Use of wearable health devices for early detection of medical disorders

Applications at different medical departments

https://doi.org/10.53730/ijhs.v2nS1.15147

Authors

  • Sultan Sulaiman Alharbi KSA, National Guard Health Affairs
  • Sultan Mohammed Algfari KSA, National Guard Health Affairs
  • Ahmed Ibrahim Alahmad KSA, National Guard Health Affairs
  • Mshaweh Mohammed Alshammry KSA, National Guard Health Affairs
  • Naif Saad Alqahtani KSA, National Guard Health Affairs
  • Shayem Hamdan Alharbi KSA, National Guard Health Affairs
  • ‎‏Zaid Helal Alanazi KSA, National Guard Health Affairs
  • Mohammed Hamoud Alwaked KSA, National Guard Health Affairs
  • Abdulaziz Ahmad Alrashidi KSA, National Guard Health Affairs
  • Bander Batti Alrasheedi KSA, National Guard Health Affairs
  • Fayez Abdullah Hussain Alsarimi KSA, National Guard Health Affairs
  • Rayan Salem Abdulaziz Alghufaili KSA, National Guard Health Affairs
  • Meshal Saeed M Alotaibi KSA, National Guard Health Affairs

Keywords:

Wearable Health Devices, Vital Signs, Continuous Monitoring, Medical Applications, Healthcare Technology

Abstract

Background: Wearable Health Devices (WHDs) represent a rapidly advancing technology that enables continuous monitoring of vital signs in various settings, including personal and clinical environments. Emerging in the late 1990s, these devices integrate biomedical technology with micro- and nanotechnology, materials engineering, and information and communication technologies. WHDs aim to enhance patient empowerment by facilitating self-management of health and improving interaction with healthcare providers. Aim: This review evaluates the current applications and technological advancements of WHDs in different medical departments, including emergency care, health information systems, nursing, and pharmacy. It explores their role in continuous monitoring, diagnostics, and patient management. Methods: A comprehensive literature review was conducted, focusing on recent developments in WHD technology, their applications in various medical contexts, and future trends. Key areas of investigation included vital sign monitoring, sensor technologies, and device usability. Results: WHDs have shown significant promise in diverse applications. In emergency care, they provide real-time monitoring for critical conditions, improving early detection and response. In health information systems, they enhance data collection and integration with electronic health records. Nursing applications focus on continuous patient monitoring and managing chronic conditions, while pharmacists benefit from accurate medication adherence tracking.

Downloads

Download data is not yet available.

References

Marco Di Rienzo, G.P.; Brambilla, G.; Ferratini, M.; Castiglioni, P. MagIC System: A New Textile-BasedWearable Device for Biological Signal Monitoring. Applicability in Daily Life and Clinical Setting. In Proceedings of the 2005 IEEE, Engineering in Medicine and Biology 27th Annual Conference 2005, Shangai, China, 1–4 September 2005; pp. 7167–7169. DOI: https://doi.org/10.1109/IEMBS.2005.1616161

Lymberis, A.G.L. Wearable health systems: From smart technologies to real applications. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 6789–6792. DOI: https://doi.org/10.1109/IEMBS.2006.260948

Rita Paradiso, G.L.; Taccini, N. A Wearable Health Care System Based on Knitted Integrated Sensors. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 337–344. DOI: https://doi.org/10.1109/TITB.2005.854512

Seoane, F.; Mohino-Herranz, I.; Ferreira, J.; Alvarez, L.; Buendia, R.; Ayllon, D.; Llerena, C.; Gil-Pita, R. Wearable biomedical measurement systems for assessment of mental stress of combatants in real time. Sensors 2014, 14, 7120–7141. DOI: https://doi.org/10.3390/s140407120

Yilmaz, T.; Foster, R.; Hao, Y. Detecting vital signs with wearable wireless sensors. Sensors 2010, 10, 10837–10862. DOI: https://doi.org/10.3390/s101210837

Statista, B.I. Wearable Device Sales Revenue Worldwide from 2016 to 2022 (in Billion U.S.Dollars); Statista Inc.: New York, NY, USA, 2017.

