupus erythematosus: results of a phase I, placebo-controlled, double-blind, dose-escalation study. Arthritis Rheum 64(11):3666–3676. https://doi.org/10.1002/art.34632 DOI: https://doi.org/10.1002/art.34632
Peng L, Oganesyan V, Wu H, Dall’Acqua WF, Damschroder MM (2015) Molecular basis for antagonistic activity of anifrolumab, an anti- interferon- receptor 1 antibody. MAbs 7(2):428–439 DOI: https://doi.org/10.1080/19420862.2015.1007810
Morehouse C, Chang L, Wang et al (2014) Target modulation of a type I interferon (IFN) gene signature with sifalimumab or anifrolumab in systemic lupus erythematosus (SLE) patients in two open label phase 2 Japanese trials. 2014 ACR/ARHP annual meeting; November 14–19: Boston, MA
Ronld van Vollenhoven, Bevra H, Hahn, George C. Tsokos, et al (2017) Efficacy and safety of ustekinumab, an interleukin 12/23 inhibitor, in patients with active systemic lupus erythematosus: results of a phase 2, randomized placebo-controlled study. 2017ACR/ARHP Annual Meeting; November 4–9: Sen Diego, CA DOI: https://doi.org/10.1136/lupus-2018-abstract.45
Daikh DI, Wofsy D (2001) Cutting edge: reversal of murine lupus nephritis with CTLA4Ig and cyclophosphamide. J Immunol 166(5):2913–2916. https://doi.org/10.4049/jimmunol.166.5.2913 DOI: https://doi.org/10.4049/jimmunol.166.5.2913
Cunnane G, Chan OT, Cassafer G et al (2004) Prevention of renal damage in murine lupus nephritis by CTLA-4Ig and cyclophosphamide. Arthritis Rheum 50(5):1539–1548. https://doi.org/10.1002/art.20147 DOI: https://doi.org/10.1002/art.20147
Finck BK, Linsley PS, Wofsy D (1994) Treatment of murine lupus with CTLA4Ig. Science 265(5176):1225–1227. https://doi.org/10.1126/science.7520604 DOI: https://doi.org/10.1126/science.7520604
Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355(10):1018–1028. https://doi.org/10.1056/NEJMoa063842 DOI: https://doi.org/10.1056/NEJMoa063842
Furie R, Nicholls K, Cheng TT, Houssiau F, Burgos-Vargas R, Chen SL, Hillson JL, Meadows-Shropshire S, Kinaszczuk M, Merrill JT (2014) Efficacy and safety of abatacept in lupus nephritis: a twelve-month, randomized, double-blind study. Arthritis Rheumatol 66(2):379–389. https://doi.org/10.1002/art.38260 DOI: https://doi.org/10.1002/art.38260
Boumpas DT, Furie R, Manzi S, Illei GG, Wallace DJ, Balow JE, Vaishnaw A, on behalf of the BG9588 Lupus Nephritis Trial Group (2003) A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum 48(3):719–727. https://doi.org/10.1002/art.10856 DOI: https://doi.org/10.1002/art.10856
Wang D, Niu L, Feng X, Yuan X, Zhao S, Zhang H, Liang J, Zhao C, Wang H, Hua B, Sun L (2017) Long-term safety of umbilical cord mesenchymal stem cells transplantation for systemic lupus erythematosus: a 6-year follow-up study. Clin Exp Med 17(3):333–340. https://doi.org/10.1007/s10238-016-0427-0 DOI: https://doi.org/10.1007/s10238-016-0427-0
Pozsgay J, Szekanecz Z, Sármay G (2017) Antigen-specific immunotherapies in rheumatic diseases. Nat Rev Rheumatol 13(9):525–537. https://doi.org/10.1038/nrrheum.2017.107 DOI: https://doi.org/10.1038/nrrheum.2017.107
Li ZG, Mu R, Dai ZP, Gao XM (2005) T cell vaccination in systemic lupus erythematosus with autologous activated T cells. Lupus 14(11):884–889. https://doi.org/10.1191/0961203305lu2239oa DOI: https://doi.org/10.1191/0961203305lu2239oa
Hanania, N. A., Wenzel, S., Rosén, K., Hsieh, H. J., Mosesova, S., Choy, D. F., et al. (2013). Exploring the effects of omalizumab in allergic asthma: An analysis of biomarkers in the EXTRA study. American Journal of Respiratory and Critical Care Medicine, 187(8), 804-811. https://doi.org/10.1164/rccm.201303-0420OC DOI: https://doi.org/10.1164/rccm.201208-1414OC
