Understanding antibiotic resistance: Challenges and solutions
A review article for healthcare staff
Keywords:
antibiotic resistance, multi-drug resistant bacteria, healthcare staff, antibiotic stewardship, novel antibiotics, global healthAbstract
Background: Antibiotic resistance (ABR) poses a critical threat to global health, with predictions indicating that by 2050, multi-drug resistant (MDR) infections could lead to approximately 10 million deaths annually, surpassing deaths from cancer and cardiovascular diseases. The overuse and misuse of antibiotics, particularly in agricultural settings, have exacerbated the issue. Aim: This review aims to provide healthcare staff with an understanding of the challenges posed by antibiotic resistance and explore potential solutions. Methods: A comprehensive literature review was conducted, analyzing historical and contemporary data on antibiotic discovery, resistance mechanisms, and current research initiatives aimed at addressing ABR. Results: Key findings indicate that the decline in new antibiotic development since the late 1980s, coupled with the rapid spread of resistance genes, has created an urgent need for novel therapeutic strategies. Recent research highlights promising compounds derived from natural sources, including marine fungi and Actinobacteria, which show potential against MDR pathogens. Conclusion: Immediate action is required to combat ABR, including improved antibiotic stewardship, public education, and increased funding for research into new antibiotics. Collaborative efforts among healthcare professionals, researchers, and policymakers are essential to address this escalating crisis.
Downloads
References
Abadi ATB, Rizvanov AA, Haertlé T, Blatt NL (2019) World Health Organization report: current crisis of antibiotic resistance. BioNanoScience 9:778–788. https://doi.org/10.1007/s12668-019-00658-4 DOI: https://doi.org/10.1007/s12668-019-00658-4
About Antibiotic Resistance. (2020) Centers for Disease Control and Prevention. https://www.cdc.gov/drugresistance/about.html Accessed 8/15/20
Acinetobacter Pathogen Page. (2020) Carbapenem-Resistant Acinetobacter Pathogen Page. Centers for Disease Control and Prevention. https://www.cdc.gov/drugresistance/pdf/threats-report/acinetobacter-508.pdf
Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y (2006) Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother 50:43–48. https://doi.org/10.1128/AAC.50.1.43-48.2006 DOI: https://doi.org/10.1128/AAC.50.1.43-48.2006
Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44:1818–1824. https://doi.org/10.1128/AAC.44.7.1818-1824.2000 DOI: https://doi.org/10.1128/AAC.44.7.1818-1824.2000
Ashurst J V & Dawson A Klebsiella pneumoniae (2020) In: StatPearls [internet]. Treasure Island (FL): StatPearls Publishing; 2020
Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. PNAS 102:11076–11081. https://doi.org/10.1073/pnas.0504266102 DOI: https://doi.org/10.1073/pnas.0504266102
Bantar C, Sartori B, Vesco E et al (2003) A hospitalwide intervention program to optimize the quality of antibiotic use: impact on prescribing practice, antibiotic consumption, cost savings, and bacterial resistance. Clin Infect Dis 37:180–186. https://doi.org/10.1086/375818 DOI: https://doi.org/10.1086/375818
Basséres E, Endres BT, Dotson KM, Alam MJ, Garey KW (2016) Novel antibiotics in development to treat Clostridium difficile infection. Curr Opin Gastroenterol 33:1–7. https://doi.org/10.1097/MOG.0000000000000332 DOI: https://doi.org/10.1097/MOG.0000000000000332
Biggest Threats and Data. (2020) Centers for Disease Control and Prevention. https://www.cdc.gov/drugresistance/biggest-threats.html#extend
Bjorkman A, Phillips-Howard PA (1991) Adverse reactions to sulfa drugs: implications for malaria chemotherapy. Bull World Health Organ 69:297–304