Yussuff, V.; Sanderson, R. The World Market for Wireless Charging in Wearable Technology; IHS: Englewood, CO, USA, 2014.

Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373–4395. DOI: https://doi.org/10.1002/adma.201504366

Majumder, S.; Mondal, T.; Deen, M.J. Wearable sensors for remote health monitoring. Sensors 2017, 17, 130. DOI: https://doi.org/10.3390/s17010130

Pantelopoulos, A.; Bourbakis, N.G. A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2010, 40, 1–12. DOI: https://doi.org/10.1109/TSMCC.2009.2032660

Banaee, H.; Ahmed, M.U.; Loutfi, A. Data mining for wearable sensors in health monitoring systems: A review of recent trends and challenges. Sensors 2013, 13, 17472–17500. DOI: https://doi.org/10.3390/s131217472

Ahrens, T. The most important vital signs are not being measured. Aust. Crit Care 2008, 21, 3–5. DOI: https://doi.org/10.1016/j.aucc.2007.12.061

Elliott, M.C.A. Critical care: The eight vital signs of patient monitoring. Br. J. Nurs. 2012, 21, 621–625. DOI: https://doi.org/10.12968/bjon.2012.21.10.621

Xu, P.J.; Zhang, H.; Tao, X.M. Textile-structured electrodes for electrocardiogram. Text. Prog. 2008, 40, 183–213. DOI: https://doi.org/10.1080/00405160802597479

Chan, M.; Esteve, D.; Fourniols, J.Y.; Escriba, C.; Campo, E. Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 2012, 56, 137–156. DOI: https://doi.org/10.1016/j.artmed.2012.09.003

Appelboom, G.; Camacho, E.; Abraham, M.E.; Bruce, S.S.; Dumont, E.L.; Zacharia, B.E.; D’Amico, R.; Slomian, J.; Reginster, J.Y.; Bruyere, O.; et al. Smart wearable body sensors for patient self-assessment and monitoring. Arch. Public Health 2014, 72, 28. DOI: https://doi.org/10.1186/2049-3258-72-28

Saritha, C.; Sukanya, V.; Murthy, Y.N. ECG Signal Analysis Using Wavelet Transforms. Bulg. J. Phys. 2008, 35, 68–77.

Luo, N.; Ding, J.; Zhao, N.; Leung, B.H.K.; Poon, C.C.Y. Mobile Health: Design of Flexible and Stretchable Electrophysiological Sensors for Wearable Healthcare Systems. In Proceedings of the 2014 11th International Conference on Wearable and Implantable Body Sensor Networks, Zurich, Switzerland, 16–19 June 2014; pp. 87–91. DOI: https://doi.org/10.1109/BSN.2014.25

Giovangrandi, L.; Inan, O.T.; Banerjee, D.; Kovacs, G.T. Preliminary results from BCG and ECG measurements in the heart failure clinic. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 3780–3783. DOI: https://doi.org/10.1109/EMBC.2012.6346790

Syduzzaman, M.; Patwary, S.U.; Farhana, K.; Ahmed, S. Smart textiles and nano-technology: A general overview. J. Text. Sci. Eng. 2015, 5, 1000181.