Eapen, M. S., Myers, S., Walters, E. H., & Sohal, S. S. (2017). Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox. Expert review of respiratory medicine, 11(10), 827-839. DOI: https://doi.org/10.1080/17476348.2017.1360769
Flood-Page, P., Swenson, C., Faiferman, I., et al. (2007). A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. American Journal of Respiratory and Critical Care Medicine, 176(11), 1062-1071. https://doi.org/10.1164/rccm.200610-1489OC DOI: https://doi.org/10.1164/rccm.200701-085OC
Kiele, M. J., ten Brinke, A., Khan, J., et al. (2000). Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyperresponsiveness, and the late asthmatic response. Lancet, 356(9248), 2144-2148. https://doi.org/10.1016/S0140-6736(00)03252-7 DOI: https://doi.org/10.1016/S0140-6736(00)03496-6
Pavord, I. D., Korn, S., Howarth, P., Bleecker, E. R., Buhl, R., Keene, O. N., et al. (2012). Mepolizumab for severe eosinophilic asthma (DREAM): A multicentre, double-blind, placebo-controlled trial. Lancet, 380(9842), 651-659. https://doi.org/10.1016/S0140-6736(12)61124-0 DOI: https://doi.org/10.1016/S0140-6736(12)60988-X
Ortega, H. G., Liu, M. C., Pavord, I. D., Brusselle, G. G., FitzGerald, J. M., Chetta, A., et al.; MENSA Investigators. (2014). Mepolizumab treatment in patients with severe eosinophilic asthma. New England Journal of Medicine, 371(13), 1198-1207. https://doi.org/10.1056/NEJMoa1403657 DOI: https://doi.org/10.1056/NEJMoa1403290
Bel, E. H., Wenzel, S. E., Thompson, P. J., Prazma, C. M., Keene, O. N., Yancey, S. W., et al.; SIRIUS Investigators. (2014). Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. New England Journal of Medicine, 371(13), 1189-1197. https://doi.org/10.1056/NEJMoa1403293 DOI: https://doi.org/10.1056/NEJMoa1403291
Castro, M., Zangrilli, J., Wechsler, M. E., Bateman, E. D., Brusselle, G. G., Bardin, P., et al. (2015). Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: Results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respiratory Medicine, 3(5), 355-366. https://doi.org/10.1016/S2213-2600(15)00032-5 DOI: https://doi.org/10.1016/S2213-2600(15)00042-9
Castro, M., Wenzel, S. E., Bleecker, E. R., Pizzichini, E., Kuna, P., Busse, W. W., et al. (2014). Benralizumab, an anti-interleukin 5 receptor monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: A phase 2b randomised dose-ranging study. Lancet Respiratory Medicine, 2(11), 879-890. https://doi.org/10.1016/S2213-2600(14)70132-8 DOI: https://doi.org/10.1016/S2213-2600(14)70201-2
Bleecker, E. R., FitzGerald, J. M., Chanez, P., Papi, A., Weinstein, S. F., Barker, P., et al.; SIROCCO study investigators. (2016). Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β-agonists (SIROCCO): A randomised, multicentre, placebo-controlled phase 3 trial. Lancet, 388(10056), 2115-2127. https://doi.org/10.1016/S0140-6736(16)31619-0 DOI: https://doi.org/10.1016/S0140-6736(16)31324-1
FitzGerald, J. M., Bleecker, E. R., Nair, P., Korn, S., Ohta, K., Lommatzsch, M., et al.; CALIMA study investigators. (2016). Benralizumab, an anti-interleukin-5 receptor monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet, 388(10056), 2128-2141. https://doi.org/10.1016/S0140-6736(16)31613-3 DOI: https://doi.org/10.1016/S0140-6736(16)31322-8
Nair, P., Wenzel, S., Rabe, K. F., Bourdin, A., Lugogo, N. L., Kuna, P., et al.; ZONDA Trial Investigators. (2017). Oral glucocorticoid-sparing effect of benralizumab in severe asthma. New England Journal of Medicine, 376(25), 2448-2458. https://doi.org/10.1056/NEJMoa1703501 DOI: https://doi.org/10.1056/NEJMoa1703501
Pavord, I. D., Chanez, P., Criner, G. J., Kerstjens, H. A. M., Korn, S., Lugogo, N., et al. (2017). Mepolizumab for eosinophilic chronic obstructive pulmonary disease. New England Journal of Medicine, 377(17), 1613-1629. https://doi.org/10.1056/NEJMoa1703701 DOI: https://doi.org/10.1056/NEJMoa1708208