Bond CA, Raehl CL (2005) Clinical and economic outcomes of pharmacist-managed aminoglycoside or vancomycin therapy. Am J Health Syst Pharm 62:1596–1605. https://doi.org/10.2146/ajhp040555 DOI: https://doi.org/10.2146/ajhp040555
Bowater L (2017) The microbes fight Back: antibiotic resistance. Royal Society of Chemistry, Cambridge DOI: https://doi.org/10.1039/9781782623649
Castanheira, M, Huband, M D, Mendes, R E, & Flamm, R K (2017) Meropenem-Vaborbactam Tested against Contemporary Gram-Negative Isolates Collected Worldwide during 2014, Including Carbapenem-Resistant, KPC-Producing, Multidrug-Resistant, and Extensively Drug-Resistant Enterobacteriaceae. Antimicrob. Agents. Chemother. 61: 1–12. https://doi.org/10.1128/AAC.00567-17https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf accessed 8.26.2020 “CDC” DOI: https://doi.org/10.1128/AAC.00567-17
Chambers HF (2001) The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis 7:178–182. https://doi.org/10.3201/eid0702.010204 DOI: https://doi.org/10.3201/eid0702.010204
Chellat MF, Raguž L, Riedl R (2016) Targeting antibiotic resistance. Angew Chem Int Ed 55:6600–6626. https://doi.org/10.1002/anie.201506818 DOI: https://doi.org/10.1002/anie.201506818
CRE CDC. (2020) Carbapenem-resistant Enterobacteriaceae (CRE). Centers for Disease Control and Prevention. https://www.cdc.gov/hai/organisms/cre/
Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433. https://doi.org/10.1128/MMBR.00016-10 DOI: https://doi.org/10.1128/MMBR.00016-10
Davin-Regli A, Pagès J (2015) Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol 6:1–10. https://doi.org/10.3389/fmicb.2015.00392 DOI: https://doi.org/10.3389/fmicb.2015.00392
D’Costa VM, King CE, Kalan L, Morar M, Sung WWL, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011) Antibiotic resistance is ancient. Nature 000:1–5. https://doi.org/10.1038/nature10388 DOI: https://doi.org/10.1038/nature10388
Dellit TH, Owens RC, McGowan JE Jr et al (2007) Infectious diseases society of America and the society for healthcare epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis 44:159–177 DOI: https://doi.org/10.1086/510393
Diancourt L, Passet V, Verhoef J, Grimont PAD, Brisse S (2005) Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 43:4178–4182. https://doi.org/10.1128/JCM.43.8.4178-4182.2005 DOI: https://doi.org/10.1128/JCM.43.8.4178-4182.2005
Dijkshoorn L, Nemec A, Seifert H (2007) An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nature 5:939–951. https://doi.org/10.1038/nrmicro1789 DOI: https://doi.org/10.1038/nrmicro1789
Dinges MM, Orwin PM, Schlievert PM (2000) Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13:16–34. https://doi.org/10.1128/CMR.13.1.16 DOI: https://doi.org/10.1128/CMR.13.1.16
Enterobacteriaceae Pathogen Page. (2020) Carbapenem-Resistant Enterobacteriaceae Pathogen Page. Centers for Disease Control and Prevention. https://www.cdc.gov/drugresistance/pdf/threats-report/CRE-508.pdf
ESBL Pathogen page. (2020) Extended-Spectrum Beta-lactamase (ESBL) producing Enterobacteriaceae pathogen page. Centers for Disease Control and Prevention. https://www.cdc.gov/drugresistance/pdf/threats-report/esbl-508.pdf
Falagas ME, Maraki S, Karageorgopoulos DE, Kastoris AC, Mavromanolakis E, Samonis G (2010) Antimicrobial susceptibility of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Enterobacteriaceae isolates to fosfomycin. Int J Antimicrob Agents 35:1–17. https://doi.org/10.1016/j.ijantimicag.2009.10.019 DOI: https://doi.org/10.1016/j.ijantimicag.2009.10.019
Fishman NO (2006) Impact of an antimicrobial stewardship program: clinical outcomes. Am J Med 119:S53–S61. https://doi.org/10.1016/j.ajic.2006.05.237 DOI: https://doi.org/10.1016/j.amjmed.2006.04.003