Aleksandrowicz, A.; Leonhardt, S. Wireless and non-contact ECG measurement system—The “Aachen SmartChair”. Acta Polytech. 2007, 47, 4–5. DOI: https://doi.org/10.14311/974

Aarts, V.; Dellimore, K.H.; Wijshoff, R.; Derkx, R.; Laar, J.V.D.; Muehlsteff, J. Performance of an accelerometer-based pulse presence detection approach compared to a reference sensor. In Proceedings of the 14th Annual Body Sensor Networks Conference, Eindhoven, The Netherlands, 9–12 May 2017; pp. 165–168. DOI: https://doi.org/10.1109/BSN.2017.7936033

Xiao-Fei, T.; Yuan-Ting, Z.; Poon, C.C.Y.; Bonato, P. Wearable Medical Systems for p-Health. IEEE Rev. Biomed. Eng. 2008, 1, 62–74. DOI: https://doi.org/10.1109/RBME.2008.2008248

Turner, J.R.; Viera, A.J.; Shimbo, D. Ambulatory blood pressure monitoring in clinical practice: A review. Am. J. Med. 2015, 128, 14–20. DOI: https://doi.org/10.1016/j.amjmed.2014.07.021

Puke, S.; Suzuki, T.; Nakayama, K.; Tanaka, H.; Minami, S. Blood pressure estimation from pulse wave velocity measured on the chest. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 6107–6110. DOI: https://doi.org/10.1109/EMBC.2013.6610946

Yu-Pin, H.; Young, D.J. Skin-Coupled Personal Wearable Ambulatory Pulse Wave Velocity Monitoring System Using Microelectromechanical Sensors. IEEE Sens. J. 2014, 14, 3490–3497. DOI: https://doi.org/10.1109/JSEN.2014.2345779

Woo, S.H.; Choi, Y.Y.; Kim, D.J.; Bien, F.; Kim, J.J. Tissue-informative mechanism for wearable non-invasive continuous blood pressure monitoring. Sci. Rep. 2014, 4, 6618. DOI: https://doi.org/10.1038/srep06618

Guo, L.; Berglin, L.; Wiklund, U.; Mattila, H. Design of a garment-based sensing system for breathing monitoring. Text. Res. J. 2012, 83, 499–509. DOI: https://doi.org/10.1177/0040517512444336

Gandis, G.; Mazeika, M.; Rick Swanson, R. CRTT. Respiratory Inductance Plethysmography an Introduction. Available online: http://www.pro-tech.com/

Anmin, J.; Bin, Y.; Morren, G.; Duric, H.; Aarts, R.M. Performance evaluation of a tri-axial accelerometry-based respiration monitoring for ambient assisted living. In Proceedings of the Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 5677–5680. DOI: https://doi.org/10.1109/IEMBS.2009.5333116

Sharma, H.; Sharma, K.K.; Bhagat, O.L. Respiratory rate extraction from single-lead ECG using homomorphic filtering. Comput. Biol. Med. 2015, 59, 80–86. DOI: https://doi.org/10.1016/j.compbiomed.2015.01.024

Addison, P.S.; Watson, J.N.; Mestek, M.L.; Ochs, J.P.; Uribe, A.A.; Bergese, S.D. Pulse oximetry-derived respiratory rate in general care floor patients. J. Clin. Monit. Comput. 2015, 29, 113–120. DOI: https://doi.org/10.1007/s10877-014-9575-5

Chiu, Y.-Y.; Lin, W.-Y.; Wang, H.-Y.; Huang, S.-B.; Wu, M.-H. Development of a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration monitoring. Sens. Actuators A Phys. 2013, 189, 328–334. DOI: https://doi.org/10.1016/j.sna.2012.10.021

Krehel, M.; Schmid, M.; Rossi, R.M.; Boesel, L.F.; Bona, G.L.; Scherer, L.J. An optical fibre-based sensor for respiratory monitoring. Sensors 2014, 14, 13088–13101. DOI: https://doi.org/10.3390/s140713088

AL-Khalidi, F.Q.; Saatchi, R.; Burke, D.; Elphick, H.; Tan, S. Respiration rate monitoring methods: A review. Pediat. Pulmonol. 2011, 46, 523–529. DOI: https://doi.org/10.1002/ppul.21416