Brightling, C. E., Bleecker, E. R., Panettieri, R. A., et al. (2014). Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: A randomised, double-blind, placebo-controlled, phase 2A study. Lancet Respiratory Medicine, 2(11), 891-901. https://doi.org/10.1016/S2213-2600(14)70133-X DOI: https://doi.org/10.1016/S2213-2600(14)70187-0
Wenzel, S., Ford, L., Pearlman, D., Spector, S., Sher, L., Skobieranda, F., et al. (2013). Dupilumab in persistent asthma with elevated eosinophil levels. New England Journal of Medicine, 368(26), 2455-2466. https://doi.org/10.1056/NEJMoa1301942 DOI: https://doi.org/10.1056/NEJMoa1304048
Wenzel, S., Castro, M., Corren, J., Maspero, J., Wang, L., Zhang, B., et al. (2016). Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β-agonist: A randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet, 388(10039), 31-44. https://doi.org/10.1016/S0140-6736(16)30230-6 DOI: https://doi.org/10.1016/S0140-6736(16)30307-5
Hanania, N. A., Korenblat, P., Chapman, K. R., Bateman, E. D., Kopecky, P., Paggiaro, P., et al. (2016). Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): Replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respiratory Medicine, 4(10), 781-796. https://doi.org/10.1016/S2213-2600(16)30220-4 DOI: https://doi.org/10.1016/S2213-2600(16)30265-X
Brightling, C. E., Chanez, P., Leigh, R., O’Byrne, P. M., Korn, S., She, D., et al. (2015). Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: A randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respiratory Medicine, 3(9), 692-701. https://doi.org/10.1016/S2213-2600(15)00303-0 DOI: https://doi.org/10.1016/S2213-2600(15)00197-6
Elices, M. J., Osborn, L., Takada, Y., Crouse, C., Luhowskyj, S., & Hemler, M. E. (1990). VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell, 60(4), 577–584. DOI: https://doi.org/10.1016/0092-8674(90)90661-W
Polman, C. H., O’Connor, P. W., Havrdova, E., Hutchinson, M., Kappos, L., Miller, D. H., & the AFFIRM Study Group. (2006). A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. New England Journal of Medicine, 354(9), 899–910. DOI: https://doi.org/10.1056/NEJMoa044397
Miller, D. H., Khan, O. A., Sheremata, W. A., Blumhardt, L. D., Rice, G. P., Libonati, M. A., & the Natalizumab Study Group. (2003). A controlled trial of natalizumab for relapsing multiple sclerosis. New England Journal of Medicine, 348(1), 15–23. DOI: https://doi.org/10.1056/NEJMoa020696
Yousry, T. A., Major, E. O., Ryschkewitsch, C., Fahle, G., Fischer, S., Hou, J., & the Tysabri Study Group. (2006). Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. New England Journal of Medicine, 354(9), 924–933. DOI: https://doi.org/10.1056/NEJMoa054693
Tan, C. S., & Koralnik, I. J. (2010). Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: Clinical features and pathogenesis. Lancet Neurology, 9(4), 425–437. DOI: https://doi.org/10.1016/S1474-4422(10)70040-5
Mancini, N., Clementi, M., & Burioni, R. (2012). Natalizumab-associated progressive multifocal leukoencephalopathy. New England Journal of Medicine, 367(9), 871–872. https://doi.org/10.1056/NEJMc1204803 DOI: https://doi.org/10.1056/NEJMc1207116
Clerico, M., Artusi, C. A., Liberto, A. D., Rolla, S., Bardina, V., Barbero, P., & Rignanese, G. (2017). Natalizumab in multiple sclerosis: Long-term management. International Journal of Molecular Sciences, 18(5), 1050. https://doi.org/10.3390/ijms18051050 DOI: https://doi.org/10.3390/ijms18050940
Plavina, T., Subramanyam, M., Bloomgren, G., Richman, S., Pace, A., Lee, S., & the Tysabri Study Group. (2014). Anti-JC virus antibody levels in serum or plasma further define risk of natalizumab-associated progressive multifocal leukoencephalopathy. Annals of Neurology, 76(6), 802–812. https://doi.org/10.1002/ana.24266 DOI: https://doi.org/10.1002/ana.24286