Fleming-Dutra KE, Hersh AL, Shapiro DJ et al (2016) Prevalence of inappropriate antibiotic prescriptions among US ambulatory care visits, 2010–2011. JAMA 315:1864–1873. https://doi.org/10.1001/jama.2016.4151 DOI: https://doi.org/10.1001/jama.2016.4151
Floris L, Cluck D, Singleton A (2020) Understanding antimicrobial resistance. U.S. Pharmacist 45:HS10–HS16
Frieri M, Kumar K, Boutin A (2017) Antibiotic Resistance. J Inf Secur 10:369–378. https://doi.org/10.1016/j.jiph.2016.08.007 DOI: https://doi.org/10.1016/j.jiph.2016.08.007
Gasink LB, Edelstein PH, Lautenbach E, Synnestvedt M, Fishman NO (2009) Risk factors and clinical impact of Klebsiella pneumoniae Carbapenemase–Producing K. pneumoniae. Infect Control Hosp Epidemiol 30:1180–1185. https://doi.org/10.1086/648451 DOI: https://doi.org/10.1086/648451
He Y, Tian J, Chen X, Sun W, Zhu H, Li Q, Lei L, Yao G, Xue Y, Wang J, Li H, Zhang Y (2016) Fungal naphtho-γ-pyrones: potent antibiotics for drug-resistant microbial pathogens. Nature 6:1–9. https://doi.org/10.1038/srep24291 DOI: https://doi.org/10.1038/srep24291
Heikens E, Bonten MJM, Willems RJL (2007) Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162. J Bacteriol 189:8233–8240. https://doi.org/10.1128/JB.01205-07 DOI: https://doi.org/10.1128/JB.01205-07
Holmes AH, Moore LS, Sundsfjord A et al (2016) Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387:176–187. https://doi.org/10.1016/S0140-6736(15)00473-0 DOI: https://doi.org/10.1016/S0140-6736(15)00473-0
Howard A, O’Donoghue M, Feeney A, Sleator RD (2012) Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence 3:243–250. https://doi.org/10.4161/viru.19700 DOI: https://doi.org/10.4161/viru.19700
Hug JJ, Bader CD, Remškar M, Cirnski K, Müller R (2018) Concepts and methods to access novel antibiotics from Actinomycetes. Antibiotics 7:1–47. https://doi.org/10.3390/antibiotics7020044 DOI: https://doi.org/10.3390/antibiotics7020044
Hutchings MI, Truman AW, Wilkinson B (2019) Antibiotics: past, present, and future. Curr Opin Microbiol 51:72–80. https://doi.org/10.1016/j.mib.2019.10.008 DOI: https://doi.org/10.1016/j.mib.2019.10.008
Kanj SS, Kanafani ZA (2011) Current concepts in antimicrobial therapy against resistant gram-negative organisms: extended-Spectrum β-lactamase–producing Enterobacteriaceae, Carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clin Proc 86:250–259. https://doi.org/10.4065/mcp.2010.0674 DOI: https://doi.org/10.4065/mcp.2010.0674
Khardori N, Stevaux C, Ripley K (2020) Antibiotics: from the beginning to the future: part I. Ind J Ped 87:39–42. https://doi.org/10.1007/s12098-019-03087-z DOI: https://doi.org/10.1007/s12098-019-03087-z
Kmietowicz Z (2017) Few novel antibiotics in the pipeline, WHO warns. BMJ 358:1. https://doi.org/10.1136/bmj.j4339 DOI: https://doi.org/10.1136/bmj.j4339
Koulenti, D, Xu, E, Mok, I Y S, Song, A, Karageorgopoulos, D E, Armaganidis, A, Lipman, J, & Tsiodras, S (2019) Novel antibiotics for multidrug-resistant gram-positive microorganisms. Microorganisms 7: 1–24. https://doi.org/10.3390/microorganisms7080270 DOI: https://doi.org/10.3390/microorganisms7080270
Landwehr W, Wolf C, Wink J (2016) Actinobacteria and Myxobacteria-two of the Most important bacterial resources for novel antibiotics. Curr Top Microbiol Immunol 10:1–30. https://doi.org/10.1007/82_2016_503 DOI: https://doi.org/10.1007/82_2016_503
Larone, D H (2011) Medically Important Fungi: A Guide to Identification. Washington, DC 5th ed. DOI: https://doi.org/10.1128/9781555816605
Lesch JE (2007) The first miracle drugs: how the sulfa drugs transformed medicine. New York, New York DOI: https://doi.org/10.1093/oso/9780195187755.001.0001
Maragakis LL, Perl TM (2008) Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Antimicrobial Resistance 46:1254–1263. https://doi.org/10.1086/529198 DOI: https://doi.org/10.1086/529198