Tognarelli, S.L.D.; Cecchi, F.; Scaramuzzo, R.; Cuttano, A.; Laschi, C.; Menciassi, A.; Dario, P. Analysis of a dielectric EAP as smart component for a neonatal respiratory simulator. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 457–460. DOI: https://doi.org/10.1109/EMBC.2013.6609535

Guo, X.; Huang, Y.; Zhao, Y.; Mao, L.; Gao, L.; Pan, W.; Zhang, Y.; Liu, P. Highly stretchable strain sensor based on SWCNTs/CB synergistic conductive network for wearable human-activity monitoring and recognition. Smart Mater. Struct. 2017, 26, 095017. DOI: https://doi.org/10.1088/1361-665X/aa79c3

Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable Photoplethysmographic Sensors—Past and Present. Electronics 2014, 3, 282–302 DOI: https://doi.org/10.3390/electronics3020282

Dias, D.; Ferreira, N.; Cunha, J.P.S. VitalLogger: An adaptable wearable physiology and body-area ambiance data logger for mobile applications. In Proceedings of the 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Eindhoven, The Netherlands, 9–12 May 2017; pp. 71–74. DOI: https://doi.org/10.1109/BSN.2017.7936010

Sola, J.; Castoldi, S.; Chetelat, O. SpO2 Sensor Embedded in a Finger Ring: Desing and implementation. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 4495–4498. DOI: https://doi.org/10.1109/IEMBS.2006.4398400

Mendelson, Y.; Dao, D.K.; Chon, K.H. Multi-channel pulse oximetry for wearable physiological monitoring. In Proceedings of the 2013 IEEE International Conference on Body Sensor Networks (BSN), MA, USA, USA, 6–9 May 2013; pp. 1–6. DOI: https://doi.org/10.1109/BSN.2013.6575518

Chen, C.-M.; Kwasnicki, R.; Lo, B.; Yang, G.Z. Wearable Tissue Oxygenation Monitoring Sensor and a Forearm Vascular Phantom Design for Data Validation. In Proceedings of the 11th International Conference on Wearable and Implantable Body Sensor Networks, Zurich, Switzerland, 16–19 June 2014; pp. 64–68. DOI: https://doi.org/10.1109/BSN.2014.33

Zysset, C.; Nasseri, N.; Büthe, L.; Münzenrieder, N.; Kinkeldei, T.; Petti, L.; Kleiser, S.; Salvatore, G.A.; Wolf, M.; Tröster, G. Textile integrated sensors and actuators for near-infrared spectroscopy. Opt. Express 2013, 21, 3213. DOI: https://doi.org/10.1364/OE.21.003213

Krehel, M.; Wolf, M.; Boesel, L.F.; Rossi, R.M.; Bona, G.L.; Scherer, L.J. Development of a luminous textile for reflective pulse oximetry measurements. Biomed. Opt. Express 2014, 5, 2537–2547. DOI: https://doi.org/10.1364/BOE.5.002537

Medtronic MiniMed, I. Continuous Glucose Monitoring. Available online: https://www.medtronicdiabetes.com (accessed on 7 July 2017).

Dexcom, I. Dexcom G4 Platinum. Available online: http://www.dexcom.com/pt-PT

MedCityNews. FDA Approval for First Glucose Monitoring App. Available online: http://healthmanagement.org/ (accessed on 10 July 2017).

Takahashi, M.; Heo, Y.J.; Kawanishi, T.; Okitsu, T.; Takeuchi, S. Portable continuous glucose monitoring systems with implantable fluorescent hydrogel microfibers. In Proceedings of the 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 20–24 January 2013; pp. 1089–1092. DOI: https://doi.org/10.1109/MEMSYS.2013.6474439

Tierney, M.J.; Tamada, J.A.; Potts, R.O.; Jovanovic, L.; Garg, S. Clinical evaluation of the GlucoWatch® biographer: A continual, non-invasive glucose monitor for patients with diabetes. Biosens. Bioelectron. 2001, 16, 621–629. DOI: https://doi.org/10.1016/S0956-5663(01)00189-0