Miravalle, A., Jensen, R., & Kinkel, R. P. (2011). Immune reconstitution inflammatory syndrome in patients with multiple sclerosis following cessation of natalizumab therapy. Archives of Neurology, 68(2), 186–191. https://doi.org/10.1001/archneurol.2010.290 DOI: https://doi.org/10.1001/archneurol.2010.257
McGuigan, C., Craner, M., Guadagno, J., Kapoor, R., Mazibrada, G., Molyneux, P., & the Natalizumab Risk Management Group. (2016). Stratification and monitoring of natalizumab-associated progressive multifocal leukoencephalopathy risk: Recommendations from an expert group. Journal of Neurology, Neurosurgery & Psychiatry, 87(2), 117–125. https://doi.org/10.1136/jnnp-2015-310626
Gonzalez-Suarez, I., Rodriguez de Antonio, L., Orviz, A., Moreno-Garcia, S., Valle-Arcos, M. D., Matias-Guiu, J. A., & the PML Working Group. (2017). Catastrophic outcome of patients with a rebound after natalizumab treatment discontinuation. Brain and Behavior, 7(4), e00671. https://doi.org/10.1002/brb3.671 DOI: https://doi.org/10.1002/brb3.671
Groves, A., Kihara, Y., & Chun, J. (2013). Fingolimod: Direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. Journal of Neurological Sciences, 328(1–2), 9–18. https://doi.org/10.1016/j.jns.2013.02.005 DOI: https://doi.org/10.1016/j.jns.2013.02.011
Matloubian, M., Lo, C. G., Cinamon, G., Lesneski, M. J., Xu, Y., Brinkmann, V., & Cyster, J. G. (2004). Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature, 427(6972), 355–360. https://doi.org/10.1038/nature02284 DOI: https://doi.org/10.1038/nature02284
Mehling, M., Brinkmann, V., Antel, J., Bar-Or, A., Goebels, N., Vedrine, C., & the FTY720 Study Group. (2008). FTY720 therapy exerts differential effects on T cell subsets in multiple sclerosis. Neurology, 71(16), 1261–1267. https://doi.org/10.1212/01.wnl.0000327542.23412.91 DOI: https://doi.org/10.1212/01.wnl.0000327609.57688.ea
Sawicka, E., Dubois, G., Jarai, G., Edwards, M., Thomas, M., Nicholls, A., & Bousquet, J. (2005). The sphingosine 1-phosphate receptor agonist FTY720 differentially affects the sequestration of CD4+/CD25+ T-regulatory cells and enhances their functional activity. Journal of Immunology, 175(12), 7973–7980. https://doi.org/10.4049/jimmunol.175.12.7973 DOI: https://doi.org/10.4049/jimmunol.175.12.7973
Cinamon, G., Matloubian, M., Lesneski, M. J., Xu, Y., Low, C., Lu, T., & Cyster, J. G. (2004). Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nature Immunology, 5(7), 713–720. https://doi.org/10.1038/ni1094 DOI: https://doi.org/10.1038/ni1083
Cohen, J. A., & Chun, J. (2011). Mechanisms of fingolimod’s efficacy and adverse effects in multiple sclerosis. Annals of Neurology, 69(5), 759–777. https://doi.org/10.1002/ana.22382 DOI: https://doi.org/10.1002/ana.22426
Mutoh, T., Rivera, R., & Chun, J. (2012). Insights into the pharmacological relevance of lysophospholipid receptors. British Journal of Pharmacology, 165(4), 829–844. https://doi.org/10.1111/j.1476-5381.2011.01355.x DOI: https://doi.org/10.1111/j.1476-5381.2011.01622.x
Forrest, M., Sun, S. Y., Hajdu, R., Bergstrom, J., Card, D., Doherty, G., ... & Sweeney, M. (2004). Immune cell regulation and cardiovascular effects of sphingosine 1-phosphate receptor agonists in rodents are mediated via distinct receptor subtypes. Journal of Pharmacology and Experimental Therapeutics, 309(2), 758–768. https://doi.org/10.1124/jpet.104.068712 DOI: https://doi.org/10.1124/jpet.103.062828
Jain, N., & Bhatti, M. T. (2012). Fingolimod-associated macular edema: Incidence, detection, and management. Neurology, 78(9), 672–680. https://doi.org/10.1212/WNL.0b013e31824576f1 DOI: https://doi.org/10.1212/WNL.0b013e318248deea