Martens E, Demain AI (2017) The antibiotic resistance crisis, with a focus on the United States. J Antibiotics 70:520–526. https://doi.org/10.1038/ja.2017.30 DOI: https://doi.org/10.1038/ja.2017.30
MDR Pseudomonas. (2020) Multidrug-resistant Pseudomonas aeruginosa pathogen page. Centers for Disease Control and Prevention https://www.cdc.gov/drugresistance/pdf/threats-report/pseudomonas-aeruginosa-508.pdf
Mezzatesta ML, Gona F, Stefani S (2012) Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol 7:887–902. https://doi.org/10.2217/fmb.12.61 DOI: https://doi.org/10.2217/fmb.12.61
Michael CA, Dominey-Howes D, Labbate M (2014) The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health 2:1–8. https://doi.org/10.3389/fpubh.2014.00145 DOI: https://doi.org/10.3389/fpubh.2014.00145
Mohammad H, Mayhoub AS, Cushman M, Seleem MN (2015) Anti-biofilm activity and synergism of novel thiazole compounds with glycopeptide antibiotics against multidrug-resistant staphylococci. J Antibiot (Tokyo) 68:1–23. https://doi.org/10.1038/ja.2014.142 DOI: https://doi.org/10.1038/ja.2014.142
More SJ (2020) European perspectives on efforts to reduce antimicrobial usage in food animal production. Irish Vet J 73:2. https://doi.org/10.1186/s13620-019-0154-4 DOI: https://doi.org/10.1186/s13620-019-0154-4
Moloney MG (2016) Natural products as a source for novel antibiotics. Trends Pharmacol Sci 37:689–701. https://doi.org/10.1016/j.tips.2016.05.001 DOI: https://doi.org/10.1016/j.tips.2016.05.001
MRSA. (2020) Methicillin-Resistant Staphylococcus aureus. Centers for Disease Control and Prevention. https://www.cdc.gov/mrsa/community/index.html
MRSA Pathogen page (2020). Methicillin-resistant Staphylococcus aureus pathogen page. Centers for Disease Control and Prevention. https://www.cdc.gov/drugresistance/pdf/threats-report/mrsa-508.pdf
Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr 4:1–37. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015 DOI: https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP (2009) Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13:785–796. https://doi.org/10.1016/S1473-3099(13)70190-7 DOI: https://doi.org/10.1016/S1473-3099(13)70190-7
Nordmann P, Cuzon G, Naas T (2009) The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9:228–236. https://doi.org/10.1016/S1473-3099(09)70054-4 DOI: https://doi.org/10.1016/S1473-3099(09)70054-4
Obama White House Archives. (2015) https://obamawhitehouse.archives.gov/sites/default/files/docs/national_action_plan_for_combating_antibotic-resistant_bacteria.pdf accessed 8.26.2020
O’Driscoll T, Crank CW (2015) Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infection and Drug Resist 8:217– DOI: https://doi.org/10.2147/IDR.S54125
Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21:538–582. https://doi.org/10.1128/CMR.00058-07 DOI: https://doi.org/10.1128/CMR.00058-07
Poole K (2011) Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2:1–13. https://doi.org/10.3389/fmicb.2011.00065 DOI: https://doi.org/10.3389/fmicb.2011.00065
Pseudomonas aeruginosa in Healthcare Settings. (2020) Centers for Disease Control and Prevention. https://www.cdc.gov/hai/organisms/pseudomonas.html“Pseudomonas CDC”
Quirós RE, Valerio M (2015) Are cultural determinants related with the use of antibiotics and emergence of multidrug resistant microorganisms? Open Forum Infect Dis 2:203. https://doi.org/10.1093/ofid/ofv133.80 DOI: https://doi.org/10.1093/ofid/ofv133.80
Ramalingam AJ (2015) History of antibiotics and evolution of resistance. Research J Pharm and Tech 8:1719–1724. https://doi.org/10.5958/0974-360X.2015.00309.1 DOI: https://doi.org/10.5958/0974-360X.2015.00309.1
Romo AL, Quiroz R (2019) Appropriate use of antibiotics: an unmet need. Ther Adv Urol 11:9–17. https://doi.org/10.1177/1756287219832174 DOI: https://doi.org/10.1177/1756287219832174