So, C.F.; Choi, K.S.; Wong, T.K.; Chung, J.W. Recent advances in noninvasive glucose monitoring. Med. Devices 2012, 5, 45–52 DOI: https://doi.org/10.2147/MDER.S28134

Sobel, S.I.; Chomentowski, P.J.; Vyas, N.; Andre, D.; Toledo, F.G. Accuracy of a Novel Noninvasive Multisensor Technology to Estimate Glucose in Diabetic Subjects During Dynamic Conditions. J. Diabetes Sci. Technol. 2014, 8, 54–63. DOI: https://doi.org/10.1177/1932296813516182

Wieringa, F.P.; Broers, N.J.H.; Kooman, J.P.; Van der Sande, F.M.; Van Hoof, C. Wearable sensors: Can they benefit patients with chronic kidney disease? Expert Rev. Med. Devices 2017, 14, 505–519 DOI: https://doi.org/10.1080/17434440.2017.1342533

Jeehoon, K.; Sungjun, K.; Sangwon, S.; Kwangsuk, P. Highly wearable galvanic skin response sensor using flexible and conductive polymer foam. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Chicago, IL, USA, 26–30 August 2014; pp. 6631–6634. DOI: https://doi.org/10.1109/EMBC.2014.6945148

Nikolic-Popovic, J.; Goubran, R. Measuring heart rate, breathing rate and skin conductance during exercise. In Proceedings of the 2011 IEEE International Workshop on the Medical Measurements and Applications Proceedings (MeMeA), Bari, Italy, 30–31 May 2011; pp. 507–511. DOI: https://doi.org/10.1109/MeMeA.2011.5966751

Bandodkar, A.J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371. DOI: https://doi.org/10.1016/j.tibtech.2014.04.005

Gengchen, L.; Smith, K.; Kaya, T. Implementation of a microfluidic conductivity sensor—A potential sweat electrolyte sensing system for dehydration detection. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Chicago, IL, USA, 26–30 August 2014; pp. 1678–1681. DOI: https://doi.org/10.1109/EMBC.2014.6943929

Koh, A.; Kang, D.; Xue, Y.; Lee, S.; Pielak, R.M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 2016, 8, 366ra165. DOI: https://doi.org/10.1126/scitranslmed.aaf2593

Kodali, B.S. Capnography outside the operating rooms. Anesthesiology 2013, 118, 192–201. DOI: https://doi.org/10.1097/ALN.0b013e318278c8b6

Wac, K.; Tsiourti, C. Ambulatory Assessment of Affect: Survey of Sensor Systems for Monitoring of Autonomic Nervous Systems Activation in Emotion. IEEE Trans. Affect. Comput. 2014, 5, 251–272. DOI: https://doi.org/10.1109/TAFFC.2014.2332157

Dziewas, R.E.A. Capnography screening for sleep apnea in patients with acute stroke. Neurol. Res. 2005, 27, 83–87. DOI: https://doi.org/10.1179/016164105X18359

Ontario, O.B.R.-T.O.J.F.B.I. Braebon Taps into the Growing Sleep Apnea Market. Available online: http://www.mri.gov.on.ca/obr/2012/07/braebon-taps-into-the-growing-sleep-apnea-market/

Orlikowski, D.; Prigent, H.; Ambrosi, X.; Vaugier, I.; Pottier, S.; Annane, D.; Lofaso, F.; Ogna, A. Comparison of ventilator-integrated end-tidal CO2 and transcutaneous CO2 monitoring in home-ventilated neuromuscular patients. Respir. Med. 2016, 117, 7–13. DOI: https://doi.org/10.1016/j.rmed.2016.05.022