Uccelli, A., Ginocchio, F., Mancardi, G. L., & Bassetti, M. (2011). Primary varicella zoster infection associated with fingolimod treatment. Neurology, 76(11), 1023–1024. https://doi.org/10.1212/WNL.0b013e3182126d60 DOI: https://doi.org/10.1212/WNL.0b013e31821043b5
Gross, C. M., Baumgartner, A., Rauer, S., & Stich, O. (2012). Multiple sclerosis rebound following herpes zoster infection and suspension of fingolimod. Neurology, 79(19), 2006–2007. https://doi.org/10.1212/WNL.0b013e318270fb6a DOI: https://doi.org/10.1212/WNL.0b013e3182735d24
Berger, J. R. (2017). Classifying PML risk with disease modifying therapies. Multiple Sclerosis and Related Disorders, 12, 59–63. https://doi.org/10.1016/j.msard.2017.02.004 DOI: https://doi.org/10.1016/j.msard.2017.01.006
Hatcher, S. E., Waubant, E., & Graves, J. S. (2016). Rebound syndrome in multiple sclerosis after fingolimod cessation—Reply. JAMA Neurology, 73(11), 1376. https://doi.org/10.1001/jamaneurol.2016.1972 DOI: https://doi.org/10.1001/jamaneurol.2016.3202
Gunduz, T., Kurtuncu, M., & Eraksoy, M. (2017). Severe rebound after withdrawal of fingolimod treatment in patients with multiple sclerosis. Multiple Sclerosis and Related Disorders, 11, 1–3. https://doi.org/10.1016/j.msard.2017.02.001 DOI: https://doi.org/10.1016/j.msard.2016.11.003
Kalincik, T., Horakova, D., Spelman, T., Jokubaitis, V., Trojano, M., Lugaresi, A., ... & Pohl, C. (2015). Switch to natalizumab versus fingolimod in active relapsing-remitting multiple sclerosis. Annals of Neurology, 77(3), 425–435. https://doi.org/10.1002/ana.24352 DOI: https://doi.org/10.1002/ana.24339
Cohen, J. A., Arnold, D. L., Comi, G., Bar-Or, A., Gujrathi, S., Hartung, J. P., ... & RADIANCE Study Group. (2016). Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): A randomised, placebo-controlled, phase 2 trial. Lancet Neurology, 15(4), 373–381. https://doi.org/10.1016/S1474-4422(16)00001-5 DOI: https://doi.org/10.1016/S1474-4422(16)00018-1
Ghadiri, M., Rezk, A., Li, R., Evans, A., Luessi, F., Zipp, F., ... & Rieckmann, P. (2017). Dimethyl fumarate-induced lymphopenia in MS due to differential T-cell subset apoptosis. Neurology Neuroimmunology & Neuroinflammation, 4(3), e340. https://doi.org/10.1212/NXI.0000000000000340 DOI: https://doi.org/10.1212/NXI.0000000000000340
de Jong, R., Bezemer, A. C., Zomerdijk, T. P., van de Pouw-Kraan, T., Ottenhoff, T. H., & Nibbering, P. H. (1996). Selective stimulation of T helper 2 cytokine responses by the anti-psoriasis agent monomethylfumarate. European Journal of Immunology, 26(9), 2067–2074. https://doi.org/10.1002/eji.1830260917 DOI: https://doi.org/10.1002/eji.1830260916
Dubey, D., Kieseier, B. C., Hartung, H. P., Hemmer, B., Warnke, C., Menge, T., ... & Zettl, U. K. (2015). Dimethyl fumarate in relapsing-remitting multiple sclerosis: Rationale, mechanisms of action, pharmacokinetics, efficacy and safety. Expert Review of Neurotherapeutics, 15(4), 339–346. https://doi.org/10.1586/14737175.2015.1022291 DOI: https://doi.org/10.1586/14737175.2015.1025755
Lehmann-Horn, K., Penkert, H., Grein, P., Leppmeier, U., Teuber-Hanselmann, S., Hemmer, B., ... & Kieseier, B. C. (2016). PML during dimethyl fumarate treatment of multiple sclerosis: How does lymphopenia matter? Neurology, 87(4), 440–441. https://doi.org/10.1212/WNL.0000000000000436 DOI: https://doi.org/10.1212/WNL.0000000000002900
Beutler, E. (1992). Cladribine (2-chlorodeoxyadenosine). Lancet, 340(8825), 952–956. https://doi.org/10.1016/0140-6736(92)92269-T DOI: https://doi.org/10.1016/0140-6736(92)92826-2
Published
How to Cite
Issue
Section
Copyright (c) 2018 International journal of health sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.