Sadikot RT, Blackwell TS, Christman JW, Prince AS (2005) Pathogen–host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 171:1210–1223. https://doi.org/10.1164/rccm.200408-1044SO DOI: https://doi.org/10.1164/rccm.200408-1044SO
Santesmases MJ, Gradmann C (2011) Circulation of antibiotics: an introduction. Dynamis. 31:293–303. https://doi.org/10.4321/S0211-95362011000200002 DOI: https://doi.org/10.4321/S0211-95362011000200002
Schultsz C, Geerlings S (2012) Plasmid-Mediated Resistance in Enterobacteriaceae. Drugs 72:1–16 0012-6667/12/0001-0001 DOI: https://doi.org/10.2165/11597960-000000000-00000
Serpi M, Ferrari V, Pertusati F (2016) Nucleoside derived antibiotics to fight microbial drug resistance: new utilities for an established class of drugs? J Med Chem 59:10343–10382. https://doi.org/10.1021/acs.jmedchem.6b00325 DOI: https://doi.org/10.1021/acs.jmedchem.6b00325
Shang Z, Salim AA, Khalil Z, Bernhardt PV, Capon RJ (2016) Fungal biotransformation of tetracycline antibiotics. J Org Chem 81:6186–6194. https://doi.org/10.1021/acs.joc.6b01272 DOI: https://doi.org/10.1021/acs.joc.6b01272
Silber J, Kramer A, Labes A, Tasdemir D (2016) From discovery to production: biotechnology of marine Fungi for the production of new antibiotics. Mar Drugs 14:1–20. https://doi.org/10.3390/md14070137 DOI: https://doi.org/10.3390/md14070137
Small World Initiative (2020) https://www.smallworldinitiative.org Accessed 1/1/21
Strateva T, Yordanov D (2009) Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol 58:1133–1148. https://doi.org/10.1099/jmm.0.009142-0 DOI: https://doi.org/10.1099/jmm.0.009142-0
Stierle AA, Stierle DB, Decato D, Priestley ND, Alverson JB, Hoody J, McGrath K, Klepacki D (2017) The Berkeleylactones, antibiotic macrolides from fungal Coculture. J Nat Prod 80:1150–1160. https://doi.org/10.1021/acs.jnatprod.7b00133 DOI: https://doi.org/10.1021/acs.jnatprod.7b00133
Tan SY, Tatsumura Y (2015) Alexander Fleming (1881–1955): Discoverer of Penicillin. Singapore Med. J 56:366–367. https://doi.org/10.11622/smedj.2015105 DOI: https://doi.org/10.11622/smedj.2015105
Vancomycin-resistant Enterococci (VRE) in Healthcare Settings. (2020) Centers for Disease Control and Prevention. https://www.cdc.gov/hai/organisms/vre/vre.html
VRE Pathogen Page. (2020) Vancomycin-Resistant Enterococci Pathogen Page. Centers for Disease Control and Prevention. https://www.cdc.gov/drugresistance/pdf/threats-report/vre-508.pdf
Vuotto C, Longo F, Balice MP, Donelli G, Varaldo PE (2014) Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens 3:743–758. https://doi.org/10.3390/pathogens3030743 DOI: https://doi.org/10.3390/pathogens3030743
Willems RJL, Top J, Santen M, Robinson DA, Coque TM, Baquero F, Grundmann H, Bonten MJM (2005) Global spread of Vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg Infect Dis 11:821–828. https://doi.org/10.3201/eid1106.041204 DOI: https://doi.org/10.3201/eid1106.041204
World Health Organization Antibiotic Resistance. (2020) World Health Organization. https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance
Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N (2017) A review on antibiotic resistance: alarm bells are ringing. Cureus. 1403:1–9. https://doi.org/10.7759/cureus.1403 DOI: https://doi.org/10.7759/cureus.1403
Published
How to Cite
Issue
Section
Copyright (c) 2021 International journal of health sciences
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Health Sciences (IJHS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJHS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJHS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
This copyright notice applies to articles published in IJHS volumes 4 onwards. Please read about the copyright notices for previous volumes under Journal History.