Chatterjee, M.; Ge, X.; Kostov, Y.; Luu, P.; Tolosa, L.; Woo, H.; Viscardi, R.; Falk, S.; Potts, R.; Rao, G. A rate-based transcutaneous CO2 sensor for noninvasive respiration monitoring. Physiol. Meas. 2015, 36, 883. DOI: https://doi.org/10.1088/0967-3334/36/5/883

Horvath, C.M.; Brutsche, M.H.; Baty, F.; Rüdiger, J.J. Transcutaneous versus blood carbon dioxide monitoring during acute noninvasive ventilation in the emergency department—A retrospective analysis. Swiss Med. Wkly. 2016, 146, w14373. DOI: https://doi.org/10.4414/smw.2016.14373

Gaura, E.; Kemp, J.; Brusey, J. Leveraging knowledge from physiological data: On-body heat stress risk prediction with sensor networks. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 861–879. DOI: https://doi.org/10.1109/TBCAS.2013.2254485

Buller, M.J.; Tharion, W.J.; Hoyt, R.W.; Jenkins, O.C. Estimation of human internal temperature from wearable physiological sensors. In Proceedings of the Twenty-Second Innovative Applications of Artificial Intelligence Conference (IAAI-10), Atlanta, GA, USA, 11–15 July 2010.

Buller, M.J.; Tharion, W.J.; Cheuvront, S.N.; Montain, S.J.; Kenefick, R.W.; Castellani, J.; Latzka, W.A.; Roberts, W.S.; Richter, M.; Jenkins, O.C.; et al. Estimation of human core temperature from sequential heart rate observations. Physiol. Meas. 2013, 34, 781. DOI: https://doi.org/10.1088/0967-3334/34/7/781

Popovic, Z.; Momenroodaki, P.; Scheeler, R. Toward wearable wireless thermometers for internal body temperature measurements. IEEE Commun. Mag. 2014, 52, 118–125. DOI: https://doi.org/10.1109/MCOM.2014.6917412

Boano, C.A.; Lasagni, M.; Romer, K.; Lange, T. Accurate Temperature Measurements for Medical Research Using Body Sensor Networks. In Proceedings of the 2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, Newport Beach, CA, USA, 28–31 March 2011; pp. 189–198. DOI: https://doi.org/10.1109/ISORCW.2011.28

Webb, R.C.; Bonifas, A.P.; Behnaz, A.; Zhang, Y.; Yu, K.J.; Cheng, H.; Shi, M.; Bian, Z.; Liu, Z.; Kim, Y.S.; et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 2013, 12, 938–944. DOI: https://doi.org/10.1038/nmat3755

Miozzi, C.; Amendola, S.; Bergamini, A.; Marrocco, G. Reliability of a Re-usable Wireless Epidermal Temperature Sensor in Real Conditions. In Proceedings of the 14th Annual Body Sensor Networks Conference, Eindhoven, The Netherlands, 9–12 May 2017; pp. 95–98. DOI: https://doi.org/10.1109/BSN.2017.7936016

Xu, X.; Karis, A.J.; Buller, M.J.; Santee, W.R. Relationship between core temperature, skin temperature, and heat flux during exercise in heat. Eur. J. Appl. Physiol. 2013, 113, 2381–2389. DOI: https://doi.org/10.1007/s00421-013-2674-z

Published

15-01-2018

How to Cite

Alharbi, S. S., Algfari, S. M., Alahmad, A. I., Alshammry, M. M., Alqahtani, N. S., Alharbi, S. H., Alanazi, ‎‏Zaid H., Alwaked, M. H., Alrashidi, A. A., Alrasheedi, B. B., Alsarimi, F. A. H., Alghufaili, R. S. A., & Alotaibi, M. S. M. (2018). Use of wearable health devices for early detection of medical disorders: Applications at different medical departments. International Journal of Health Sciences, 2(S1), 201–218. https://doi.org/10.53730/ijhs.v2nS1.15147

Issue

Section

Peer Review Articles

Most read articles by the same author(s)

<< < 1 2 3